文档库 最新最全的文档下载
当前位置:文档库 › AEC_Q100-001C Wire Bond Shear Test

AEC_Q100-001C Wire Bond Shear Test

AEC_Q100-001C Wire Bond Shear Test
AEC_Q100-001C Wire Bond Shear Test

AEC - Q100-001 - REV-C

October 8, 1998 Automotive Electronics Council

Component Technical Committee

ATTACHMENT 1

AEC - Q100-001 REV-C

WIRE BOND SHEAR TEST

AEC - Q100-001 - REV-C

October 8, 1998 Automotive Electronics Council

Component Technical Committee

Acknowledgment

Any document involving a complex technology brings together experience and skills from many sources. The Automotive Electronics Counsel would especially like to recognize the following significant contributors to the development of this document:

James T. Peace DaimlerChrysler

Robert V. Knoell Visteon Corporation

Gerald E. Servais Delphi Delco Electronics Systems - Retired

Mark A. Kelly Delphi Delco Electronics Systems

October 8, 1998 Automotive Electronics Council

Component Technical Committee

Change Notification

The following summary details the changes incorporated into AEC-Q100-001 Rev-C:?Section 1.3.4.4, Type 4 - Die Surface Contact: Corrected wording to reflect bond shear type where the shear tool contacts the die surface, rather than the bonding surface as

stated in Rev - B.

?Added new Section 1.3.5, Footprint: Added new definition for “footprint”; changed numbers of subsequent sections to reflect the addition.

?Section 3.6 step b, Footprint Inspection of Aluminum Wedge/Stitch Bonds: Added wording to clarify method used to remove wire for footprint inspection.

?Figure 3, Wire Bond Shear Types: Updated figure to reflect wording correction made to Type 4 - Die Surface Contact.

?Minor wording changes were made to the following: Section 1.1, 1.3.1, 1.3.4.1, 1.3.4.5, 2.2,

2.5,

3.2, and 3.5.

Component Technical Committee

METHOD - 001

WIRE BOND SHEAR TEST

Text enhancements and differences made since the last revision of this

document are shown as underlined areas. Several figures have also been

revised, but changes to these areas have not been underlined.

1.SCOPE

1.1Description

This test establishes a procedure for determining the strength of the interface between a gold ball bond and a package bonding surface, or an aluminum wedge/stitch bond and a package bonding surface, on either pre-encapsulation or post-encapsulation devices. This strength measurement is extremely

important in determining two features:

1)the integrity of the metallurgical bond which has been formed.

2)the reliability of gold and aluminum wire bonds to die or package bonding surfaces.

This test method can be used only when the ball height and diameter for ball bonds, or the wire height

(1.25 mils and larger at the compressed bond area) for wedge/stitch bonds, are large enough and

adjacent interfering structures are far enough away to allow suitable placement and clearance (e.g.,

above the bonding surface and between adjacent bonds) when performing the wire bond shear test.

The wire bond shear test is destructive. It is appropriate for use in process development, process

monitoring, and/or quality assurance.

1.2Reference Documents

Not Applicable

1.3Terms and Definitions

The terms and definitions shall be in accordance with the following sections.

1.3.1Ball Bond

The welding of a thin wire, usually gold, to a die bonding surface, usually an aluminum alloy bond pad, using a thermal compression or thermosonic wire bonding process. The ball bond includes the enlarged spherical portion of the wire (sometimes referred to as the nail head and formed by the flame-off and first bonding operation in thermal compression and thermosonic process), the underlying bonding surface,

and the intermetallic weld interface. For the purposes of this document, all references to ball bonds are applicable to gold ball bonds on die bonding surfaces; other ball bond material combinations may

require a new set of failure criteria (see section 4.1).

Component Technical Committee

1.3.2Bonding Surface

Either 1) the die surface (e.g., die bond pad) or 2) the package bonding surface (e.g., plated leadframe post or finger, downbond to the flag or paddle, etc.) to which the wire is ball, wedge, or stitch bonded.

1.3.3Bond Shear

A process in which an instrument uses a chisel shaped tool to shear or push a ball or wedge/stitch

bond off the bonding surface (see Figure 1). The force required to cause this separation is recorded and is referred to as the bond shear strength. The bond shear strength of a gold ball bond, when correlated to the diameter of the ball bond, is an indicator of the quality of the metallurgical bond between the gold ball bond and the die bonding surface metallization. The bond shear strength of an aluminum

wedge/stitch bond, when compared to the manufacturer’s bond wire tensile strength, is an indicator of the integrity of the weld between the aluminum wire and the die or package bonding surface.

Shear Tool

h

Specimen Clamp

Test Specimen

Bonding Bond Weld Area Bond

C L

Surface

Figure 1: Bond Shear set-up

1.3.4Definition of Bond Shear Types for Ball and Wedge/Stitch Bonds (see Figure 3)

1.3.4.1Type 1 - Bond Lift

A separation of the entire wire bond from the bonding surface with only an imprint being left on the

bonding surface. There is very little evidence of intermetallic formation or welding to the bonding surface metallization.

1.3.4.2Type 2 - Bond Shear

A separation of the wire bond where: 1) A thin layer of bonding surface metallization remains with the wire bond and an impression is left in the bonding surface, or 2) Intermetallics remain on the bonding surface and with the wire bond, or 3) A major portion of the wire bond remains on the bonding surface.

Component Technical Committee

1.3.4.3Type 3 - Cratering

A condition under the bonding surface metallization in which the insulating layer (oxide or interlayer

dielectric) and the bulk material (silicon) separate or chip out. Separation interfaces which show pits or

depressions in the insulating layer (not extending into the bulk) are not considered craters. It should be noted that cratering can be caused by several factors including the wire bonding operation, the post-

bonding processing, and even the act of wire bond shear testing itself. Cratering present prior to the

shear test operation is unacceptable.

1.3.4.4Type 4 - Die Surface Contact

The shear tool contacts the die surface and produces an invalid shear value. This condition may be due to improper placement of the specimen, a die surface not parallel to the shearing plane, a low shear

height, or instrument malfunction. This bond shear type is not acceptable and shall be eliminated from

the shear data.

1.3.4.5Type 5 - Shearing Skip

The shear tool removes only the topmost portion of the ball or wedge/stitch bond. This condition may be due to improper placement of the specimen, a die surface not parallel to the shearing plane, a high shear height, or instrument malfunction. This bond shear type is not acceptable and shall be eliminated from the shear data.

1.3.4.6Type 6 - Bonding Surface Lift

A separation between the bonding surface metallization and the underlying substrate or bulk material.

There is evidence of bonding surface metallization remaining attached to the ball or wedge/stitch bond.

1.3.5Footprint

An impression of the compressed wedge/stitch bond area created in the bonding surface during the

ultrasonic wire bonding process. The bond footprint area is normally larger than the actual metallurgical weld interface.

1.3.6Shear Tool or Arm

A tungsten carbide, or equivalent, chisel with specific angles on the bottom and back of the tool to

insure a shearing action.

1.3.7Wedge/Stitch Bond

The welding of a thin wire, usually aluminum, to a die or package bonding surface using an ultrasonic

wire bonding process. The wedge bond, sometimes referred to as a stitch bond, includes the

compressed (ultrasonically bonded) area of the bond wire and the underlying bonding surface. When

wedge/stitch bonding to an aluminum alloy bonding surface, no intermetallic exists because the two

materials are of the same composition; but rather the two materials are combined and recrystallized by

the ultrasonic energy of the welding process. For the purposes of this document, all references to

wedge/stitch bonds are applicable to aluminum wedge/stitch bonds only; gold wedge/stitch bonds are

not required to be wire bond shear tested.

Component Technical Committee

2.APPARATUS AND MATERIAL

The apparatus and materials required for wire bond shear testing shall be as follows:

2.1Inspection Equipment

An optical microscope system or scanning electron microscope providing a minimum of 30X

magnification.

2.2Measurement Equipment

An optical microscope or measurement system capable of measuring the wire bond diameter to within ±

0.1 mil.

2.3Workholder

Fixture used to hold the device being tested parallel to the shearing plane and perpendicular to the

shear tool. The fixture shall also eliminate device movement during wire bond shear testing. If using a caliper controlled workholder, place the holder so that the shear motion is against the positive stop of

the caliper. This is to insure that the recoil movement of the caliper controlled workholder does not

influence the wire bond shear test.

2.4Wire Bond Shear Equipment

The wire bond shear equipment must be capable of precision placement of the shear tool approximately

0.1 mil above the topmost part of the bonding surface. This distance (h) shall insure the shear tool does

not contact the die or package bonding surface and shall be less than the distance from the topmost

part of the bonding surface to the center line (C L) of the ball or wedge/stitch bond.

2.5Bond Shear Tool

Required shear tool parameters include but are not limited to: flat shear face, sharp shearing edge, and shearing width of 1.5 to 2 times (1.5X to 2X) the bond diameter or bond length. The shear tool should be designed to prevent plowing and drag during wire bond shear testing. The shear tool should be clean

and free of chips (or other defects) that may interfere with the wire bond shear test.

3.PROCEDURE

3.1Calibration

Before performing the wire bond shear test, it must be determined that the equipment has been

calibrated in accordance with the manufacturer's specifications and is presently in calibration.

Recalibration is required if the equipment is moved to another location.

Component Technical Committee

3.2Visual Examination of Wire Bonds to be Shear Tested After Decapsulation

Before performing wire bond shear testing on a device which has been opened using wet chemical

and/or dry etch techniques, the bonding surfaces shall be examined to insure there is no absence of

metallization on the bonding surface area due to chemical etching. Ball or wedge/stitch bonds on

bonding surfaces with evidence of degradation from chemical attack or absence of metallization shall

not be used for wire bond shear testing. Wire bonds on bonding surfaces without degradation from

chemical attack may not be attached to the bonding surface due to other causes (e.g., package

stress). These wire bonds are considered valid and shall be included in the shear data as a zero (0)

gram value. Wire bonds must also be examined to ensure adjacent interfering structures are far enough away to allow suitable placement and clearance (above the bonding surface and between adjacent wire bonds) when performing the wire bond shear test.

3.3Measurement of the Ball Bond Diameter to Determine the Ball Bond Failure Criteria

Once the bonding surfaces have been examined and prior to performing wire bond shear testing, the

diameter of all ball bonds (from at least one representative sample to be tested) shall be measured and recorded. For asymmetrical ball bonds, determine the average using both the largest (d large) and the smallest diameter (d small) values (see Figure 2). These ball bond diameter measurements shall be

used to determine the mean, or average, diameter value. The resulting mean, or average, ball bond

diameter shall then be used to establish the failure criteria as defined in section 4.1. If process-monitor data has established the nominal ball bond diameter, then that value may be used to determine the

failure criteria as defined in section 4.1.

SYMMETRICAL

ASYMMETRICAL

Figure 2: Ball bond diameter measurement (symmetrical vs. asymmetrical)

Component Technical Committee

3.4Wire Bond Shear Test Procedure

The wire bond shear testing procedure shall be performed as follows:

a.The wire bond shear equipment shall pass all self diagnostic tests prior to performing the wire

bond shear test.

b.The wire bond shear equipment and test area shall be free of excessive vibration or movement.

Examine the shear tool to verify it is in good condition and is not bent or damaged. Check the

shear tool to verify it is in the up position.

c.Adjust the workholder to match the device being teste

d. Secure the device to the workholder.

Make sure the die or package bonding surface is parallel to the shearing plane of the shear tool.

It is important that the shear tool does not contact the bonding surface or adjacent structures

during the shearing operation as this will give incorrect high readings.

d.Position the device so that the wire bond to be tested is located adjacent to the shear tool.

Lower the shear tool (or raise the device depending upon wire bond shear equipment used) to

approximately the die or package bonding surface but not contacting the surface (approximately

the thickness of the wire bond above the die or package bonding surface).

e.For ball bond shear testing, position the ball bond to be tested so that the shear motion will

travel perpendicular to the die edge. Wire bond shear testing is required for ball bonds located

at the die bonding surface interface only.

f.For aluminum wedge/stitch bond shear testing, a wire height at the compressed bond area of

1.25 mils and larger is required. For wires too small for wire bond shear testing (less than 1.25

mils in height at the compressed bond area), only a footprint inspection is required (see section

3.6). Position the wedge/stitch bond to be tested so that the shear motion will travel toward the

long side of the wedge/stitch bond and is free of any interference (i.e. shear the outside

wedge/stitch bond first and then shear toward the previously sheared wedge/stitch bond). Wire

bond shear testing is required for aluminum wedge/stitch bonds located at die and package

bonding surfaces; gold wedge/stitch bonds are not required to be wire bond shear tested.

g.Position the shear tool a distance of approximately one ball bond diameter (or one aluminum

wire diameter for wedge/stitch bonds) from the wire bond to be shear tested and shear the wire

bond.

3.5Examination of Sheared Wire Bonds

All wire bonds shall be sheared in a planned/defined sequence so that later visual examination can

determine which shear values should be eliminated due to an improper shear. The wire bonds shall be examined using at least 30X magnification to determine if the shear tool skipped over the wire bond

(type 5) or the shear tool scraped or plowed into the die surface (type 4). See Figure 3 for bond shear types and illustrations.

Readings in which either a bond shear type 4 or 5 defective shear condition occurred shall be eliminated from the shear data. Bond shear type 1, 2, 3, and 6 shall be considered acceptable and included in the shear data.

Component Technical Committee

Sheared wire bonds in which a bond shear type 3 cratering condition has occurred shall be investigated further to determine whether the cracking and/or cratering is due to the wire bonding process or the act of wire bond shear testing. Cratering caused prior to the wire bond shear test operation is

unacceptable. Cratering resulting from the act of wire bond shear testing shall be considered

acceptable and included in the shear data.

3.6Footprint Inspection of Aluminum Wedge/Stitch Bonds

a.All aluminum wire bonding processes to both die and package bonding surfaces shall have a

bond footprint inspection performed.

b.For wires too small for wire bond shear testing (less than 1.25 mils in height at the compressed

bond area), the wires shall be removed at the wedge/stitch bond location using a small sharp

blade to peel or pluck the wire bond from the bonding surface. The removal of the aluminum

wire shall be sufficient such that the wire bond interface can be visually inspected and the

metallurgical wire bond area determined.

c.For larger wires (greater than 1.25 mils in height at the compressed bond area), the wires shall

be inspected after wire bond shear testing to examine the failure mode and to determine the

wedge/stitch bond footprint coverage.

3.7Bond Shear Data

Data shall be maintained for each wire bond sheared. The data shall identify the wire bond (location,

ball bond and/or wire diameter, wire material, method of bonding, and material bonded to), the shear

strength, and the bond shear type (as defined in section 1.3.4 and Figure 3).

4.FAILURE CRITERIA

The following failure criteria are not valid for devices that have undergone environmental stress testing or have been desoldered from circuit boards.

4.1Failure Criteria for Gold Ball Bonds

The gold ball bonds on a device shall be considered acceptable if the minimum individual and sample

average ball bond shear values are greater than or equal to the values specified in Figure 4 and Table 1.

This criteria is applicable for gold wire ball bonds on aluminum alloy bonding surfaces. Other material combinations may require a new set of failure criteria.

Alternate minimum ball bond shear values may be proposed by the supplier if supporting data justifies the proposed minimum values.

4.2Failure Criteria for Aluminum Wedge/Stitch Bonds

The aluminum wedge/stitch bonds on a device shall be considered acceptable if the minimum shear

values are greater than or equal to the manufacturer’s bond wire tensile strength.

In addition, the percent of the wedge/stitch bond footprint in which bonding occurs shall be greater than or equal to 50%. If it is necessary to control the wire bonding process using SPC for percent coverage,

a C pk value can be calculated to this limit.

Component Technical Committee

Component Technical Committee

MINIMUM SHEAR VALUES

BALL BOND DIAMETER (mils)

2.25 2.5

3.0 3.25 3.5 3.75

4.25 4.5 4.75

5.0 5.25

2.0S H E A R S T R E N G T H (g r a m s )

1.75

0102030405060708090100110

2.75 4.0

Figure 4: Minimum acceptable individual and sample average ball bond shear values *, see Table 1

for exact ball bond shear values *

* (Shear values are applicable for gold wire ball bonds on aluminum alloy bonding surfaces)

Component Technical Committee

Table 1: Minimum acceptable individual and sample average ball bond shear values *

* (Shear values are applicable for gold wire ball bonds on aluminum alloy bonding surfaces)

Ball Bond Diameter

(mils)

Minimum

Sample Average

(grams)

Minimum Individual

Shear Reading

(grams)

2.012.6 5.7 2.114.0 6.8 2.215.58.1 2.317.19.5 2.418.810.9 2.520.612.4 2.622.414.0 2.724.415.6 2.826.517.4

2.928.619.2

3.030.821.1 3.133.223.1 3.235.625.1 3.338.127.2 3.440.729.4 3.543.431.7 3.646.23

4.1 3.749.136.5 3.852.139.1

3.955.241.7

4.058.344.3 4.161.647.1 4.26

5.050.0 4.368.452.9 4.471.955.8 4.575.659.0 4.679.362.1 4.783.165.3 4.887.068.6

4.991.072.0

5.095.175.5

October 8, 1998 Component Technical Committee

Automotive Electronics Council

Revision History

Rev #

-

A B

C Date of change

June 9, 1994

May 19, 1995

Sept. 6, 1996

Oct. 8, 1998

Brief summary listing affected sections

Initial Release.

Added copyright statement.

Deleted old Sections 1.3.4, 1.3.5, 3.3, 3.9, and 5.0. Added new Sections

1.3.1, 1.3.2, 1.3.6, 3.4 (steps a through g), and 3.6 (steps a through c).

Revised the following: Sections 1.1, 1.2, 1.3.1, 1.3.2, 1.3.3, 1.3.4

(1.3.4.1 through 1.3.4.6), 1.3.5, 1.3.6, 2.1, 2.2, 2.4, 2.5, 3.1, 3.2, 3.3, 3.4

(a, b, c, d, e, f, and g), 3.5, 3.6 (a, b, and c), 3.7, 4.0, 4.1, and 4.2; Table

1; Figures 1, 3, and 4.

Added new Section 1.3.5. Revised the following: Sections 1.1, 1.3.1,

1.3.4.1, 1.3.4.4, 1.3.4.5,

2.2, 2.5,

3.2, 3.5, 3.6 (b), Figure 3.

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.wendangku.net/doc/bf14882844.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

保温层厚度计算

保温层厚度的计算与校核 1 已知条件 保温棉内侧对流换热系数h1=70w/(m2·k),温度分别为0℃、-60℃、-138℃。铝片的厚度∝1为5mm,传热系数λ1=236w/(m2·k)。保温棉的传热系数λ2=0.022 w/(m2·k)。保温棉外侧的空气温度为35℃,其表面温度查空气焓湿图,取35℃、65%相对湿度情况下的露点温度。保温棉外侧的对流换热系数h2=8 w/(m2·k)。 2 保温棉厚度计算 2.1 露点温度 空气温度T a=35℃,相对湿度为65%时,查空气焓湿图得到露点温度T d=27.57℃。2.2最大允许冷损失量的计算 根据《工业设备及管道绝热工程设计规范(GB50264-97)》,最大允许冷损失量应按以下公式进行计算: 当T a-T d≤4.5时: [Q]=-(T a-T d)αs; 当T a-T d >4.5时: [Q]=-4.5αs 其中αs绝热层外表面向周围环境的放热系数。 T a-T d=(35-27.57)℃=7.43℃,故最大允许冷损失量 [Q]=-4.5αs=-4.5×8=-36w。 2.3 保温棉厚度的计算 由传热公式知: [Q]= (T i-T a)/ (1 ?1+∝1 λ1 +∝2 λ2 +1 ?2 ) 其中∝2为保温层的厚度。 由此得到∝2=λ2×(T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 ) 1 保温层内侧温度为0℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×0?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.018m 2 保温层内侧温度为-60℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×?60?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.054m 3 保温层内侧温度为-138℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×?138?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.103m 3 保温层厚度的校核 设保温层外侧表面的温度为T f 1 保温层内侧温度为0℃时 取保温层厚度∝2=0.025m 传热量[Q] = (T i-T a)/ (1 ?1+∝1 λ1 +∝2 λ2 +1 ?2 )= (0-35)/ (1 70 +0.005 236 +0.025 0.022 +1 8 )=-27.44w T f=T a+Q ?2=35?27.44 8 =31.57℃>T d=27.57℃故符合要求。

保温层厚度计算(2021新版)

保温层厚度计算(2021新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0646

保温层厚度计算(2021新版) 保温层厚度计算有A种方法,选择介绍四种方法:经济厚度法;直埋管道保温热力法;多层绝热层法;允许降温法。将计算结果经对比分析后选定厚度。 1.保温层经济厚度法 (1)厚度公式 式中δ——保温层厚度,m; Do ——保温层外径,m; Di ——保温层内径,取0.125m; A1

——单位换算系数,A1 =1.9×10-3 ; λ——保温材料制品导热系数,取0.028W/(m·℃); τ——年运行时间,取5840h; fn ——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta ——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi ——保温结构单位造价, Pl ——保温层单位造价,硬质聚氨酯泡沫塑料造价1700元/m3 ;

P2 ——保护层单位造价,玻璃钢保护层取135元/m2 ; S——保温工程投资贷款年分摊率,按复利率计息, n——计算年限,取15年; i——年利率(复利率),取7%; a——保温层外表向外散热系数,取11.63W/(cm2 ·℃)。 用试差法,经计算δ=22.5mm。 (2)管道保温层表面散热损失 式中q——单位表面散热损失,W/m。经计算q=42.2W/m,满足国标GB4272—84《设备及管道保温技术通则》要求。 (3)温降计算 式中△t ——卑位长度温降,℃/km; Q——流量,kg/h;

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

风管保温层要工程量计算方法

风管保温层要工程量计算方 法 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

风管保温层要工程量计算方法 1、矩形按矩形单边长度加一个保暖厚度作为边长计算; 2、圆形按园半径加一个保温厚度作为半径; 3、其中:保温厚度=设计要求的保温厚度+规范规定的允许超厚系数%(即保温厚度*)。 4、通风空调风管橡塑板保温体积计算公式: (1)矩形风管=(长+宽+保温厚度*)*2*长度*保温厚度* (2)圆形风管=(直径+保温厚度**2)**长度*保温厚度* 5、通风空调风管橡塑板保温面积计算公式: (1)矩形风管=(长+宽+保温厚度*)*2*长度=保温面积 (2)圆形风管=(直径+保温厚度**2)**长度=保温面积 6、风管保温层厚度计算方法 1、可以用风管面积乘以一个系数来确定,系数一般取15%左右,视风管大小、施工方法确定。 2、公式:(a+b+4d)*2*L(a、b分别为风管长宽、L为风管长度) 3、公式这样算出来还是要乘以一个损耗及包法兰边的系数 4、直接用风管面积乘以15%左右最方便,也比较准确。(参考方法) 如果你自己弄不明白,或没时间计算,建议找代算,根据情况不同,费用不等。 套定额 套用保温定额中有关于风管保温的定额 一、其他方法

1、你可以搜索下小蚂蚁算量,能做工程量计算、预算,高质、高效 2、你可以在网上搜下预算造价单位,有一些单位做的比较好 3、你可以去第三方平台委托别人做,平台上注意防骗,你可以找单位、也可以找个人来做。 二、注意点 1、计算工程量应按照工程所在地的定额或规定标准计算; 2、工程量计算熟悉定额、规定是基础; 3、计算工程量前看清楚图纸是前提,应注意小的注释,以免看漏看错是计算结果出现错误; 4、工程量计算原则上是不允许错误的,希望不要抱侥幸态度去计算工程量。

阻抗计算公式、polarsi9000(教程)

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义。 传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线 层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,

保温层厚度计算公式

保温层“经济厚度法”计算公式中有关参数的取用 幺莉,黄素逸 (华中科技大学,湖北武汉430074) 摘要着重介绍了采用保温层“经济厚度法”的计算公式中有关参数的取用和分析,为热力设备和管道保温结构的工程设计,提供一定的参考。 关键词热力设备保温层经济厚度 1前言 保温层“经济厚度”的计算方法,不但考虑了传热基本原理,而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。因此,在火力发电厂的设计过程中,通常采用“经济厚度法”对热力设备 和管道的保温层厚度进行计算。 对于火力发电厂的热力设备和管道,可分为平壁和管道两种物理模型。当管道和设备的外径大于1020mm时,可按平壁的公式,来计算保温层厚度。 平壁和管道的保温层经济厚度计算公式如下所示: 式中,δ:保温层的经济厚度,m;P h:热价,元/GJ;λ:保温材料的导热系数,W/(m·K);h:年运行小时数,h;t:设备和管道的外表面温度,℃;ta:环境温度,℃;P i:保温材料单位造价,元/m3;S:保温工程投资贷款年分摊率;α:保温层外表面向大气的放热系数,W/(m2·K);d o:保温层外径,m; d i: 保温层内径,m。 由以上列出的保温层“经济厚度法”计算公式可以看出,公式中涉及的参数较多。在保温计算时,这些参数的取值直接会影响到保温层厚度的计算结果。所以,针对不同工程的实际情况,选取适当的参数,对计算结果的精度至关重要。 以下着重对计算公式中的各参数的取值进行讨论和分析。 2参数的取用和分析 2.1设备和管道的外表面温度t 对于无内衬的金属设备和管道,其外表面温度应取介质的设计温度或最高温度;对于有内衬的金属设备和管道,应按有保温层存在进行传热计算确定其外表 面温度。 2.2环境温度t a 保温工程的环境温度,实际上是一个变数,但通常情况下,如果载热介质的温度高而且稳定,环境温度的变化对计算温差的影响有限。因此,一般把工业保温的传热过程视为稳定传热,环境温度通常取用其年平均值来代表,并分为室内、

保温层厚度计算圆筒

一、 聚丙烯PP 外壁热损计算: 采用设备上一个筒形作为研究对象。 根据保温层厚度计算公式: 5 .175.135.12.114.3q d w τλδ= (1-1) 式中: δ————保温层厚度,4.6mm; w d ————管道或圆柱设备的外径,此处为水柱外径,40.8mm; λ————保温层的热导率,0.33kJ/(h.m. ℃); τ———未保温的管道或圆柱设备外表面温度,60℃; q —————保温后的允许热损失,kJ/(h.m.); 所以δτλ75.135.12.15.114.3w d q Q == (1-2) ==67.0Q q (δ τ λ75.135.12.114.3w d )0.67 (1-3) 得出:聚丙烯外壁的热损值为:681.152 kJ/(h.m.) 二、聚丙烯外层的表面温度的确定按下式计算 πλ2ln 12 11d d q t t w - = (1-4) 式中:q ———聚丙烯层保温热损失,kJ/(h m.);. λ———聚丙烯的热导率,kJ/(h.m. ℃); 1w t ———聚丙烯层外表面温度,℃; 1t ———聚丙烯层内表面温度,℃;

2d ———聚丙烯保温层外径,mm; 1d ———聚丙烯保温层内径,mm; 聚苯乙烯内表面温度即为聚丙烯保温层外表面温度。得出聚丙烯层外温度为:52.72℃ 三、聚苯乙烯保温层计算过程如下: 通过式(1-3)计算外层聚苯乙烯保温层的厚度为: 5 .175.135.12.114.3q d w τλδ= 式中: δ————聚苯乙烯保温层厚度, mm; w d ————管道或圆柱设备的外径,40.8mm; λ————保温层的热导率,0.1476kJ/(h.m. ℃); τ———未保温的管道或圆柱设备外表面温度,52.72℃; q —————保温后的允许热损失,104.7kJ/(h.m.); 计算得: 聚苯乙烯保温层厚度为:24.97mm 。 同理: 聚乙烯保温层计算同上。厚度为:30.03 mm 。

特征阻抗那点事

特征阻抗那点事 关键词:特征阻抗 PCB 电缆 传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。但是很多人对这个概念并不理解,有时还会错误的理解为直流阻抗。弄明白这个概念对我们更好的进行高速电路设计很有必要。高速电路的很多设计规则都和特征阻抗有关。 要理解特征阻抗的概念,我们先要弄清楚什么是传输线。简单的说,传输线就是能够传输信号的连接线。电源线,视频线,USB连接线,PCB板上的走线,都可以称为传输线。如果传输线上传输的信号是低频信号,假设是1KHz,那么信号的波长就是300公里(假设信号速度为光速),即使传输线的长度有1米长,相对于信号来说还是很短的,对信号来说传输线可以看成短路,传输线对信号的影响是很小的。但是对于高速信号来说,假设信号频率提高到300MHz,信号波长就减小到1米,这时候1米的传输线和信号的波长已经完全可以比较,在传输线上就会存在波动效应,在传输线上的不同点上的电压电流就会不同。在这种情况下,我们就不能忽略传输线对信号造成的影响。传输线相对信号来说就是一段长线,我们要用长线传输里的理论来解决问题。 特征阻抗就属于长线传输中的一个概念。信号在传输线中传输的过程中,在信号到达的一个点,传输线和参考平面之间会形成电场,由于电场的存在,会产生一个瞬间的小电流,这个小电流在传输线中的每一点都存在。同时信号也存在一定的电压,这样在信号传输过程中,传输线的每一点就会等效成一个电阻,这个电阻就是我们提到的传输线的特征阻抗。这里一定要区分一个概念,就是特征阻抗是对于交流信号(或者说高频信号)来说的,对于直流信号,传输线有一个直流阻抗,这个值可能会远小于传输线的特征阻抗。一旦传输线的特性确定了(线宽,与参考平面的距离等特性),那么传输线的特征阻抗就确定了.此处省略一万字的公式推导过程,直接给出PCB走线的特征阻抗计算公式: 其中L是单位长度传输线的固有电感,C是单位长度传输线的固有电容。肯定有人会问,什么是单位长度?是1cm,1mm,还是1mil?其实这里的单位长度是多少并不重要。单位越小精度越高,学过微积分对这个概念应该就更清楚了。通过这个简单的计算公式我们能看出来,要改变传输线的特征阻抗就要改变单位长度传输线的固有电感和电容。这样我们就能更好的理解影响传输线特征阻抗的几个因素: a. 线宽与特征阻抗成反比。增加线宽相当于增大电容,也就减小了特征阻抗,反之亦然 b. 介电常数与特征阻抗成反比。同样提高介电常数相当于增大电容

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

保温保冷厚度计算举例

一、蒸汽管道保温厚度计算 计算的已知条件 管道直径:219mm,管道长度:100m 管道内介质温度:t0=400℃和150 ℃ 环境温度:平均温度t a=25℃保温表面温度:t s=45℃(温差20℃) CAS铝镁质保温隔热材料的导热方程:0.038+0.00015tcp,导热系数修正系数1.2 复合硅酸盐保温材料的导热方程:0.038+0.00018tcp,导热系数修正系数1.8 120kg/m3管壳的导热方程:0.048+0.00021 tcp,导热系数修正系数1.8 注:复合硅酸盐、岩棉管壳的导热方程摘自《保温绝热材料及其制品的生产工艺与质量检验标准规范实用手册》。 1、介质温度为400℃,表面温度为45℃,温差为20℃,材料保温厚度计算 CAS铝镁质保温隔热材料(热面400℃,冷面45℃)的平均导热系数 λ={0.038+0.00015×(400+45)÷2}×1.2=0.0857 复合硅酸盐保温隔热材料(热面400℃,冷面45℃)的平均导热系数 λ={0.038+0.00018×(400+45)÷2}×1.8=0.1405 岩棉管壳(热面400℃,冷面45℃)的平均导热系数 λ={0.048+0.00021×(400+45)÷2}×1.8=0.1705 温差为20℃,室内管道表面换热系数 as=5.0+3.4+1.27=9.67w/㎡.k a、用CAS铝镁质保温隔热材料保温 D1ln(D1/D)=2λ(t0-t s)/ ={2×0.0852×(400-45)}÷{9.67×(45-25)}=0.3128 (D1/D)ln(D1/D)=0.3128/0.219=1.4282 查表X-XlnX函数得到:X=(D1/D)=2.02 (采用内查法:XlnX X 1.419 2.02 1.439 2.03 ①1.439—1.419=0.02 0.02÷10=0.002 ②1.4282—1.419=0.0092 ③0.0092÷0.002=4.6 ④1.4282对应的X为:2.02+(2.03—2.02)×4.6=2.0246) 保温层厚度:δ=D(X-1)/2=219(2.02—1)/2=111.7mm。 保温厚度定为110mm。 b、用复合硅酸盐保温 D1ln(D1/D)=2λ(t0-t s)/ ={2×0.1405×(400-45)}÷{9.67×(45-25)}=0.5158

最佳保温层厚度的计算

最佳保温层厚度的计算(再取个名字) 一、 摘要 通过对热传导和保温隔热材料性能的研究,根据题意,建立了解决保温层材料和厚度的计算模型。 针对第一个问题(即珍珠岩的厚度应为多少),我们建立模型一。利用傅立叶定律列出方程,通过室温与屋顶内表面有温差和对散热过程、感热过程的分析,给出两个不等式,通过对不等式的求解,得出珍珠岩保温层的厚度范围5δ≥0.533893cm 且5δ≥10.3713cm ,由于保温层材料已给定是珍珠岩,单价为定值,所以用料最省就最经济,又由于保温层要同时考虑保温和隔热两种效果,还要用料最省,故珍珠岩保温层的厚度选择为10.3713cm ,约为10.4cm ,通过资料查证,保温层珍珠岩的厚度在7cm 到20cm 之间,所以在忽略误差的情况下,通过模型一对珍珠岩保温层的计算得出的结果是正确的。 针对第二个问题(即如果更换保温层成其他保温材料,哪种好?并求其厚度。),我们建立模型二。在保温层用一种材料替代的情况下,利用0,1规划,列出关系式,目标函数设为保温层费用的求解函数,由于热阻大的材料保温隔热的效果好,所以在限制条件中,替代材料的热阻要大于等于珍珠岩的热阻,在目标函数中未知变量为所选保温隔热材料的厚度和单价,厚度又由导热系数导出,通过编译程序代入所有已知材料的种类数,并依次输入它们对应的导热系数和对应的单价,即算出最优材料及其对应的厚度和价钱,输出的结果为 。 本文的特色在于两个模型用了两种不同的计算方法,模型一思路清晰,运行简单,但只能计算已知保温隔热材料的厚度,并不是判断最优材料和计算厚度的通式,模型二利用0,1规划,建立了判断最经济材料和计算其厚度的通式,运行简便,无论是思路还是使用范围都优于模型一,模型二可为模型一求解,模型一可为模型二检验。 (最后一个问题不知道是否可行,你检验一下程序二。) 关键词:保温隔热材料,热阻,导热系数,温度差,外围结构

中央空调保温材料厚度计算

1.保温的类型: 保热:热水系统,蒸汽管道等; 保冷:新风系统风管,冷冻水供回水管等; 2.需保温的场合: 1、不保温,冷、热损耗大,且不经济时; 2、由于冷、热损失,使介质温度达不到要求温度,因而不能保证室内参数时; 3、当管道穿过室内参数要求严格的空调房间,而管道散出的冷热量对室内参数影响不利时; 4、管道的冷表面可能结露时。 3.景瑞空调系统常用保温材料: 岩棉 离心玻璃棉 橡塑海绵 阻燃聚乙烯泡沫塑料 硬质聚氨酯泡沫塑料

4.标准中对空调保温厚度的规定: 设备及管道保温技术通则 上海市公共建筑节能设计标准 ASHARE 90.1-1999 5.保温厚度的算法: 保冷厚度一般大于保热厚度,具保冷效果对空调系统影响较大,因而一般在设计中,按照保冷的厚度计算; 按防结露厚度计算 防结露是指要求保温后管道、设备表面湿度应大于保温层外的空气露点温度,保证绝大多数时间不结露,这也是空调系统保温的基本要求。 矩形设备、管道: 圆形管道:

按经济厚度计算 经济厚度是指保温后,全年的冷或热损失价值与保温投资的年折算价值之和为最小的保温材料厚度。 矩形设备、管道: 圆形管道: 其中: ——保温层厚度,m; ——保温材料导热系数,w/m-k; ——保温材料外表面换热系数,w/m2-k,一般取8.14; ——保温层外空气露点温度,℃;

——管内流体温度,℃; ——保温层外空气温度,℃; ——保温前管道外径,m; ——计算年限,取12年; ——单位换算系数, ; ——全年输送冷媒的小时数,h; ——冷价,元/106kJ; ——保温层单位造价,元/m3;

保温层厚度的计算

保温层厚度的计算 (1)保温层厚度的计算公式 δ=3.14dwl.2λ1.35tl.75/ql.5 (式1) δ——保温层厚度(mm); dw——管道的外径(mm): λ一一保温层的导热系数(KJ/h·m·℃); t一一未保温的管道的外表面的温度(℃): q一一保温后的允许热损失(KJ/m·h)。 (2)允许热损 根据建设部2003年颁布的《全国民用建筑工程设计技术措施·给水排水》中的规定选取(若要用到这本书里的数据可向我要,我已经下载下来了) 3)参数确定 公称管径为:2 0、40、5 0的管道(钢)其外径分别为33.5mm、48mm、60mm 保温层的导热系数λ:1.1中已经确定,未保温的管道的外表面的温度t:由于钢的导热系数很大,管道壁又薄,所以可以认为管道的外表面的温度和流体的温度相等(误差不超过0.2℃) (4)根据式——1计算的保温层厚度如表4: 3.结果验证和实际热损 (1)模型的建立 如图所示是包裹着保温材料的管道的横截面。设管道中的热水温度为t1,管道内壁的温度是t 2,管道和保温材料接触处的温度为t3,保温材料外表面的温度为t4,管道所处空间的温度为t5:设管道的内径是r1外径是r2,保温材料的外径是r3。 设管道材料的数为λ2,管内热水和管导热系数为λ1,保温材料导热系外空气与管壁间的对流换热系数分别a1、a2。 由传热学公式可知,热水通过管道壁和保温层传热给空气的过程总热阻为 R=1/(2a1πr1)+(1nr2/r1)/2πλ1+(1nr3/r2)/2πλ2+l/2a2πr3 =R1十R2+R3+R4 (式2) 式中: R1——管内对流换热热阻,R1=1/(2a1πr1); R2——管壁导热热阻,R2=(1nr2/r1)/2πλ1; R3——保温层导热热阻,R3=(1nr3/r2)/2πλ2; R4——保温层外对流换热热阻,R4=1/2a3πr3. q=(t1-t5)/(Rl+R2+R3+R4) (式3) 由于所计算的管道材料为铸铁、钢或者铜,其导热系数都很大,而且管道壁的厚度很小,所以其热阻可以忽略,认为其外壁温度和其中热水的温度相等;同时,为了计算的简便可以将R4忽略,这样得出的结果将比实际的值偏大,但若在偏大的情况下能满足表——3的要求,则精确的结果肯定也能满足。 所以 q≈(tl-t5)/R3=(tl-t5)/(1nr3/r2)/2πλ2 (式4) (2)分区 在采用同一种保温材料并且厚度也相同的条件下,如果环境的温度不相同,管道的热损是不一样的。为了验证所选用的保温层是否符合使用要求,现根据一月份(全年温度最低的月份)的平均气温的高低把全国划分为五个区。 1月份平均气温不低于1 0℃的(A区):

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来与大家说明下阻抗就是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来与意义: 传输线阻抗就是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗与波阻抗的概念上的差异(具体查瞧平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出、 Ok,理解特性阻抗理论上就是怎么回事情,瞧瞧实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等、在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来、 叠层(stackup)的定义 我们来瞧如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,与厂家打交道经常会使用的 Oz 的概念 Oz 本来就是重量的单位Oz(盎司)=28、3 g(克) 在叠层里面就是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状与尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 就是种介质材料,由玻璃纤维与环氧树脂组成,core 其实也就是pp 类型介质,只不过她两面都覆有铜箔,而pp 没有、 传输线特性阻抗的计算

空调系统保温材料及保温厚度计算

空调系统保温材料及保温厚度计算

空调系统保温材料及保温厚度计算 1. 保温的类型: 保热:热水系统,蒸汽管道等; 保冷:新风系统风管,冷冻水供回水管等; 2. 需保温的场合: 不保温,冷、热损耗大,且不经济时; 由于冷、热损失,使介质温度达不到要求温度,因而不能保证室内参数时; 当管道穿过室内参数要求严格的空调房间,而管道散出的冷热量对室内参数影响不利时; 管道的冷表面可能结露时。 3. 空调系统常用保温材料: 岩棉 离心玻璃棉 橡塑海绵

阻燃聚乙烯泡沫塑料硬质聚氨酯泡沫塑料 种类 密度 kg/m3 导热系数 w/m-K 吸水率 g/100cm2 透湿系数 g/m2-s-Pa 防火性能 参考价格 元/m2 备注 岩棉100 0.038 83.3 1.3x10-5不燃烧板材600 管壳900 防水防腐性 差 离心玻璃棉48 0.031-0.038 25(%随重 量增加) 4x10-5不燃烧 棉毡750 管壳1250 橡塑海绵87 0.038 0.4 - 阻燃性 FV-0级 11000 燃聚乙烯泡 沫塑料 22 0.031 0.05 4x10-11离火自息900 损害环境 质聚氨酯泡沫塑料33 0.018 0.8 2.2x10-7 可燃,加阻燃 剂后离火2s 内自息 2500 损害环境 抗老化性能 4. 标准中对空调保温厚度的规定: 设备及管道保温技术通则 上海市公共建筑节能设计标准 ASHARE 90.1-1999 5. 保温厚度的算法: 保冷厚度一般大于保热厚度,具保冷效果对空调系统影响较大,因而一般在设计中,按照保冷的厚度计算;

按防结露厚度计算 防结露是指要求保温后管道、设备表面湿度应大于保温层外的空气露点温度,保证绝大多数时间不结露,这也是空调系统保温的基本要求。 矩形设备、管道: 圆形管道: 按经济厚度计算 经济厚度是指保温后,全年的冷或热损失价值与保温投资的年折算价值之和为最小的保温材料厚度。 矩形设备、管道: 圆形管道: 其中:

特性阻抗计算

对特性阻抗的一种浅显易懂的解释 抽象又复杂的数位高速逻辑原理,与传输线中方波讯号的如何传送,以及 如何确保其讯号完整性(Signal Integrity),降低其杂讯(Noise)减少之误动 作等专业表达,若能以简单的生活实例加以说明,而非动则搬来一堆数学公式与 难懂的物理语言者,则对新手或隔行者之启迪与造福,实有事半功倍举重若轻之 受用也。 然而,众多本科专业者,甚至杏坛为师的博士教授们,不知是否尚未真正进 入情况不知其所以然?亦或是刻意卖弄所知以慑服受教者则不得而知,或是二者 心态兼有之!坊间大量书籍期刊文章,多半也都言不及义缺图少例,确实让人雾 里看花,看懂了反倒奇怪呢! 笔者近来获得一份有关阻抗控制的简报资料,系电性测试之专业日商HIOKI 所提供。其内容堪称文要图简一看就懂,令人爱不释手。正是笔者长久以来所追 求的境界,大喜之下乃征得原著“问港建”公司的同意,并经由港建公司廖丰莹 副总的大力协助,以及原作者山崎浩(Hiroshi Yamazaki)及其上司金井敏彦(Toshihiko Kanai)等解惑下,得以完成此文,在此一并感谢。并欢迎所有前辈先进们,多 多慨赐类似资料嘉惠学子读者,则功在业界善莫大焉。 一 .将讯号的传输看成软管送水浇花 1.1 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。 一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰 好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命, 岂非一种得心应手的小小成就? 1.2 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至 还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任 务失败横生挫折,而且还大捅纰漏满脸豆花呢! 1.3反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。 过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。 1.4 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。 此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver) 元件所并联到Gnd的电阻器一般(是五种终端技术之一,请另见TPCA会刊第13 期“内嵌式电阻器之发展”一文之详细说明),可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。 二. 传输线之终端控管技术(Termination) 2.1由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件 (如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特 性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失 败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一

保温层厚度计算(正式版)

文件编号:TP-AR-L8384 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 保温层厚度计算(正式版)

保温层厚度计算(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 保温层厚度计算有A种方法,选择介绍四种方 法:经济厚度法;直埋管道保温热力法;多层绝热层 法;允许降温法。将计算结果经对比分析后选定厚 度。 1.保温层经济厚度法 (1)厚度公式

式中δ——保温层厚度,m; Do——保温层外径,m; Di——保温层内径,取0.125m; A1——单位换算系数,A1=1.9×10-3 ; λ——保温材料制品导热系数,取0.028 W /(m·℃); τ——年运行时间,取5840h; fn——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi——保温结构单位造价,

保温层的厚度计算

保温层的厚度怎么计算 我有个内蒙古的项目,冰冻线为2米,排水管是浅埋的,需要保温。保温材料采用PU硬泡, 但是保温材层需要多厚阿。保温层的厚度由什么决定,有计算的公式吗,怎么计算?内蒙的 最低温度大概是零下三四十度。有哪位有这方面的经验的,请帮帮忙阿 保温计算 1蒸汽直埋保温管的蒸汽温度,℃,蒸汽压力,MPa; 2土壤导热系数,W/m.K; 3管中心平均埋深,m; 4最热月地表面平均温度,℃; 5保温结构采用: “钢套钢—外滑动(滚动型)—空气层”; 6钢外套管的外壁温度≤50℃; 7管道沿程平均热损失≤200W/m; 8保温管寿命≥20年(正常使用)。 一个完整的热工管道和热工设备的绝热结构,通常包括:(1)防腐层;(2)滑动层(可与腐层并用);(3)绝热层;(4)防水防潮层;(5)外保护层(也可以兼作防水防潮层)。由于热水系统所用的管道都已经经过防腐处理,所以绝热设计的任务主要是绝热层、防水防 潮层和外保护层的设计。 9 绝热层的设计 9.1 材料导热系数 导热系数λ,单位W/(m·℃),是表证物质导热能力的热物理参数,在数值上等于单位导热面积、单位温度梯度,在单位时间内的导热量。数值越大,导热能力越强,数值越小,绝热性能越好。该参数的大小,主要取决于传热介质的成分和结构,同时还与温度、湿度、压力、密度、以及热流的方向有关。成分相同的材料,导热系数不一定相同,即便是已经成型的同一种保温材料制品,其导热系数也会因为使用的具体系统、具体环境不同而有所差异。 为了计算的方便,本文根据相关的部门标准和国标的相关规定来选择材料的导热系数作 为设计的标准。 9.1.1 硬质聚氨脂泡沫塑料 硬质聚氨脂泡沫塑料是用聚醚与多异氰酸脂为主要原料,再加入阻燃剂、稳泡剂和发泡剂等,经混合搅拌、化学反应而成的一种微孔发泡体,其导热系数一般在0.016~ 0.055W/(m·℃)。使用温度-100~100℃。 按照原石油部部颁标准(SYJ18-1986),对于设备及管道用的硬质聚氨脂塑料泡沫的基 本要求如表1: 9.1.2 聚苯乙烯泡沫塑料 聚苯乙烯泡沫塑料简称EPS,是以苯乙烯为主要原料,经发泡剂发泡而成的一种内部有无数密封微孔的材料。聚苯乙烯泡沫塑料的导热系数在0.033~0.044 W/(m·℃),安全使用温度-150~70℃;硬质聚苯乙烯塑料泡沫的导热系数在0.035~0.052 W/(m·℃)。 根据GB10801-1989的规定,对绝热用聚苯乙烯塑料泡沫的技术性能要求如表2:

相关文档