文档库 最新最全的文档下载
当前位置:文档库 › 数列知识点归纳及习题总结

数列知识点归纳及习题总结

数列知识点归纳及习题总结
数列知识点归纳及习题总结

等差与等比数列知识与方法总结一、知识结构与要点

N

2

c

a

b

+ =

定义:

n

n n n n n a a

a a q a a 1121+++-=→= N n ∈ 通项 →?=-11n n q a a 等比中项:a

b

c 成等比数列ac b =?2

基本概念

推广m n m n q a a -?=

前n 项和=n S )

1(11)1()

1(11

1≠--=--=q q

q

a a q

q a q n a n n 等比数列

与首末两端等距离的两项之积相等 1121......+--?===i n i n n a a a a a a q p n m a a a a q p n m ?=??+=+

}{n a 成等比,若k n n n ,...,21 成等差则nk n a a a ,...,21

成等比

基本性质 当

1

01>>q a 或

1

001<<

1

01>

1

001<<>q a 时 {}n a 为递减数列

当 q<0时 {}n a 为摆动数列 当 q=1时 {}n a 为常数数列

二、等差数列、等比数列基础知识与方法概括 (一).一般数列

数列的定义及表示方法;数列的项与项数;有穷数列与无穷数列;递增(减)、摆动、循环数列;数列{a n }的通项公式a n ;数列的前n 项和公式S n ; 一般数列的通项a n 与前n 项和S n 的关系:??

?≥-===-)2()

1(111n S S n S a a n n

n

(二)等差数列 1.等差数列的概念

[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 即:成等比数列}{)0,0,2(1n n n n a q a n d a a ?≠≠≥=--

2.等差数列的判定方法

(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。

(2)等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 3.等差数列的通项公式

如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 [说明]:该公式整理后是关于n 的一次函数。 4.等差数列的前n 项和

(1).2

)(1n n a a n S += ( 2.) d n n na S n 2)

1(1-+=

[说明]对于公式2整理后是关于n 的没有常数项的二次函数。 5.等差中项

如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2

b

a A +=

或b a A +=2 [说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 6.等差数列的性质

(1).等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=

(2).对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+。

也就是: =+=+=+--2

3121n n n a a a a a a ,如图所示:

n

n a a n a a n n a a a a a a ++---11

2,,,,,,12321

(3).若数列{}n a 是等差数列,n S 是其前n 项的和,*

N k ∈,那么k S ,k k S S -2,k

k S S 23-成等差数列。如下图所示:

k

k

k k

k S S S k k S S k k k a a a a a a a a 3232k

31221S 321-+-+++++++++++ (4).设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:①奇数项d a a a 2,,,531成等差数列,公差为? ②偶数项d a a a 2,,,642成等差数列,公差为? ③)1()1(2

1211

21+?=+?+=

+++n a n a a S n n n 奇项,则若有奇数项

n

a n a a S n n ?=?+=+1222

所以有

?

?

?==-?

+=+?=+++中偶奇中偶奇a a S S a n n a S S n n 11)12()12( n

n 1

S S +=

偶奇;12S S S S S S S n +=-+=-n 偶奇偶奇偶奇 n n a n n a a S n ?=?+=

-221

21奇项,则若有偶数项 122

2

+?=?+=n n

a n n a a S 偶 所以有()()()nd a a a a a a S S n n =-+?+-+-=--1223412奇偶

(5).若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为

'12-n S ,则

'1

2

1

2--=n n n n S S b a 。 (三).等比数列 1.等比数列的概念 [定义]:

成等比数列}{)0,0,2(1

n n n n

a q a n q a a ?≠≠≥=- [等比中项]

如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。

也就是,如果是的等比中项,那么G

b a G =,即ab G =2

2.等比数列的判定方法 (1)定义法:对于数列{}n a ,若

)0(1

≠=+q q a a n

n ,则数列{}n a 是等比数列。

(2)等比中项:对于数列{}n a ,若2

12++=n n n a a a )0(≠n a ,则数列{

}n a 是等比数列。 3.等比数列的通项公式

如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 。 4.等比数列的前n 项和

??

?

??

≠--=--==)1(11)1()1(111q q q

a a q q a q na S n n n 5.等比数列的性质

(1)等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=

(2).对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ?=?

也就是: =?=?=?--2

3121n n n a a a a a a 。如图所示:

n

n a a n a a n n a a a a a a ??---11

2,,,,,,12321

(3)若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成

等比数列。如下图所示:

k

k

k k

k S S S k k S S k k k a a a a a a a a 3232k

31221S 321-+-+++++++++++ 三、数列的通项求法

1.等差,等比数列的通项;

2.??

?

≥-==→-)

2(,)

1(,11n S S n a a S n n n n

3.迭加累加 ,迭乘累乘

)2(),(1≥=--n n f a a n n 若, )(1n g a a n n

=-若

)2(12f a a =-则, )2(12g a a

=则

)3(23f a a =-, )3(2

3g a a

=

………, ………,

)(1n f a a n n =--,

)(1n g a a n n

=- )()3()2(1n f f f a a n ?++=-, )()2(1

n g g a a

n ?=

注:呢?若)(),(11n g a a

n f a a n

n n n ==-++

4. 数列间的关系 (1){}{}成等比数列成等差数列n

a n b

a ?

{}Bn An S B An a a n n n +=?+=?2

成等差数列 (2){}{}

成等比数列成等比数列k

n n a a ?

{}{}成等差数列成等比数列n b a n a a n log 0

?>

(3)递推数列]

①能根据递推公式写出数列的前n 项

②由n n n n S a a S f ,,0),(求= 解题思路:利用???≥-==-)2(,)1(,11n S S n a a n n

n

变化(ⅰ)已知0),(11=--n n a S f (ⅱ)已知0),(1=--n n n S S S f

③若一阶线性递归数列a n =ka n -1+b (k ≠0,k ≠1),则总可以将其改写变形成如下形式:)1

(11-+=-+-k b a k k b a n n (n ≥2),于是可依据等比数列的定义求出其通项公式;

四、数列的求和方法(详细讲解见六) 1.等差与等比数列求和公式

2.裂项相消法: )1

1(1))((1C

An B An B C C An B An a n +-+-=++=

如:a n =1/n(n+1)

3.错位相减法:n n n c b a ?=, {}{}成等比数列成等差数列,

n n c b n n n n n c b c b c b c b S ++?++=--112211 1121+-++??+=n n n n n c b c b c b qS 则

所以有13211)()1(+-??+++=-n n n n c b d c c c c b S q 如:a n =(2n-1)2n

4.倒序相加法:如已知函数1()()42x f x x R =

∈+求:12

()()()m

m

S f f f m m m

=+++。

5.通项分解法:n n n c b a ±=如:a n =2n+3n 五、其它方面

1、在等差数列{}n a 中,有关S n 的最值问题——常用邻项变号法求解:

(1)当01>a ,d<0时,满足??

?≤≥+00

1

m m a a 的项数m 使得

取最大值.

(2)当01>a ,d>0时,满足???≥≤+00

1

m m a a 的项数m 使得

取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

2、三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

3、三个数成等比的设法:a/q,a,aq ;

四个数成等比的错误设法:a/q 3,a/q,aq,aq 3 (为什么?) 4、求数列{a n }的最大、最小项的方法:

① a n+1-a n =……???

??<=>000 如a n = -2n 2+29n-3

② ??

?

??<=>=+1

11

1 n n a a (a n >0) 如a n =n n n 10)1(9+ ③ a n =f(n) 研究函数f(n)的增减性 如a n =

156

2

+n n

六、专题讲座一 《数列求和题的基本思路和常用方法》

一、利用常用求和公式求和

1、 等差数列求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

2、等比数列求和公式:?????≠--=--==)

1(11)1()1(111

q q q a a q

q a q na S n n

n

3、 )1(21

1

+==∑=n n k S n

k n 4、)12)(1(6112++==∑=n n n k S n

k n

5、 21

3

)]1(21[+==∑=n n k S n

k n

[例1] 已知数列{},n n

n a a x =,

(x ≠0),n s 数列的前n 项和,求n s 。 解:当x=1时,n s n = 当x ≠1时,{}n

a 为等比数列,公比为x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式)

=x

x x n --1)

1(

【巩固练习】1:已知数列{}n a 的通项公式为314n a n =-,n s 为{}n a 的前n 项和,

(1)求n s ; (2)求{}

n a 的前20项和。

解:

二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例2] 求和:132)12(7531--+???++++=n n x n x x x S ………(0x ≠)

当x=1时,2

3

1

21315171(21)1

135(21)n n S n n n -=+?+?+?+???+-?=+++

+-=

当x ≠1时, 1

3

2

)12(7531--+???++++=n n x

n x x x S ………………. ①

① 两边同乘以x 得n xS = 231

135(23)(21)

n n x x x n x n x -+++???+-+-… ② (设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减)

再利用等比数列的求和公式得:n n n x n x

x x S x )12(1121)1(1

----?

+=-- ∴ 2

1)

1()

1()12()12(x x x n x n S n n n -+++--=+

【巩固练习】2:求数列??????,22,,26,24,

2232n

n

前n 项的和. 解:由题可知,{

n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n n

S 2

226242232+???+++=…………………………………①

1

2

n S = 231242(1)22222n

n n n +-++???++……………② (设制错位) ①-②得14322

22222222222)211(+-+???++++=-n n n n

S (错位相减)

1122212+---=n n n

∴ 12

2

4-+-=n n n S

三、反序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

[例3] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

证明: 设n

n

n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得

113)12()12(n

n n n n n n C C C n C n S ++???+-++=- (反序) 又由m

n n

m n C C -=可得

n

n

n n n n n C C C n C n S ++???+-++=-1103)12()12(…………..…….. ② ①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110?+=++???+++=- (反

序相加)

∴ n n n S 2)1(?+=

【巩固练习】3:求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值

解:设

89sin 88sin 3sin 2sin 1sin 2

2

2

2

2

++???+++=S …………. ①

将①式右边反序得

1s i n 2s i n 3s i n 88sin 89sin 2

2

2

2

2

+++???++=S ……② (反序) 又因为 1cos sin ),90cos(sin 2

2

=+-=x x x x

①+②得 (反序相加)

)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89

∴ S =44.5

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:{}n n a b ±的形式,其中{ a n }、

{ b n }是等差数列、等比数列或常见的数列. [例4] 求数列的前n 项和:231

,,71,41,

1112-+???+++-n a a a n ,… 解:设)231

()71()41()11(12-++???++++++=-n a

a a S n n

将其每一项拆开再重新组合得

)23741()1

111(12-+???+++++???+++

=-n a

a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n

n + (分组求和)

当1≠a 时,2)13(1111n n a

a S n

n -+--==2)13(11n n a a a n -+---

【巩固练习】4:求数列{n(n+1)(2n+1)}的前n 项和.

解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=

n k n k k k S 1

)12)(1(=)32(23

1

k k k

n

k ++∑=

将其每一项拆开再重新组合得

S n =k k k n

k n k n

k ∑∑∑

===++1

2

1

3

1

32

(分组)

=)21()21(3)21(22

22333n n n +???++++???++++???++

=2)

1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2

)

2()1(2++n n n

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1))()1(n f n f a n -+= (2)

n n n n tan )1tan()

1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))1

21

121(211)12)(12()2(2+--+=+-=n n n n n a n

(5)])

2)(1(1

)1(1[21)2)(1(1++-+=+-=

n n n n n n n a n

(6) n

n n n n n n n S n n n n n n n n n a 2)1(1

1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=

-则 (7))1

1(1))((1C

An B An B C C An B An a n +-+-=++=

(8)

)!1(+n n =!1n -)!1(1+n (9

)n a == [例5] 求数列

???++???++,1

1,

,3

21,2

11n n 的前n 项和.

解:n n n n a n -+=++=

111

(裂项) 则 1

13

212

11+++

???+++

+=

n n S n (裂项求和)

=)1()23()12(n n -++???+-+- =11-+n

【巩固练习】5:①在数列{a n }中,11211++???++++=

n n n n a n ,又1

2

+?=n n n a a b ,求数列{b n }的前n 项的和.

解: ∵ 211211n

n n n n a n =++???++++=

∴ )11

1(82

122+-=+?=n n n n b n (裂项)

∴ 数列{b n }的前n 项和

)]1

11(

)4131()3121()211[(8+-+???+-+-+-=n n S n (裂项求和) =)1

1

1(8+-

n = 1

8+n n

②求证:

1

sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+???++ 解:设

89cos 88cos 1

2cos 1cos 11cos 0cos 1+???++=

S

n n n n tan )1tan()

1cos(cos 1sin -+=+ (裂项)

89cos 88cos 1

2cos 1cos 11cos 0cos 1+???++=S (裂项求和)

]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1

sin 1

-+-+-+- =

)0tan 89(tan 1sin 1 -=

1cot 1sin 1?= 1

sin 1cos 2 ∴ 原等式成立 ③求和:22

2

1335

(21)(21)

n s n n =

+++

??-+

六、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

[例6] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.

解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°

∵ cos(180)cos n n -=- (找特殊性质项) ∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···

+(cos89°+ cos91°)+ cos9 (合并求和) = 0

【巩固练习】6:

在各项均为正数的等比数列中,若

103231365log log log ,9a a a a a +???++=求的值.

解:设1032313log log log a a a S n +???++=

由等比数列的性质 q p n m a a a a q p n m =?+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ?=+log log log 得

)log (log )log (log )log (log 6353932310313a a a a a a S n ++???++++=(合并求和) =)(log )(log )(log 6539231013a a a a a a ?+???+?+? =9log 9log 9log 333+???++ =10

七、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例7] 求

1

1111111111个n ???+???+++之和. 解:由于)110(9199999111111

1

-=????=???k

k k

个个 (找通项及特征) ∴ 1

1111111111个n ???+???+++ =

)110(9

1

)110(91)110(91)110(91321-+???+-+-+-n (分组求和) =

)1111(91)10101010(911

321 个n n +???+++-+???+++ =9

110)110(1091n

n ---?

)91010(81

1

1n n --+ 【巩固练习】7: 已知数列{a n }:11

8

,(1)()(1)(3)n

n n n k a n a a n n +==+-++∑求的值.

解:∵ ])

4)(2(1

)3)(1(1)[

1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)

=])

4)(3(1

)4)(2(1[

8+++++?n n n n (设制分组)

=)4

1

31(8)4121(

4+-+++-+?n n n n (裂项)

∴ 1111

1111

(1)()4()8()2434n

n

n n n k k k n a a n n n n +===+-=-+-++++∑∑∑ (分组、裂项求和)

高考递推数列题型分类归纳解析

类型1 )(1n f a a n n +=+

解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 已知数列{}n a 满足211=

a ,n

n a a n n ++=+211,求n a 。 变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….

(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1

n f a a n

n =+,利用累乘法(逐商相乘法)求解。 例1:已知数列{}n a 满足321=a ,n n a n n

a 11+=

+,求n a 。 例2:已知31=a ,n n a n n a 2

3131

+-=+ )1(≥n ,求n a 。 变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a

(n ≥2),则{a n }的通项1

___n a ?=?

?

12n n =≥

类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p

q

t -=1,再利用换元法转化为等比数列求解。

例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14)

在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足*

111,21().n n a a a n N +==+∈

(I )求数列{}n a 的通项公式;

(II )若数列{b n }滿足12111

*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;

(Ⅲ)证明:

*122311...().232

n n a a a n n

n N a a a +-<+++<∈ 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或

1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1+n q ,得:

q

q a q p q a n n n n 1

11+?=++引入辅助数列{}n b (其中n

n n q

a b =

),得:q b q p b n n 11+=+再待定系数法解决。 例:已知数列{}n a 中,651=

a ,1

1)2

1(31+++=n n n a a ,求n a 。 变式:(2006,全国I,理22,本小题满分12分) 设数列{}n a 的前n 项的和1412

2333

n n n S a +=

-?+,1,2,3,n =

(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n

T S =,1,2,3,

n =,证明:

1

32

n

i i T =<

∑ 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足?

?

?-==+q st p

t s

解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02

=--q px x ,叫做数列{}n a 的特征方程。若21,x x 是特征方程的两个根,当21x x ≠时,

数列{}n a 的通项为1

2

1

1--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

2

1

1

--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的

通项为1

1)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

解法一(待定系数——迭加法):

数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

1

3212+=++,求n a 。 变式:

1.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈

(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式; (III )若数列{}n b 满足121

11

*44...4(1)(),n

n b b b b n a n N ---=+∈证明{}n b 是等差数列

2.已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

13

212+=++,求n a

3.已知数列

{}n a 中,n S 是其前n 项和,并且1142(1,2,

),1n n S a n a +=+==,

⑴设数列),2,1(21 =-=+n a a b n n n

,求证:数列{}n b 是等比数列;

⑵设数列),2,1(,2

==

n a c n n

n

,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。 类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用??

?≥???????-=????????????????=-)

2()

1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消

去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2

214--

-=n n n a S .

(1)求1+n a 与n a 的关系;(2)求通项公式n a .

(2)应用类型4(n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ))的方法,上式两边同乘以1

2

+n 得:222

11

+=++n n n n a a

由12

1

412

1111=?-

-==-a a S a .于是数列{}

n n a 2是以2为首项,2为公差的等差数列,所以n n a n n 2)1(222=-+=12

-=?n n n

a

变式:(2006,陕西,理,20本小题满分12分)

已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n

变式: (2005,江西,文,22.本小题满分14分)

已知数列{a n }的前n 项和S n 满足S n -S n -2=3,2

3

,1),3()2

1(211

-==≥--S S n n 且求数列{a n }的

通项公式.

类型7 b an pa a n n ++=+1)001

(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。 例:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a . 变式:(2006,山东,文,22,本小题满分14分) 已知数列{n a }中,111

22

n n a n a a +=

-、点(、)在直线y=x 上,其中n=1,2,3… (Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=- (Ⅱ)求数列{}的通项;n a (Ⅲ)设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+??

????

为等差数列?若存在试求出λ 不存在,则说明理由.

类型8 r

n n pa a =+1)0,0(>>n a p

解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 例:已知数列{n a }中,2

111,1n n a a

a a ?=

=+)0(>a ,求数列{}.的通项公式n a 变式:(2005,江西,理,21.本小题满分12分) 已知数列:,}{且满足的各项都是正数n a .),4(2

1

,110N n a a a a n n n ∈-=

=+ (1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n .

变式:(2006,山东,理,22,本小题满分14分)

已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列;

(2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 记b n =

211++

n n a a ,求{b n }数列的前项和S n ,并证明S n +1

32

-n T =1 类型9 )

()()(1n h a n g a n f a n n

n +=

+解法:这种类型一般是等式两边取倒数后换元转化为

q pa a n n +=+1。

例:已知数列{a n }满足:1,1

3111

=+?=

--a a a a n n n ,求数列{a n }的通项公式。

变式:(2006,江西,理,22,本大题满分14分) 1.已知数列{a n }满足:a 1=

32,且a n =n 1n 13na n 2n N 2a n 1

*≥∈--(,)+- (1) 求数列{a n }的通项公式;

(2) 证明:对于一切正整数n ,不等式a 1?a 2?……a n <2?n !

2、若数列的递推公式为1

111

3,

2()n n

a n a a +==-∈,则求这个数列的通项公式。 3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式。

4、已知数列{a n }满足:1,1

3111

=+?=

--a a a a n n n

,求数列{a n

}的通项公式。

5、若数列{a n }中,a 1=1,a 1+n =

2

2+n n

a a n ∈N +,求通项a n .

类型10 h

ra q

pa a n n n ++=

+1

解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h

ra q

pa a n n n ++=+1(其中p 、

q 、r 、h 均为常数,且r h a r qr ph -

≠≠≠1,0,),那么,可作特征方程h

rx q px x ++=,当特征方

程有且仅有一根0x 时,则01n a x ?

?

?

?-??

是等差数列;当特征方程有两个相异的根1x 、2x 时,则

12n n

a x a x ??-??-??是等比数列。 例:已知数列}{n a 满足性质:对于,3

24

,N 1++=

∈-n n n a a a n 且,31=a 求}{n a 的通项公式.

例:已知数列}{n a 满足:对于,N ∈n 都有.3

25

131+-=

+n n n a a a

(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在?

变式:(2005,重庆,文,22,本小题满分12分)

数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(2

11≥-

=

n a b n n

(Ⅰ)求b 1、b 2、b 3、b 4的值; (Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S

类型11 q pn a a n n +=++1或n n n pq a a =?+1

解法:这种类型一般可转化为{}12-n a 与{}n a 2是等差或等比数列求解。

例:(I )在数列}{n a 中,n n a n a a -==+6,111,求n a (II )在数列}{n a 中,

n n n a a a 3,111==+,求n a

类型12 归纳猜想法 解法:数学归纳法

变式:(2006,全国II,理,22,本小题满分12分)

设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式 类型13双数列型

解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。

例:已知数列

{}n a 中,11=a ;数列{}n b 中,01=b 。当2≥n 时,

)2(3111--+=n n n b a a ,)2(3

1

11--+=n n n b a b ,求n a ,n b .

类型14周期型 解法:由递推式计算出前几项,寻找周期。

例:若数列{}n a 满足???

????

<≤-≤≤=+)

121(,12)210(,21

n n n n n a a a a a ,若761=a ,则20a 的值为___________。

变式:(2005,湖南,文,5) 已知数列}{n a 满足)(1

33,0*11N n a a a a n n n ∈+-=

=+,则20a =

( )

A .0

B .3-

C .3

D .

2

3

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

数列知识点归纳及

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-)2(,) 1(,11n S S n a a n n n 注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项) 例2:已知数列}{n a 的前n 项和???≥+==2 ,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系) 例3:已知数列}{n a 满足?? ??? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处) 等差数列 等比数列 定义 1n n a a d +-=(d 是常数1,2,3n =,…) 1 n n a q a +=(q 是常数,且0≠q ,1,2,3n =,…) 通项 公式 ()11n a a n d =+- ()n m a a n m d =+- 11n n a a q -= 推广:n m n m a a q -= 求和 公式 () 112 n n n S na d -=+=()12n n a a + ()111 (1)1(1)11n n n na q S a q a a q q q q =?? =-?-=≠? --? 中项 公式 2 n k n k a a A -++=(*,,0n k N n k ∈>>) k n k n a a G +-±=(*,,0n k N n k ∈>>)

高三复习数列知识点总结

数列专题解析方法 解题策略一:有比较有鉴别才有收获,弄清每种方法好的地方,掌握这一点,就能解决很多问题。 解题策略二:具体做题时有三个步骤:想一想,做一做,看一看。 解题策略三:拿到题就动手做题的习惯不好,很盲目,时间浪费了,还做不出来;想好了再动手,不管能不能做完,能不能做对,都要做.回头看一看,还有没有更好的方法,书上怎么讲的,老师怎么做的,回想联想再猜想,这样一比较,就能领悟到很多东西.数学题靠做,但是在做题的过程中,还要学会总结分析,并建立错题集,时常翻阅,这样我们的解题能力才会得到提高. 一、数列通项公式的求解 类型一:观察法 例1:写出下列数列的一个通项公式 (1)3,5,9,17,33, ; (2);,5 44,4 33,3 22,2 11 (3)7,77.777.7777. ; (4);,11 26,917,710,1,32 -- (5);,16 65,825,49,23 类型二:公式法 (1)1(1)()n m a a n d a n m d =+-=+- 例2:已知等差数列{}n a 中,,3,131-==a a 求{}n a 的通项公式 (2)11n n m n m a a q a q --== 例3:已知等比数列{}n a 中,,306,6312=+=a a a 求{}n a 的通项公式 类型三:利用“n S ”求解 (1)???≥-==-)2() 1(,11n S S n S a n n n 例4:已知数列{}n a 的前n 项和)(24*2N n n n S n ∈+-=,求{}n a 的通项公

式 例5:已知数列{}n a 的前n 项和为n S ,且有,464,3111--+-==n n n n S a a S a 求 {}n a 的通项公式 例6:已知数列{}n a 的前n 项和为n S ,且有),1(12,111≥+==+n S a a n n 求{}n a 的通项公式 例7:已知正数数列{}n a 的前n 项和为n S ,且对任意的正整数n 满 足,12 +=n n a S 求{}n a 的通项公式 (2)1--n n S S 的推广 例8:设数列{}n a 满足*13221,3 333N n n a a a a n n ∈=++++- 求{}n a 的通项公式 类型四:累加法 形如)(1n f a a n n =-+或)(1n f a a n n =--型的递推数列(其中)(n f 是关于n 的函数) (1)若()f n 是关于n 的一次函数,累加后可转化为等差数列求和 例9:,2,1211=++=+a n a a n n 求{}n a 的通项公式 (2)若()f n 是关于n 的指数函数,累加后可转化为等比数列求和 例10:,2,211=+=+a a a n n n 求{}n a 的通项公式 (3)若()f n 是关于n 的二次函数,累加后可分组求和 例11:,1,1121=+++=+a n n a a n n 求{}n a 的通项公式 (4)若()f n 是关于n 的分式函数,累加后可裂项求和 例12:,1,21 121=++ =+a n n a a n n 求{}n a 的通项公式 类型五:累乘法

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

数列复习知识点总结

数列 一、知识梳理 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. 2.通项公式:如果数列 {}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②?? ?≥-==-) 2() 1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如:.,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使 +∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得 M a n >. 等差数列 1.等差数列的概念 如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式 ⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S += 或d n n na S n )1(2 1 1-+=. 3.等差中项 如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项. 即:A 是a 与b 的等差中项?b a A +=2?a ,A ,b 成等差数列. 4.等差数列的判定方法 ⑴定义法:d a a n n =-+1 (+∈N n ,d 是常数)?{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )?{}n a 是等差数列. 5.等差数列的常用性质 ⑴数列 {}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列; ⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd . ⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a ) ⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+; ⑸若等差数列 {}n a 的前n 项和n S ,则? ?? ???n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则n n a a S S nd S S 1 , +==-奇偶奇偶 ;

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

数列知识点总结及题型归纳总结

数列知识点总结及题型归纳总结

高三总复习----数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数 列; 数列中的每个数都叫这个数列的项。记作n a ,在数 列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… 数列①的通项公式是n a = n (n ≤7,n N + ∈), 数列②的通项公式是n a = 1n (n N + ∈)。 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表 示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; ③不是每个数列都有通项公式。例如,1,1.4,

1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一 个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N + (或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常 数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系: 1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和3 22+=n s n ,求数列}{n a 的通

高三复习数列知识点总结

数列专题解析方法 一、数列通项公式的求解 类型一:观察法 例 1: 写出下列数列的一个通项公式 (1)3,5,9,17,33 ,; (2)11,22,33,44, ; 2345 (3)7,77.777.7777. (4)2, 1,10, 17,26, ; 3 7 9 11 (5)3,9,25,65, ; 2 4 8 16 类型二:公式法 (1) a n a1 (n 1)d a m (n m)d 例 2:已知等差数列a n 中,a1 1,a3 3,求a n 的通项公式 n 1 n m (2)a n a1q n1 a m q n m 例 3:已知等比数列a n 中,a2 6,6a1 a3 30, 求a n 的通项公式类型三:利用“ S n ”求解 S1,(n 1) (1) (1) a n n S n S n 1(n 2)

例 4:已知数列a n 的前n项和S n n2 24n(n N* ),求a n 的通项公例 5:已知数列a n 的前n项和为S n,且有a1 3,4S n 6a n a n 1 4S n 1,求a n 的通项公式 例 6:已知数列a n 的前n 项和为S n,且有a1 1,a n 1 2S n 1(n 1), 求a n 的通项公式 例 7:已知正数数列a n 的前n项和为S n ,且对任意的正整数n满足 2 S n a n 1, 求a n 的通项公式 (2)S n S n 1的推广 例 8:设数列a n满足a13a232a33n 1a n n,n N*求a n的通项公 3 式 类型四:累加法 形如a n 1 a n f (n)或a n a n 1 f (n)型的递推数列(其中f(n)是关于n 的函数) (1)若 f (n)是关于n的一次函数,累加后可转化为等差数列求和例 9:a n 1 a n 2n 1,a1 2, 求a n 的通项公式 (2)若 f (n)是关于n的指数函数,累加后可转化为等比数列求和例 10:a n 1 a n 2n,a1 2, 求a n 的通项公式 (3)若 f (n) 是关于n 的二次函数,累加后可分组求和 例11:a n 1 a n n n 1,a1 1, 求a n 的通项公式 (4)若 f (n)是关于n的分式函数,累加后可裂项求和 例 12:a n 1 a n 21,a1 1, 求a n的通项公式 n 2 2n n 类型五:累乘法 形如an1f(n)或an f (n)型的递推数列(其中f(n)是关于n的函数) a n a n 1

数列全章知识点总结

数列知识点题型方法总复习 一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函 数,数列的通项公式也就是相应函数的解析式。如 (1)已知* 2 () 156 n n a n N n = ∈+,则在数列{}n a 的最大项为__(125); (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为___(n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数 列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是(A ) A B C D 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。如设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = 210n +;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 8 33 d <≤ 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2n n n S na d -=+。如(1)数列 {}n a 中,*11(2,)2 n n a a n n N -=+≥∈,32n a =,前n 项和15 2n S =-,则13a =-,10n =; (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答:2* 2* 12(6,) 1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2 a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、 d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率 为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数 列。

相关文档
相关文档 最新文档