文档库 最新最全的文档下载
当前位置:文档库 › C++ STL迭代器机制剖析

C++ STL迭代器机制剖析

C++ STL迭代器机制剖析
C++ STL迭代器机制剖析

24种设计模式的定义和使用场合

一.创建型模式(Creational): 简单工厂模式(simpleFactory)发音:['simpl] ['f?kt(?)r?] 定义: 提供一个创建对象实例的功能,而无须关心其具体实现.被创建实例的类型可以是接口,抽象类,也可以是具体的类. 1.抽象工厂(AbstractFactory)发音: ['?bstr?kt] 定义: 提供一个创建一系列相关或相互依赖对象的接口,而无需指定他们具体的类. 使用场合: 1.如果希望一个系统独立于它的产品的创建,组合和表示的时候,换句话书,希望一个系统只是知道产品的接口,而不关心实现的时候. 2.如果一个系统要由多个产品系列中的一个来配置的时候.换句话说,就是可以,就是可以动态地切换产品簇的时候. 3.如果强调一系列相关产品的接口,以便联合使用他们的时候 2.建造者模式(Builder)发音: ['b?ld?] 定义: 将复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 使用场合: 1.如果创建对象的算法,应该独立于该对象的组成部分以及它们的装配方式时 2.如果同一个构建过程有着不同的表示时 3.工厂方法模式(Factory Method) 定义: 为创建对象定义一个接口,让子类决定实例化哪个类.工厂方法让一个类的实例化延迟到了子类. 使用场景: 1.客户类不关心使用哪个具体类,只关心该接口所提供的功能. 2.创建过程比较复杂,例如需要初始化其他关联的资源类,读取配置文件等. 3.接口有很多具体实现或者抽象类有很多具体子类时, 4.不希望给客户程序暴露过多的此类的内部结构,隐藏这些细节可以降低耦合度. 5.优化性能,比如缓存大对象或者初始化比较耗时的对象. 4.原型模式(Prototype Method)发音: ['pr??t?ta?p] 定义: 使用原形实例指定将要创建的对象类型,通过复制这个实例创建新的对象. 应用场合: 1.如果一个系统想要独立于它想要使用的对象时,可以使用原型模式,让系统只面向接口编程,在系统需要新的对象的时候,可以通过克隆原型来得到. 2.如果需要实例化的类是在运行时刻动态指定时,可以使用原型模式,通过克隆原型来得到需要的实例.

迭代器模式实验(含答案)

课程名称:软件体系结构与设计 迭代器(Iterator)模式实验 一、实验目的 1. 掌握迭代器模式的概念; 2. 掌握迭代器模式的功能; 3. 加深对迭代器模式的了解; 4. 提高对迭代器模式的运用; 5. 将该模式运用但实际的生活中。 二、实验内容 1. 阅读和查看资料了解迭代器模式的概念和功能; 2. 将有关代理模式的迭代器模式理解透彻并运行; 3. 举例说明生活中的一个可以使用迭代器模式的例子; 4. 熟悉迭代器模式的扩展,迭代器模式是比较有用途的一种模式, 而且变种较多,应用场合覆盖从小结构到整个系统的大结构。三、实验环境 Windows7 、Java虚拟机、MyEclipse 环境下运行代码。 四、实验设计原理 迭代器(Iterator)模式,又叫做游标(Cursor)模式。它提供一种方法顺序访问一个聚合对象(或容器对象:container)中各个元素, 而又不需暴露该对象的内部。 聚合:表示一组对象的组合结构,比如JAVA中的数组,集合等从定义可见,迭代器模式是为容器而生。很明显,对容器对象的访问必然

涉及到遍历算法。你可以一股脑的将遍历方法塞到容器对象中去;或者根本不去提供什么遍历算法,让使用容器的人自己去实现去吧。这两种情况好像都能够解决问题。 然而在前一种情况,容器承受了过多的功能,它不仅要负责自己“容器”内的元素维护(添加、删除等等),而且还要提供遍历自身的接口;而且由于遍历状态保存的问题,不能对同一个容器对象同时进行多个遍历。第二种方式倒是省事,却又将容器的内部细节暴露无遗。 而迭代器模式的出现,很好的解决了上面两种情况的弊端。 迭代器模式的类图如下图所示: 类图解读: 从结构上可以看出,迭代器模式在客户与容器之间加入了迭代器角色。迭代器角色的加入,就可以很好的避免容器内部细节的暴露,

关于迭代器的详细说明

关于迭代器的详细说明 1.迭代器是什么? 我们先从一个例子说起: int a[10], *p; for (p = &a[0]; p != &a[10], ++p) std::cout<< *p <

C++ Iterator 迭代器 介绍

C++ 迭代器基础介绍 迭代器提供对一个容器中的对象的访问方法,并且定义了容器中对象的范围。迭代器就如同一个指针。事实上,C++的指针也是一种迭代器。但是,迭代器不仅仅是指针,因此你不能认为他们一定具有地址值。例如,一个数组索引,也可以认为是一种迭代器。 除了使用下标来访问vector 对象的元素外,标准库还提供了另一种访问元素的方法:使用迭代器(iterator)。迭代器是一种检查容器内元素并遍历元素的数据类型。 标准库为每一种标准容器(包括vector)定义了一种迭代器类型。迭代器类型提供了比下标操作更通用化的方法:所有的标准库容器都定义了相应的迭代器类型,而只有少数的容器支持下标操作。因为迭代器对所有的容器都适用,现代C++ 程序更倾向于使用迭代器而不是下标操作访问容器元素,即使对支持下标操作的vector 类型也是这样。 容器的iterator 类型 每种容器类型都定义了自己的迭代器类型,如vector:vector::iterator iter; 这符语句定义了一个名为iter 的变量,它的数据类型是vector 定义的iterator 类型。每个标准库容器类型

都定义了一个名为iterator 的成员,这里的iterator 与迭代器实际类型的含义相同。 术语:迭代器和迭代器类型 程序员首次遇到有关迭代器的术语时可能会困惑不解,原因之一是由于同一个术语iterator 往往表示两个不同的事物。一般意义上指的是迭代器的概念;而具体而言时指的则是由容器定义的具体的iterator 类型,如vector。 重点要理解的是,有许多用作迭代器的类型,这些类型在概念上是相关的。若一种类型支持一组确定的操作(这些操作可用来遍历容器内的元素,并访问这些元素的值),我们就称这种类型为迭代器。 各容器类都定义了自己的iterator 类型,用于访问容器内的元素。换句话说,每个容器都定义了一个名为iterator 的类型,而这种类型支持(概念上的)迭代器的各种操作。 begin 和end 操作 每种容器都定义了一对命名为begin 和end 的函数,用于返回迭代器。如果容器中有元素的话,由begin 返回的迭代器指向第一个元素: vector::iterator iter = ivec.begin(); 上述语句把iter 初始化为由名为vector 操作返回的值。假设vector 不空,初始化后,iter 即指该元素为ivec[0]。

软件体系结构与设计模式笔记

第1章软件体系结构概述 ?SEI软件体系结构讨论群定义如下:一个程序/系统构件的结构,它们之间的相互关系,以及在设计和交付的整个过程中的原则和指导方针。 ?Mary Shaw和David Garlan认为软件体系结构包括构成系统的设计元素的描述,设计元素的交互,设计元素组合的模式,以及在这些模式中的约束。 ?软件体系结构包括构件(Component)、连接件(Connector)和约束(Constrain)或配置(Configuration)三大要素。 ?国内普遍接受的定义:软件体系结构包括构件、连接件和约束,它是可预制和可重构的软件框架结构。 ?构件是可预制和可重用的软件部件,是组成体系结构的基本计算单 元或数据存储单元 ?连接件也是可预制和可重用的软件部件,是构件之间的连接单元 ?构件和连接件之间的关系用约束来描述 ?软件体系结构= 构件+ 连接件+ 约束 软件体系结构的优势容易理解、重用、控制成本、可分析性 第2章软件体系结构风格 ?软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。 ?体系结构风格定义了一个系统家族,即一个体系结构定义一个词汇表和一组约束。 词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件和连接件组合起来的。 ?体系结构风格反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。 ?数据流风格: 批处理序列; 管道/过滤器。 ?调用/返回风格:主程序/子程序;面向对象风格;层次结构。 ?独立构件风格:进程通讯;事件系统。 ?虚拟机风格:解释器;基于规则的系统。 ?仓库风格:数据库系统;超文本系统;黑板系统。 ?过程控制环路 ?C/S风格体系结构有三个主要组成部分:数据库服务器、客户应用程序和网络。 ?B/S风格浏览器/Web服务器/数据库服务器。 优点:C/S体系结构具有强大的数据操作和事务处理能力,模型思想简单,易于人们理解和接受。将大的应用处理任务分布到许多通过网络连接的低成本计算机上,以节约大量费用。缺点:开发成本较高、客户端程序设计复杂、信息内容和形式单一、用户界面风格不一,使用繁杂不利于推广使用、软件移植困难、软件维护和升级困难、新技术不能轻易应用 优点:基于B/S体系结构的软件,系统安装、修改和维护全在服务器端解决。 缺点:B/S体系结构缺乏对动态页面的支持能力,没有集成有效的数据库处理功能。 B/S体系结构的系统扩展能力差,安全性难以控制。 采用B/S体系结构的应用系统,在数据查询等响应速度上,要远远低于C/S体系结构。 B/S体系结构的数据提交一般以页面为单位,数据的动态交互性不强,不利于在线事务处理(OLTP)应用。 第3章软件需求与架构 ?需求的基本概念 ?IEEE (1997) ?(1) 用户解决问题或达到目标所需的条件或能力

迭代器模式

迭代器模式(Iterator Pattern) 动机(Motivate): 在软件构建过程中,集合对象内部结构常常变化各异。但对于这些集合对象,我们希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素;同时这种“透明遍历”也为“ 同一种算法在多种集合对象上进行操作”提供了可能。 使用面向对象技术将这种遍历机制抽象为“迭代器对象”为“应对变化中的集合对象”提供了一种优雅的方法。 意图(Intent): 提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。 -------《设计模式》GOF 结构图(Struct): 适用性: 1.访问一个聚合对象的内容而无需暴露它的内部表示。 2.支持对聚合对象的多种遍历。 3.为遍历不同的聚合结构提供一个统一的接口(即, 支持多态迭代)。 生活中的例子: 迭代器提供一种方法顺序访问一个集合对象中各个元素,而又不需要暴露该对象的内部表示。在早期的电视机中,一个拨盘用来改变频道。当改变频道时,需要手工转动拨盘移过每一个频道,而不论这个频道是否有信号。现在的电视机,使用[后一个]和[前一个]按钮。当按下[后一个]按钮时,将切换到下一个预置的频道。想象一下在陌生的城市中的旅店中看电视。当改变频道时,重要的不是几频道,而是节目内容。如果对一个频道的节目不感兴趣,那么可以换下一

个频道,而不需要知道它是几频道。 代码实现: 在面向对象的软件设计中,我们经常会遇到一类集合对象,这类集合对象的内部结构可能有着各种各样的实现,但是归结起来,无非有两点是需要我们去关心的:一是集合内部的数据存储结构,二是遍历集合内部的数据。面向对象设计原则中有一条是类的单一职责原则,所以我们要尽可能的去分解这些职责,用不同的类去承担不同的职责。Iterator模式就是分离了集合对象的遍历行为,抽象出一个迭代器类来负责,这样既可以做到不暴露集合的内部结构,又可让外部代码透明的访问集合内部的数据。下面看一个简单的示意性例子,类结构图如下: 首先有一个抽象的聚集,所谓的聚集就是就是数据的集合,可以循环去访问它。它只有一个方法GetIterator()让子类去实现,用来获得一个迭代器对象。

Java集合知识测试A卷

集合部分测试题 考试宣言: 同学们, 考试考多少分不是我们的目的! 排在班级多少的名次也不是我们的初衷! 我的考试的目的是要通过考试中的题目,检查大家在这段时间的学习中,是否已经把需要掌握的知识掌握住了,如果哪道题目你不会做,又或者做错了, 那么不用怕, 考完试后, 导师讲解的时候你要注意听! 那时候学会了, 记住了, 也一样不影响你高薪就业! 本套题共40道不定项选择题,其中单选30道,多选10道。单选2分/题,多选4分/题。多选题不全对半分,全对满分。 1.单列集合的顶层接口是( B ) a)java.util.Map b)java.util.Collection c)java.util.List d)java.util.Set 2.ArrayList类的底层数据结构是( A ) a)数组结构 b)链表结构 c)哈希表结构 d)红黑树结构 3.LinkedList类的特点是(B ) a)查询快 b)增删快 c)元素不重复 d)元素自然排序 4.Vector类的特点是( A ) a)线程同步 b)线程不同步 c)增删快

d)底层是链表结构 5.关于迭代器说法错误的是( D ) a)迭代器是取出集合元素的方式 b)迭代器的hasNext()方法返回值是布尔类型 c)List集合有特有迭代器 d)next()方法将返回集合中的上一个元素. 6.在我们所学知识中,下面哪几项是接口( ABCD ) a) java.util.Map b) java.util.Collection c) java.util.List d) java.util.Set 7.实现下列哪个接口,可以启用比较功能( D ) a)Runnable接口 b)Iterator接口 c)Serializable接口 d)Comparator接口 8.下面代码运行的结果是(A ) ArrayList al = new ArrayList(); al.add(true); al.add(123); al.add(“abc”); System.out.println(al); a)编译失败 b)[true,123] c)[true,123,abc]; d)[abc]; 9.按照课堂要求重写equals和hashCode后,下面关于这两个方法说法正确的是 ( BC ) a) 两个对象的hashCode值相同,那么他们调用equals()方法返回值一定为true b) 两个对象的hashCode值相同,那么他们调用equals()方法返回值可以为false c) hashCode值一般与对象的成员变量有关 d) 只要重写equals方法,就一定要重写hashCode方法 10.将Map集合中的键存储到Set集合的方法是( C ) a)entrySet()

几种常用的设计模式介绍

几种常用的设计模式介绍 1. 设计模式的起源 最早提出“设计模式”概念的是建筑设计大师亚力山大Alexander。在1970年他的《建筑的永恒之道》里描述了投计模式的发现,因为它已经存在了千百年之久,而现代才被通过大量的研究而被发现。 在《建筑的永恒之道》里这样描述:模式是一条由三个部分组成的通用规则:它表示了一个特定环境、一类问题和一个解决方案之间的关系。每一个模式描述了一个不断重复发生的问题,以及该问题解决方案的核心设计。 在他的另一本书《建筑模式语言》中提到了现在已经定义了253种模式。比如: 说明城市主要的结构:亚文化区的镶嵌、分散的工作点、城市的魅力、地方交通区 住宅团组:户型混合、公共性的程度、住宅团组、联排式住宅、丘状住宅、老人天地室内环境和室外环境、阴和阳总是一气呵成 针对住宅:夫妻的领域、儿童的领域、朝东的卧室、农家的厨房、私家的沿街露台、个人居室、起居空间的序列、多床卧室、浴室、大储藏室 针对办公室、车间和公共建筑物:灵活办公空间、共同进餐、共同小组、宾至如归、等候场所、小会议室、半私密办公室 尽管亚力山大的著作是针对建筑领域的,但他的观点实际上适用于所有的工程设计领域,其中也包括软件设计领域。“软件设计模式”,这个术语是在1990年代由Erich Gamma等人从建筑设计领域引入到计算机科学中来的。目前主要有23种。 2. 软件设计模式的分类 2.1. 创建型 创建对象时,不再由我们直接实例化对象;而是根据特定场景,由程序来确定创建对象的方式,从而保证更大的性能、更好的架构优势。创建型模式主要有简单工厂模式(并不是23种设计模式之一)、工厂方法、抽象工厂模式、单例模式、生成器模式和原型模式。 2.2. 结构型 用于帮助将多个对象组织成更大的结构。结构型模式主要有适配器模式、桥接模式、组合器模式、装饰器模式、门面模式、亨元模式和代理模式。 2.3. 行为型 用于帮助系统间各对象的通信,以及如何控制复杂系统中流程。行为型模式主要有命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板模式和访问者模式。

迭代器与组合模式(含源码)

软件构造第4次实验 实验报告 班级: 学号: 姓名: 2016年4月13日

一.设计 1.本次实验内容是用迭代器与组合模式来管理一个大公司。在迭代 器与组合模式中,迭代器提供一个方式来遍历集合而无需暴露集合的实现(实验中通过printPerson()方法打印公司的全部员工);通过组合,客户可以将对象的集合以及个别的对象一视同仁(实验中通过printMale()方法来打印所有的男工作者)。 2.迭代器将遍历聚合的工作封装进一个对象中,当使用迭代器的时 候,我们依赖聚合提供遍历;迭代器提供了一个通用的接口Iterator,使得我们在遍历聚合的项时可以实现多态。 3.组合模式提供了一个可以同时包容个别对象和组合对象的结构, 允许客户对个别对象以及组合对象一视同仁;在组合结构内的任意对象称为组件,组件可以是组合,也可以是叶节点。

二.实现 https://www.wendangku.net/doc/bf14653310.html,pany import java.util.ArrayList; import java.util.Iterator; /** * 对应Menu * @author Yilia * */ public class Company extends Component{ ArrayList components = new ArrayList(); String name; // Iterator iterator = null; public Company(String name){ https://www.wendangku.net/doc/bf14653310.html, = name; } public void add(Component menuComponent){ components.add(menuComponent); } public void remove(Component menuComponent){ components.remove(menuComponent); } public Component getChild(int i){ return (Component)components.get(i); } public String getName(){ return name; } public void print(){ for(int i = 0; i < deepth; i++){ System.out.print("---"); } System.out.println(getName()); Iterator iterator = components.iterator(); deepth++;

什么是C++的迭代器

什么是C++的迭代器Interator? 容器就是数据结构的泛指,迭代器就是指针的泛指,可以指向元素。容器相当于一个储藏柜,里面装的许多不同的物品就像是储存的元素,比如面包、啤酒、苹果、现金。要取得各个物体就得用与各个物体向匹配的工具,如取出面包要用盘子、取出啤酒要用杯子、取出苹果要用篮子、取出现金要用钱包。迭代器的作用就相当于取出物品的工具的抽象,通过迭代器泛指现实生活中从贮藏室中取出物体的工具。C++迭代器是一种检查容器内元素并遍历元素的数据类型。 1 Iterator definitions In C++, an iterator is any object that, pointing to some element in a range of elements (such as an array or a container), has the ability to iterate through the elements of that range using a set of operators (at least, the increment (++) and dereference (*) operators). The most obvious form of iterator is a pointer: A pointer can point to elements in an array, and can iterate through them using the increment operator (++). But other forms of iterators exist. For example, each container type (such as a vector) has a specific iterator type designed to iterate through its elements in an efficient way. C++迭代器Interator就是一个指向某种STL对象的指针。通过该指针可以简单方便地遍历所有元素。 C++中的iterator为STL中的重要概念。iterator的概念源自于对遍历一个线性容器工具的抽象,即如何你能访问这个容器的某个元素。对于最简单的数组,当然可以用数组的索引值,因为数组是连续存放在内存中的;但对于链表,就必须用指针。除此之外,还有还有很多种数据结构需要提供一个方便的工具来访问其中的元素,方法有ID,关键字等等。为了统一所有的容器的这种工具的使用,一般提供一整套容器的开发者就会用一种方式来表示各种容器的访问工具。例如C++STL就是使用iterator。MFC自己的容器使用position。C#和java也有自己的方法,但方法是不变的。 iterator的用法可以被统一,但不同的底层容器实现其iterator的原理是不一样的。例如iterator++你可以理解为移动到容器的下一个元素,如果底层如果是数组,把索引值加一就行;如果底层是链表,就得执行类似于m_pCurrent = m_pCurrent-> pNext;的操作。因此每种容器都有自己的iterator实现方法。 C++ STL iterator的常用方法有: iterator++ 移到下个元素 iterator-- 移到上个元素 *iterator 访问iterator所指元素的值

《软件设计模式》教学大纲

《软件设计模式》教学大纲 一、课程说明 1、课程编号: 2、课程名称(中/英文):软件设计模式/Software Design Patterns 3、课程类别:专业课/限选 4、学时/学分:32/2.0 5、先修课程:Java面向对象程序设计、软件工程 6、适用专业:软件工程,计算机科学与技术,信息管理与信息系统 7、教材、教学参考书: [1]刘伟.Java设计模式.北京:清华大学出版社,2018. [2]刘伟.设计模式实验及习题解析.北京:清华大学出版社,2018. [3]ErichGamma,RichardHelm,RalphJohnson,JohnVlissides.DesignPatte rns:ElementsofReusableObject-OrientedSoftware.Addison-Wesley,199 5. [4]结城浩.图解设计模式.北京:人民邮电出版社,2016. [5]秦小波.设计模式之禅(第2版).北京:机械工业出版社,2014. [6]陈臣,王斌.研磨设计模式.北京:清华大学出版社,2010. 二、课程性质和教学目的 《软件设计模式》是软件工程、计算机科学与技术、信息管理与信息系统等专业本科生的一门专业课,本课程是一门具有较强理论性和实践性的软件设计和开发类课程。 本课程主要学习软件设计模式基础知识、UML类图、面向对象设计原则、常用的创建型设计模式、结构型设计模式和行为型设计模式。本课程要求学生掌握常用软件设计模式的动机、定义、结构、实现、使用效果以及应用实例,能够将所学知识应用到实际软件项目设计与开发中,进一步培养学生的工程实践能力和专业技术水平,为今后从事相关工作奠定基础。 本课程首先学习软件设计模式的基本知识和UML类图;接着介绍常见的七个面向对象设计原则;然后重点介绍使用频率较高的软件设计模式,包括五种创建型设计模式(简单工厂模式、工厂方法模式、抽象工厂模式、原型模式、单例模式)、六种结构型设计模式(适配器模式、桥接模式、组合模式、装饰模式、外观模式、代理模式)和七种行为型设计模式(职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式、模板方法模式)。此外,为了帮助学生深入理解所学知识,提高实践动手能力并将所学知识应用于解决实际问题,本课程设置了相应的实践环节,针对具体问题合理选择设计模式,绘制相应的模式结构图并使用代码实现

STL常用总结

STL常用总结 Last Update (July. 2014) by WING ACM/ICPC 竞赛之STL 简介 一、关于STL STL(Standard Template Library,标准模板库)是C++语言标准中的重要组成部分。STL 以模板类和模板函数的形式为程序员提供了各种数据结构和算法的精巧实现,程序员如果能够充分地利用STL,可以在代码空间、执行时间和编码效率上获得极大的好处。 STL 大致可以分为三大类:算法(algorithm)、容器(container)、迭代器(iterator)。 STL 容器是一些模板类,提供了多种组织数据的常用方法,例如vector(向量,类似于数组)、list(列表,类似于链表)、deque(双向队列)、set(集合)、map(映象)、stack(栈)、queue(队列)、priority_queue(优先队列)等,通过模板的参数我们可以指定容器中的元素类型。 STL 算法是一些模板函数,提供了相当多的有用算法和操作,从简单如 for_each(遍历)到复杂如stable_sort(稳定排序)。 STL 迭代器是对C 中的指针的一般化,用来将算法和容器联系起来。几乎所有的STL 算法都是通过迭代器来存取元素序列进行工作的,而STL 中的每一个容器也都定义了其本身所专有的迭代器,用以存取容器中的元素。有趣的是,普通的指针也可以像迭代器一样工作。熟悉了STL 后,你会发现,很多功能只需要用短短的几行就可以实现了。 通过STL,我们可以构造出优雅而且高效的代码,甚至比你自己手工实现的代码效果还要好。 STL 的另外一个特点是,它是以源码方式免费提供的,程序员不仅可以自由地使用这些代码,也可以学习其源码,甚至按照自己的需要去修改它。 下面是用STL 写的题Ugly Numbers 的代码: #include #include using namespace std; typedef pair node_type; int main() { unsigned long result[1500]; priority_queue< node_type, vector, greater >Q; Q.push( make_pair(1, 2) ); for (int i=0; i<1500; i++){ node_type node = Q.top(); Q.pop(); switch(node.second){ case 2: Q.push( make_pair(node.first*2, 2) ); case 3: Q.push( make_pair(node.first*3, 3) ); case 5: Q.push( make_pair(node.first*5, 5) );

设计模式及优点总结

桥接模式——Bridge 将抽象部分与它的实现部分分离,使它们都可以独立地变化。 什么叫抽象与它的实现分离,这并不是说,让抽象类与其派生类分离,因为这没有任何 意义。实现指的是抽象类和它的派生类用来实现自己的对象。由于实现的方式有多种,桥接模式的核心意图就是把这些实现独立出来,让它们独自地变化。这就使得每种实现的变化不会影响其他实现,从而达到应对变化的目的。 桥接模式的结构图如下: 将抽象部分与它的实现部分分离,这不是很好理解,我的理解就是实现系统可能有很多角度分类,每一种分类都有可能变化,那么就把这种多角度分离出来让它们独立变化,减少它们之间的耦合。也就是说,在发现我们需要多角度去分类实现对象,而只用继承会造成大量的类增加,不能满足开放—封闭原则时,就应该要考虑桥接模式。 单例模式——Singleton 单例模式,保证一个类仅有一个实例,并提供一个访问它的全局访问点。 通常我们可以让一个全局变量使得一个对象被访问,但它不能防止你实例化多个对象,一个最好的办法就是,让类自身负责保存它的唯一实例。这个类可以保证没有其他实例可以被创建,并且他可以提供一个访问该实例的方法。 单例模式的结构图如下:

单例模式因为Singletion类封装它的唯一实例,这样它可以严格控制客户怎样访问它以及何时访问它。简单地说就是对唯一实例的受控访问。 当在多线程情景下使用时,需要对GetInstance全局访问点加锁。适配器模式(Adapter) 将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼 容而不能一起工作的哪些类可以一起工作。 也就是说系统的数据和行为都是正确的但接口不符时,我们应该考虑用适配器模式,目的是使控制范围之外的一个原有对象与某个接口匹配。适配器模式主要应用于希望复用一些现存的类,但是接口又与复用环境要求不一致的情况,比如说需要对早期代码复用一些功能等应用上很有实际价值。 适配器又两种类型,类适配器模式和对象适配器模式。但由于类适配器通常是通过多重继承实现的,而C#、https://www.wendangku.net/doc/bf14653310.html,、JAVA等语言都不支持多重继承,也就是一个类只有一个父类,所以,我们这里主要讲对象适配器。 适配器模式的结构图如下:

关于牛顿迭代法的课程设计实验指导共9页word资料

关于牛顿迭代法的课程设计实验指导 非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。牛顿迭代法正是将局部线性化的方法用于求解方程。 一、牛顿迭代法及其收敛速度 牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。方法的基本思路是利用一个根的猜测值x 0 做初始近似值,使用函数f (x )在x 0处的 泰勒级数展式的前两项做为函数f (x )的 近似表达式。由于该表达式是一个线性 函数,通过线性表达式替代方程f (x ) = 0中的f (x )求得近似解x 1。即将方程f (x ) = 0在x 0处局部线性化计算出近 似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为 由此得一次方程 0)()()(000='-+x f x x x f 求解,得 如图1所示,x 1比x 0更接近于x *。该方法的几何意义是:用曲线上某点(x 0, 图1 牛顿迭代法示意

y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的 交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。设x n 是方程解x * 的近似,迭代格式 )()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。牛顿迭代法的最大优点是收敛速度快,具有二阶收敛。以著名的平方根算法为例,说明二阶收敛速度的意义。 例1.已知4.12≈,求2等价于求方程f (x ) = x 2 – 2 = 0的解。由于x x f 2)(='。应用牛顿迭代法,得迭代计算格式 )/2(2 11n n n x x x +=+,(n = 0,1,2,……) 取x 0= 1.4为初值,迭代计算3次的数据列表如下 其中,第三栏15位有效数是利用MATLAB 的命令sqrt(2)计算结果。观察表中数据,第一次迭代数据准确到小数点后四位,第二次迭代数据准确到小数点后八位,……。二阶收敛速度可解释为,每迭代一次,近似值的有效数位以二倍速度递增。对于计算任意正数C 的平方根,牛顿迭代法计算同样具有快速逼近的性质。 二、牛顿迭代法的收敛性 牛顿迭代法在使用受条件限制,这个限制就是通常所说的牛顿迭代法的局部收敛性。

Java23种设计模式6大原则总结

设计模式概念:一套被反复使用、多数人知晓、经过分类编目的优秀代码设计经验的总结。设计模式要素:模式名称、问题、举例、末态环境、推理、其他有关模式、已知的应用。设计模式分类:创建型、结构型、行为型。 创建型模式功能:1.统所使用的具体类的信息封装起来; 2.类的实例是如何被创建和组织的。 创建型模式作用:1.封装创建逻辑,不仅仅是new一个对象那么简单。 2.封装创建逻辑变化,客户代码尽量不修改,或尽量少修改。 常见的创建型模式:单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。常见的结构型模式:代理模式、装饰模式、适配器模式、组合模式、桥梁模式、外观模式、享元模式。 常见行为型模式:模板方法模式、命令模式、责任链模式、策略模式、迭代器模式、中介者模式、观察者模式、备忘录模式、访问者模式、状态模式、解释器模式。单一职责原则:一个类应该只有一个职责。 优点:降低类的复杂性;提高类的可读性;提高代码的可维护性和复用性;降低因变更引起的风险。 里氏替换原则: 优点:代码共享,减少创建类的工作量,每个子类都拥有父类的方法和属性;提高代码的可重用性;提高代码的可扩展性;提高产品或项目的开放性。 缺点:1.继承是入侵式的。只要继承,就必须拥有父类所有属性和方法。 2.降低代码的灵活性。子类必须拥有父类的属性和方法,使子类收到限制。 3.增强了耦合性。当父类的常量、变量和方法修改时,必须考虑子类的修改,这种 修改可能造成大片的代码需要重构。 依赖倒置原则:高层模块不应该依赖低层模块,两者都依赖其抽象;抽象不依赖细节;细节应该依赖于抽象。 在Java中的表现:模块间的依赖通过抽象发生,实现类之间不发生直接的依赖关系,其依赖关系是通过接口或抽象类产生的;接口或抽象类不依赖于是实现类; 实现类依赖于接口或抽象类。 接口隔离原则:1.一个类对另外一个类的依赖性应当是建立在最小的接口上的 2.一个接口代表一个角色,不应当将不同的角色交给一个接口。 3.不应该强迫客户使用它们的不同方法。 如图所示的电子商务系统在三个地方会使用到订单类:一个是门户,只能有查询方法;一个是外部系统,有添加订单的方法;一个是管理后台,添加、删除、修改、查询都要用到。“原子”在实践中的衡量规则: 1.一个接口只对一个子模块或者业务逻辑进行分类。 2.只保留接口中业务逻辑需要的public方法。 3.尽量修改污染了的接口,若修改的风险较大,则可采用适配器模式进行转化处理。 4.接口设计应因项目而异,因环境而异,不能照搬教条。 迪米特法则:(表述)只与你直接的朋友们通信;不要跟“陌生人”说话;每一个软件单位 对其他的单位都只有最少的了解,这些了解仅局限于那些与本单位密 切相关的软件单位。 对迪米特法则进行模式设计有两个:外观模式、中介者模式。 开闭原则:一个软件实体应当对扩展开放,对修改关闭。 重要性体现:提高复用性;提高维护性;提高灵活性;易于测试

设计模式主要分三个类型

设计模式主要分三个类型:创建型、结构型和行为型。 其中创建型有: 一、Singleton,单例模式:保证一个类只有一个实例,并提供一个访问它的全局访问点 二、Abstract Factory,抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们的具体类。 三、Factory Method,工厂方法:定义一个用于创建对象的接口,让子类决定实例化哪一个类,Factory Method使一个类的实例化延迟到了子类。 四、Builder,建造模式:将一个复杂对象的构建与他的表示相分离,使得同样的构建过程可以创建不同的表示。 五、Prototype,原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象。 行为型有: 六、Iterator,迭代器模式:提供一个方法顺序访问一个聚合对象的各个元素,而又不需要暴露该对象的内部表示。 七、Observer,观察者模式:定义对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知自动更新。 八、Template Method,模板方法:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,TemplateMethod使得子类可以不改变一个算法的结构即可以重定义该算法得某些特定步骤。 九、Command,命令模式:将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队和记录请求日志,以及支持可撤销的操作。 十、State,状态模式:允许对象在其内部状态改变时改变他的行为。对象看起来似乎改变了他的类。 十一、Strategy,策略模式:定义一系列的算法,把他们一个个封装起来,并使他们可以互相替换,本模式使得算法可以独立于使用它们的客户。 十二、China of Responsibility,职责链模式:使多个对象都有机会处理请求,从而避免请求的送发者和接收者之间的耦合关系 十三、Mediator,中介者模式:用一个中介对象封装一些列的对象交互。 十四、Visitor,访问者模式:表示一个作用于某对象结构中的各元素的操作,它使你可以在不改变各元素类的前提下定义作用于这个元素的新操作。 十五、Interpreter,解释器模式:给定一个语言,定义他的文法的一个表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。 十六、Memento,备忘录模式:在不破坏对象的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。 结构型有: 十七、Composite,组合模式:将对象组合成树形结构以表示部分整体的关系,Composite使得用户对单个对象和组合对象的使用具有一致性。 十八、Facade,外观模式:为子系统中的一组接口提供一致的界面,fa?ade 提供了一高层接口,这个接口使得子系统更容易使用。 十九、Proxy,代理模式:为其他对象提供一种代理以控制对这个对象的访问

opencv 迭代器算法

采样、差值和几何变换 InitLineIterator 初始化线段迭代器 int cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2, CvLineIterator* line_iterator, int connectivity=8 ); image 带采线段的输入图像 . pt1 线段起始点 pt2 线段结束点 line_iterator 指向线段迭代器状态结构的指针 connectivity 被扫描线段的连通数,4 或 8. left_to_right:标志值,指出扫描直线是从pt1和pt2外面最左边的点扫描到最右边的点(left_to_right≠0),还是按照指定的顺序,从pt1到pt2(left_to_right=0)。 函数 cvInitLineIterator 初始化线段迭代器,并返回两点之间的象素点数目。两个点 必须在图像内。当迭代器初始化后,连接两点的光栅线上所有点,都可以连续通过调用 CV_NEXT_LINE_POINT 来得到。线段上的点是使用 4-连通或8-连通利用 Bresenham 算法逐点计算的。 例子:使用线段迭代器计算彩色线上象素值的和 CvScalar sum_line_pixels( IplImage* image, CvPoint pt1, CvPoint pt2 ) { CvLineIterator iterator; int blue_sum = 0, green_sum = 0, red_sum = 0; int count = cvInitLineIterator( image, pt1, pt2, &iterator, 8 ); for( int i = 0; i < count; i++ ){ blue_sum += iterator.ptr[0]; green_sum += iterator.ptr[1]; red_sum += iterator.ptr[2]; CV_NEXT_LINE_POINT(iterator); /* print the pixel coordinates: demonstrates how to calculate the coordinates */

相关文档