文档库 最新最全的文档下载
当前位置:文档库 › 第5章-压缩

第5章-压缩

流体力学 气体的一元流动

第8章 气体的一元流动 一、 学习的目的和任务 1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念 3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。 二、 重点、难点 1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算 由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。这和前面研究液体的章节中,视密度为常数有很大的不同。 气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。本章将简要介绍气体的一元流动。 8.1 气体的伯努利方程 在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即 22 1122 1222p u p u z z g g g g ρρ++=++ (8.1-1) 上式中12,p p ——流体气体两点的压强; 12,u u ——流动气体两点的平均流速 在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的

形式,即 2 212 11222 2 u u p gz p gz ρρρρ++ =++ (8.1-2) 由于气体的密度一般都很小,在大多数情况下1gz ρ和2gz ρ很相近,故上式(8.1-2)就可以表示为 2 212 122 2 u u p p ρρ+ =+ (8.1-3) 前面已经提到,气体压缩性很大,在流动速度较快时,气体各点压强和密度都有很大的变化,式(8.1-3)就不能适用了。必须综合考虑热力学等知识,重新导出可压缩流体的伯努利方程,推导如下。 如图8-1所示,设一维稳定流动的气体,在上面任取一段微小长度ds ,两边气流断面1、2的断面面积、流速、压强、密度和温度分别为A 、u 、p 、ρ、T ;A dA +、 u du +、p dp +、d ρρ+、T dT +。 取流段1-2作为自由体,在时间dt 内,这段自由体所作的功为 ()()()W pAudt p dp A dA u du dt =-+++ (8.1-4) 根据恒流源的连续性方程式,有uA C ρ=(常数),所以上式(8.1-4)可写成 ()p p dp p p dp W Cdt Cdt Cdt d d ρ ρρρρρ ++= - =-++ 由于在微元内,可认为ρ和d ρρ+很相近,则上式可化简为 图8-1 ds 微元流段

流体力学课后答案解析第九章一元气体动力学基础

一元气体动力学基础 1.若要求22 v p ρ?小于0.05时,对20℃空气限定速度是多少? 解:根据2 20v P ρ?=42 M 知 4 2 M < 0.05?M<0.45,s m kRT C /3432932874.1=??== s m MC v /15334345.0=?== 即对20℃ 空气限定速度为v <153m/s ,可按不压缩处理。 2.有一收缩型喷嘴,已知p 1=140kPa (abs ),p 2=100kPa (abs ),v 1=80m/s ,T 1=293K ,求2-2断面上的速度v 2。 解:因速度较高,气流来不及与外界进行热量交换,且当忽略能量损失时,可按等熵流动 处理,应用结果:2v =2121)(2010v T T +-,其中T 1=293K 1ρ=1 1RT p =1.66kg/m 3. k P P 11 212)(ρρ==1.31kg/m 3. T 2=R P 22ρ=266 K 解得:2v =242m/s 3.某一绝热气流的马赫数M =0.8,并已知其滞止压力p 0=5×98100N/m 2,温度t 0=20℃,试求滞止音速c 0,当地音速c ,气流速度v 和气流绝对压强p 各为多少? 解:T 0=273+20=293K ,C 0=0KRT =343m/s 根据 202 11M K T T -+=知 T=260 K ,s m kRT C /323==,s m MC v /4.258== 100-??? ??=k k T T p p 解得:2/9810028.3m N p ?= 4.有一台风机进口的空气速度为v 1,温度为T 1,出口空气压力为p 2,温度为T 2,出口断面面积为A 2,若输入风机的轴功率为N ,试求风机质量流量G (空气定压比热为c p )。 解:由工程热力学知识:

第5章土的压缩性

第5章土的压缩性 一简答题 1.通过固结试验可以得到哪些土的压缩性指标如何求得 2.通过现场(静)载荷试验可以得到哪些土的力学性质指标 3.室内固结试验和现场载荷试验都不能测定土的弹性模量,为什么 4.试从基本概念、计算公式及适用条件等方面比较压缩模量、变形模量与弹性模量,它们与材料力学中杨氏模量有什么区别 5.根据应力历史可将土(层)分为那三类土(层)试述它们的定义。 6.何谓先期固结压力实验室如何测定它 7.何谓超固结比如何按超固结比值确定正常固结土 8.何谓现场原始压缩曲线三类土的原始压缩曲线和压缩性指标由实验室的测定方法有河不同 9.应力历史对土的压缩性有何影响如何考虑 二填空题 1.压缩系数= ,表示压力范围= ,= 的压缩系数,工程上常用评价土的压缩性的高低。 2.可通过室内试验测定的土体压缩性的指标有、、和。 3.天然土层在历史上所经受过的包括自重应力和其他荷载作用形成的最大竖向有效固结压力称为。 4.据前期固结压力,沉积土层分为、、 三种。 5.在研究沉积土层的应力历史时,通常将 与之比值定义为超固结比。 三选择题 1.评价地基土压缩性高低的指标是() (A)压缩系数;(B)固节系数;(C)沉降影响系数; (D)参透系数 2.若土的压缩曲线(e-p曲线)较陡,则表明() (A)土的压缩性较大 (B)土的压缩性较小 (C)土的密实度较大 (D)土的孔隙比较小 3.固结实验的排水条件为() (A)单面排水; (B)双面排水;(C)不排水; (D)先固结,后不排水4.在饱和土的排水固结过程中,若外载荷不变,则随着土中有效应力()

(A)孔隙水压力u相应的增加;(B)孔隙水压力u相应的减少 (C)总应力δ相应增加;(D)总应力δ相应减少 5.无黏性土无论是否饱和,其实形达到稳定的所需时间都比透水性小的饱和黏性土()(A)长得多; (B)短得多;(C)差不多; (D)有时更长,有时更短6.在饱和土的排水固节过程中,通常孔隙水压力u与有效力将发生如下的变化()(A)u不断减少,不断增加;(B)u不断增加,不断减少 (C)u与均不断减少;(D)u与均不断增加 7.土体产生压缩的时() (A) 土中孔隙体积减少,土粒体积不变;(B)孔隙体积和土粒体积均明显减少 (C)土粒和水的压缩量均较大;(D)孔隙体积不变 8.土的变形模量可通过()实验来测定。 (A)压缩; (B)载荷;(C)渗透; (D)剪切; 9.土的e-p曲线愈平缓,说明() (A)压缩模量愈小; (B)压缩系数愈大 (C)土的压缩性愈低;(D)土的变形愈大 10.若土的压缩系数a1-2=,则该土属于() (A)低压缩性土; (B)中压缩性土;(C)高压缩性土; (D)低灵敏土 11.已知土中某点的总应力,孔隙水压力,则有应力等于( ) (A)20kPa ;(B)80kPa;(C)100kPa;(D)120kPa 12.下列说法中,错误的是() (A)土在压力作用下体积会减小 (B)土的压缩主要是土中孔隙体积的减少 (C)土的压缩所需时间与土的透水性有关 (D)土的固结压缩量与土的透水性有关 13.土的压缩性指标包括() (A)a,Cc,Es,E0;(B)a,Cc,Es,e ;(C)a,Cc,E0,e ;(D)a,Es,Eo, 14.土的压缩模量越大,表示() (A)土的压缩性越高;(B)土的压缩性越低 (C)e-p曲线越陡;(D)e-lgp曲线越陡 15.下列说法中,错误的是() (A)压缩试验的排水条件为双面排水 (B)压缩试验不允许土样产生侧向变形 (C)载荷试验允许土体排水

工程热力学12 气体的压缩

第十二章气体的压缩 通过消耗外功来提高气体压力的设备称为压气机。压气机在工程、科学研究中具有十分广泛的用途,如动力工程中煤粉的输运和锅炉通风、制冷设备中制冷剂的压缩、风洞实验中高压气体的获得、风动工具(如公共汽车车门的开关、大型内燃机的启动),车胎打气等。 压气机分类: 通风机(<0.01MPa表压) 按压力范围鼓风机(0.01~0.3MPa表压) 压缩机(>0.3MPa表压)) 活塞式 按构造叶轮式(离心式和轴流式) 引射式 活塞式压气机是通过活塞在气缸中的往复运动来挤压气缸中的气体,从而使气体的压力提高。叶轮式压气机通过叶轮的旋转,使气体加速,并使高速气体在特定流道中(相当于扩压管)降低流速,从而提高压力。活塞式压气机和叶轮式压气机的一个显著区别是:活塞式压气机吸气与排气是间歇性的;而叶轮式压气机的压缩过程是在连续流动状态下进行的,即气体不断地流入压气机,在压气机内被压缩后,不断地被排出压气机。活塞式压气机适用于高压、排量小的场合;而轴流式压气机适用于低压、排量大的场合。 尽管压气机的种类和工作原理多种多样,但是从热力学的观点来看,压缩气体的状态变化并没有什么不同,都是接受外功使气体压缩升压的过程。

12.1 活塞式压气机的工作原理 活塞式压气机的示意图和p -v 图(又称示功图)示于图12-1中。 工作三部曲: ①在活塞式压气机的理想工作过程中,气体经过进气阀与排气阀时,不考虑在阀门处的阻力与摩擦力。当活塞自左止点向右移动时,进气阀门A 打开,气体从缸外被吸入气缸,这是吸气过程(0-1),此时,吸入气体的热力学状态不发生任何变化。②当到达右止点时,进气阀关闭,活塞在外力作用下向左回行,气缸内的气体被压缩,压力升高,这就是气体的 压缩过程(2-3),此时需要消耗外功。③当活 塞左行至某一位置时,气体的压力升高到预定压 力2p ,此时排气阀门B 开启,活塞继续左行,把气缸内的气体排到储气罐或输气管道中,直至活塞到达左止点,这是排气过程(2-3)。排气过程中,气体的状态也不发生变化。活塞由曲轴-连杆机构带动,曲轴回转一次,活塞往返一次。活塞不断往复,重复上面三个过程,这就是活塞式压气机的理想工作过程。 从上面的说明中可以看出,过程0-1与2-3仅仅是将气体吸入和排出气缸的机械输运过程,气体的状态并不发生任何变化;而只有1-2的压缩过程才是真正的热力过程。定义压缩过程中气体的终压2p 与初压1p 之比为增压比, 1 2p p = π (12-1) 图12-2(a )和12-2(b )分别是压缩过程的p -V 图和T -S 图。压气机的压缩过程可以看作多变过程(1→2n )。若压缩过程进行的很快,气体来不及和外界交换热量,则压缩过程近似于绝热压缩过程(1→2s );如果压缩过程进行得较慢,并且气缸壁得到良好的冷却,则压缩过程接近于定温压缩过程(1→2T )。 绝热压缩和定温压缩是压缩过程的两个极限情况。 因要考虑流动功,压气机耗功应以技术功计。对于可逆的压缩过程,技术功 ?-=2 1d p V W t 。对于不同的压缩过程,技术功可以通过把过程方程)(V f p =代 入上式积分来得到。绝热压缩过程、多变压缩过程和定温压缩过程所消耗的技术功分别通过式(12-2a )、(12-2b )和(12-2c )来计算

流体力学第八章气体的一元流动

流体力学-第八章-气体的一元流动

————————————————————————————————作者:————————————————————————————————日期: 1

189 第8章 气体的一元流动 一、 学习的目的和任务 1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念 3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。 二、 重点、难点 1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算 由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。这和前面研究液体的章节中,视密度为常数有很大的不同。 气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。本章将简要介绍气体的一元流动。 8.1 气体的伯努利方程 在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即 22 1122 1222p u p u z z g g g g ρρ++=++ (8.1-1) 上式中12,p p ——流体气体两点的压强; 12,u u ——流动气体两点的平均流速 在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的

土力学课程第五章土的压缩性习题附参考答案

土力学课程第五章土的压缩性习题 附参考答案 摘要 一、填空题(共5小题) 二、选择题(共21小题) 三、判断改错题(共12小题) 四、简答题(共9小题) 五、计算题(共3小题) 参考答案

土力学课程第五章土的压缩性习题附参考答案 一、填空题(共5小题) 1.压缩系数= ,表示压力范围= ,= 的压缩系数, 工程上常用评价土的压缩性的高低。 2.可通过室内试验测定的土体压缩性的指标有、、 和。 3.天然土层在历史上所经受过的包括自重应力和其他荷载作用形成的最大竖向 有效固结压力称为。 4.据前期固结压力,沉积土层分为、、三种。 5.在研究沉积土层的应力历史时,通常将与之比值定义为超 固结比。 二、选择题(共21小题) 1.评价地基土压缩性高低的指标是() (A)压缩系数;(B)固节系数;(C)沉降影响系数;(D)参透系数 2.若土的压缩曲线(e-p曲线)较陡,则表明() (A)土的压缩性较大(B)土的压缩性较小 (C)土的密实度较大(D)土的孔隙比较小 3.固结实验的排水条件为() (A)单面排水;(B)双面排水;(C)不排水;(D)先固结,后不排水 4.在饱和土的排水固结过程中,若外载荷不变,则随着土中有效应力()(A)孔隙水压力u相应的增加;(B)孔隙水压力u相应的减少 (C)总应力δ相应增加;(D)总应力δ相应减少 5.无黏性土无论是否饱和,其实形达到稳定的所需时间都比透水性小的饱和黏 性土() (A)长得多;(B)短得多;(C)差不多;(D)有时更长,有时更短

6.在饱和土的排水固节过程中,通常孔隙水压力u与有效力将发生如下的变化() (A)u不断减少,不断增加;(B)u不断增加,不断减少 (C)u与均不断减少;(D)u与均不断增加 7.土体产生压缩的时() (A) 土中孔隙体积减少,土粒体积不变;(B)孔隙体积和土粒体积均明显减少 (C)土粒和水的压缩量均较大;(D)孔隙体积不变 8.土的变形模量可通过()实验来测定。 (A)压缩;(B)载荷;(C)渗透;(D)剪切; 9.土的e-p曲线愈平缓,说明() (A)压缩模量愈小;(B)压缩系数愈大 (C)土的压缩性愈低;(D)土的变形愈大 10.若土的压缩系数a1-2=0.1MPa-1,则该土属于() (A)低压缩性土;(B)中压缩性土;(C)高压缩性土;(D)低灵敏土 11.已知土中某点的总应力,孔隙水压力,则有应力等于() (A)20kPa ;(B)80kPa;(C)100kPa;(D)120kPa 12.下列说法中,错误的是() (A)土在压力作用下体积会减小 (B)土的压缩主要是土中孔隙体积的减少 (C)土的压缩所需时间与土的透水性有关 (D)土的固结压缩量与土的透水性有关 13.土的压缩性指标包括() (A)a,Cc,Es,E0;(B)a,Cc,Es,e;(C)a,Cc,E0,e ;(D)a,Es,Eo, 14.土的压缩模量越大,表示() (A)土的压缩性越高;(B)土的压缩性越低 (C)e-p曲线越陡;(D)e-lgp曲线越陡 15.下列说法中,错误的是()

《土力学》第五章练习题及答案

《土力学》第五章练习题及答案 第5章土的压缩性 一、填空题 1.压缩系数a1-2数值越大,土的压缩性越,a1-2≥的土为高压缩 性土。 2.考虑土层的应力历史,填方路段的地基土的超固结比比1 ,挖方路段的地基土超固结比比1 。 3.压缩系数越小,土的压缩性越,压缩模量越小,土的压缩性越。 4.土的压缩模量是土在条件下应力与应变的比值,土的变形模量是土在 条件下应力与应变的比值。 二、名词解释 1. 土的压缩性 2.先期固结压力 3.超固结比 4.欠固结土 三、单项选择题 1.在下列压缩性指标中,数值越大,压缩性越小的指标是: (A)压缩系数 (B)压缩指数 (C)压缩模量 (D)孔隙比 您的选项() 2.两个性质相同的土样,现场载荷试验得到变形模量E0和室内压缩试验得到压缩模量E S之间存在的相对关系是: (A)E0=E S (B)E0>E S (C)E0≥E S (D)E0<E S 您的选项() 3.土体压缩变形的实质是: (A)土中水的压缩 (B)土中气的压缩 (C)土粒的压缩 (D)孔隙体积的减小 您的选项() 4.对于某一种特定的土来说,压缩系数a1-2大小: (A)是常数 (B)随竖向压力p增大而曲线增大 (C)随竖向压力p增大而曲线减小 (D)随竖向压力p增大而线性减小 您的选项() 5.当土为超固结状态时,其先期固结压力pC与目前土的上覆压力p1=γh的关系为: (A)pC>p1 (B)pC<p1 (C)pC=p1

(D)pC=0 您的选项() 6.根据超固结比OCR,可将沉积土层分类,当OCR <1时,土层属于: (A)超固结土 (B)欠固结土 (C)老固结土 (D)正常固结土 您的选项() 7.对某土体进行室内压缩试验,当法向应力p1=100kPa时,测得孔隙比e1=0.62,当法向应力p2=200kPa时,测得孔隙比e2=0.58,该土样的压缩系数a1-2、压缩模量E S1-2分别为:(A) 0.4MPa-1、4.05MPa (B)-0.4MPa-1、4.05MPa (C) 0.4MPa-1、3.95MPa (D)-0.4MPa-1、3.95MPa 您的选项() 8.三个同一种类的土样,如果重度 相同,含水量w不同,w甲>w乙>w丙,则三个土样的压缩性大小满足的关系为: (A)甲>乙>丙 (B)甲=乙=丙 (C)甲<乙<丙 (D)甲<丙<乙 您的选项() 第5章土的压缩性 一、填空题 1.高、0.5MPa-1 2.小、大 3.低、高 4.有侧限、无侧限 二、名词解释 1.土的压缩性:土体在压力作用下,体积减小的特性。 2.先期固结压力:指天然土层在历史上所受到的最大固结压力。 3.超固结比:先期固结压力与现有覆盖土重之比。 4.欠固结土:先期固结压力小于现有覆盖土重的土层。 三、单项选择题 1. 正确答案:(C) 提示:土的压缩性指标包括压缩系数、压缩指数和压缩模量,压缩系数、压缩指数数值越大,压缩性越大,压缩模量与压缩系数成反比关系,因此,压缩模量数值越大,压缩性越小。2. 正确答案:(D) 提示:土在无侧限条件下根据现场载荷实验测得的变形模量E0比有侧限条件下室内压缩实验测得的压缩模量E S数值小。 3. 正确答案:(D) 提示:土在荷载作用下,体积减小的特性称为压缩。由于土粒、土中水和土中气的本身压缩量微小,可以忽略不计,所以在荷载作用下,土体体积的减小等于孔隙中水和气排出的体积。 4. 正确答案:(A) 提示:压缩系数a1-2是压缩曲线上压应力由p1=100Kpa、p2=200Kpa两点所连直线的斜率,对于某一种特定的土来说,压缩系数a1-2是常数,但随着荷载的增大,压缩系数a曲线减小。

第五章 气体流动和压缩1

第五章 气体的流动和压缩 5-1 用管道输送天然气(甲烷)。已知管道内天然气的压力为4.5 MPa ,温度为295 K 、流速为30 m/s ,管道直径为0.5m 。问每小时能输送天然气多少标准立方米? 解:h m s m s m m c D Ac v q q m v /101195.2/8875.5/30)5.0(4 1 41343221?==??====ππ 由T mR pV g =得,111T mR q p g V =,222T mR q p g V =, 即 h m K MPa K h m MPa T p T q p q V V /10716.8295101325.015.273/101195.25.435341 22112?=????== 5-2 温度为750℃、流速为550m/s 的空气流,以及温度为20℃、流速为380m/s 的空气流,是亚音速气流还是超音速气流?它们的马赫数各为若干?已知空气在750℃时 γ0=1.335;在20℃时γ0=1.400。 解:(1)750℃时, 当地音速s m K K kg J T R c g s /22.626)15.273750()/(1.287335.1101=+???==γ 11s c c <,故为亚音速; 878.0/22.626/55011=== s m s m c c Ma s (2)20℃时, 当地音速s m K K kg J T R c g s /26.343)15.27320()/(1.2874.1202=+???==γ 22s c c <,为超音速; 107.1/26.343/38022=== s m s m c c Ma s 5-3 已测得喷管某一截面空气的压力为0.3 MPa 、温度为700 K 、流速为600 m/s 。试按定比热容和变比热容(查表)两种办法求滞止温度和滞止压力。能否推知该测量截面在喷管的什么部位? 解:(1)按定比热容 K K kg J s m K c c T T p 1.879) /(10005.12)/600(700232 02* =???+=+= M P a T c c p p p 666.0)700 10005.126001(3.0)21(14.14 .13 2102* 00 =???+?=+=--γγ

流体力学 第八章 气体的一元流动

189 第8章 气体的一元流动 一、 学习的目的和任务 1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念 3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。 二、 重点、难点 1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算 由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。这和前面研究液体的章节中,视密度为常数有很大的不同。 气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。本章将简要介绍气体的一元流动。 8.1 气体的伯努利方程 在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即 22 1122 1222p u p u z z g g g g ρρ++=++ (8.1-1) 上式中12,p p ——流体气体两点的压强; 12,u u ——流动气体两点的平均流速 在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的

190 形式,即 2 212 11222 2 u u p gz p gz ρρρρ++ =++ (8.1-2) 由于气体的密度一般都很小,在大多数情况下1gz ρ和2gz ρ很相近,故上式(8.1-2)就可以表示为 2 212 122 2 u u p p ρρ+ =+ (8.1-3) 前面已经提到,气体压缩性很大,在流动速度较快时,气体各点压强和密度都有很大的变化,式(8.1-3)就不能适用了。必须综合考虑热力学等知识,重新导出可压缩流体的伯努利方程,推导如下。 如图8-1所示,设一维稳定流动的气体,在上面任取一段微小长度ds ,两边气流断面1、2的断面面积、流速、压强、密度和温度分别为A 、u 、p 、ρ、T ;A dA +、 u du +、p dp +、d ρρ+、T dT +。 取流段1-2作为自由体,在时间dt 内,这段自由体所作的功为 ()()()W pAudt p dp A dA u du dt =-+++ (8.1-4) 根据恒流源的连续性方程式,有uA C ρ=(常数),所以上式(8.1-4)可写成 ()p p dp p p dp W Cdt Cdt Cdt d d ρ ρρρρρ ++= - =-++ 由于在微元内,可认为ρ和d ρρ+很相近,则上式可化简为 ( )p p dp dp W Cdt Cdt ρ ρ --==- (8.1-5)

相关文档
相关文档 最新文档