文档库 最新最全的文档下载
当前位置:文档库 › 高中物理机械能守恒定律典例解题技巧

高中物理机械能守恒定律典例解题技巧

高中物理机械能守恒定律典例解题技巧
高中物理机械能守恒定律典例解题技巧

一、单个物体的机械能守恒

判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作

用,也只有重力做功,通过重力做功,实现重力势能与

机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气

阻力,求物体落地时的速度大小?

分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等

2202

121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类

在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有

重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等

θsin 2120?==mgs mgh mv 得:θ

sin 220g v s = (3)固定的光滑圆弧类

在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?

分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等

2202

1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有

的最小速度为:

Rg v t = 所以 gR v 50=

(4)悬点固定的摆动类

和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。

例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力

分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉

力对物体不做功,所以只有重力做功,因此物体的机械能守恒,

选物体运动的最低点为重力势能的零势面,则物体开始运动时和

到达最低点时的机械能相等

22

1)cos 1(t mv mgL =-θ 得:)co s 1(22θ-=gL v t 由向心力的公式知:L

mv mg T t 2=-可知θcos 23mg mg T -= 作题方法:

一般选取物体运动的最低点作为重力势能的零势参考点,把物体

运动开始时的机械能和物体运动结束时的机械能分别写出来,并

使之相等。

注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。

习题:

1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a >L b >L c ,则悬线摆至竖直位置时,细线中张力大小的

关系是( )

A T c >T b >T a

B T a >T b >T c

C T b >T c >T a

D T a =T b =T c

2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大?如将杆换成长为L 的细线,则又如何?

3、如图,一质量为m 的木块以初速V 0从A 点滑上半径为R

的光滑圆弧轨道,它通过最高点B时对轨道的压力FN为多少?

4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:

(1)小球滑至圆环顶点时对环的压力;

(2)小球至少要从多高处静止滑下才能越过圆环最高点;

(3)小球从h0= 2米处静止滑下时将在何处脱离圆环(g =9.8

米/秒2)。

二、系统的机械能守恒

由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统内物体的重力所做的功不会改变系统的机械能

系统间的相互作用力分为三类:

1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等

2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。

归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类

(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。

(1)轻绳连体类

这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,倾角为θ的光滑斜面上有一质量为M 的

物体,通过一根跨过定滑轮的细绳与质量为m 的物体

相连,开始时两物体均处于静止状态,且m 离地面的

高度为h ,求它们开始运动后m 着地时的速度?

分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。它们分别是:M 所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。 M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键

222121sin mv Mv Mgh mgh ++=θ 可得m

M M m gh v +-=)sin (2θ

需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系

例:如图,光滑斜面的倾角为 ,竖直的光滑细杆到定滑轮的距离为a,斜面上的

物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,

开始保持两物体静止,连接m的轻绳处于水平状态,

放手后两物体从静止开始运动,求m下降b时两物体

的速度大小?

(2)轻杆连体类

这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小

分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A球受到的重力、B球受到的重力、轴对杆的作用力。

两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A球做负功,对B球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势

能都增加,我们让减少的机械能等于增加的机械能。有:

222

1212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知

B A v v 2=所以:???==gL v gL v B A 5

2522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系

(3)在水平面上可以自由移动的光滑圆弧类。

光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?

分析:由圆弧和小球构成的系统受到三个力作用,分别

是M 、m 受到的重力和地面的支持力。

m 的重力做正功,但不改变系统的机械能,支持力的作

用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我

们让减少的机械能等于增加的机械能。有:

222

121m M mv Mv mgR += 根据动量守恒定律知 M m Mv mv -=0 所以:

?

??+=+=)(2)(2m M M gR M v m M M gR m v M m (4)悬点在水平面上可以自由移动的摆动类。

悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明 例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态

由静止释放。求(1)小球摆动到最低点时两者的速度?

(2)此时小球受细绳的拉力是多少?

分析:由小车和小球构成的系统受到三个力作用,分别

是小车、小球所受到的重力和天轨的支持力。

小球的重力做正功,但重力做功不会改变系统的机械能,天轨的支持力,由于作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是小车和小球之间轻绳的拉力,该拉力对小球做负功,使小球的机械能减少,对小车做正功,使小车的机械能增加,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有小球的重力势能减小,小球的动

能以及小车的动能都增加,我们让减少的机械能等于增加的机械能。有:

222

121m M mv Mv mgL += 根据动量守恒定律知M m Mv mv -=0 所以:???+=+=)(2)(2m M M gL M v m M M gL m v M m

当小球运动到最低点时,受到竖直向上的拉力T 和重力作用,根据向心力的公式

L

mv mg T 2

=- 但要注意,公式中的v 是m 相对于悬点的速度,这一点是非常重要的

L

v v m mg T M m 2)(+=- 解得:M m M mg T 23+= 习题

图5-3-15

如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a 点,乙小球竖直下落经过b 点,a 、b 两点在同一水平面上,不计空气阻力,下列说法中正确的是( )

A .甲小球在a 点的速率等于乙小球在b 点的速率

B .甲小球到达a 点的时间等于乙小球到达b 点的时间

C .甲小球在a 点的机械能等于乙小球在b 点的机械能(相对同一个零势能参考面)

D .甲小球在a 点时重力的功率等于乙小球在b 点时重力的功率

解析:由机械能守恒得两小球到达a 、b 两处的速度大小相等,A 、C 正确;设斜面的倾角为α,甲小球在斜面上运动的加速度为a =g sin α,乙小球下落的

加速度为a =g ,由t =v a

可知t 甲>t 乙,B 错误;甲小球在a 点时重力的功率P 甲=mgv sin α,乙小球在b 点时重力的功率P 乙=mgv ,D 错误. 答案:AC

2.

图5-3-16

一根质量为M的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3

-16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v1.若在链条两

端各系一个质量均为m的小球,把链条一半和一个小球放在光滑的水平桌面上,

另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次将链条由静止释

放,链条刚离开桌面时的速度为v2,下列判断中正确的是( )

A.若M=2m,则v1=v2B.若M>2m,则v1<v2

C.若M<2m,则v1>v2D.不论M和m大小关系如何,均有v1>v2 答案:D

3.

图5-3-17

在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进

入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他

减速下降高度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )

A.他的动能减少了Fh B.他的重力势能增加了mgh

C.他的机械能减少了(F-mg)h D.他的机械能减少了Fh

解析:由动能定理,ΔE k=mgh-Fh,动能减少了Fh-mgh,A选项不正确;他

的重力势能减少了mgh,B选项错误;他的机械能减少了ΔE=Fh,C选项错误,

D选项正确.答案:D

4.

图5-3-18

如图5-3-18所示,静止放在水平桌面上的纸带,其上有一质量为m =0.1 kg 的铁块,它与纸带右端的距离为L =0.5 m ,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1.现用力F 水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为s =0.8 m .已知g =10 m/s 2,桌面高度为H =0.8 m ,不计纸带质量,不计铁块大小,铁块不滚动.求:

(1)铁块抛出时速度大小;(2)纸带从铁块下抽出所用时间t 1;(3)纸带抽出过程

产生的内能E .

解析:(1)水平方向:s =vt ① 竖直方向:H =12

gt 2② 由①②联立解得:v =2 m/s.

(2)设铁块的加速度为a 1,由牛顿第二定律,得μmg =ma 1③ 纸带抽出时,铁

块的速度v =a 1t 1④

③④联立解得t 1=2 s. (3)铁块的位移s 1=12

a 1t 21⑤ 设纸带的位移为s 2;由题意知,s 2-s 1=L ⑥

由功能关系可得E =μmgs 2+μmg (s 2-s 1)⑦ 由③④⑤⑥⑦联立解得E =0.3

J.

答案:(1)2 m/s (2)2 s (3)0.3 J 5.

图5-3-19

如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动

装货装置将质量m =2 kg 的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:

(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小; (2)满足设计要求的木箱质量.

解析:(1)设木箱质量为m ′,对木箱的上滑过程,由牛顿第二定律有:m ′g sin 37°+μm ′g cos 37°=m ′a

代入数据解得:a =8 m/s 2.

(2)设木箱沿轨道下滑的最大距离为L ,弹簧被压缩至最短时的弹性势能为E p ,根据能量守恒定律:货物和木箱下滑过程中有:(m ′+m )g sin 37°L =μ(m ′+m )g cos 37°L +E p 木箱上滑过程中有E p =m ′g sin 37°L +μm ′g cos 37°L

联立代入数据解得:m ′=m =2 kg. 答案:(1)8 m/s 2 (2)2 kg

图5-3-20

如图5-3-20所示,一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为( )

A.18mgR

B.14mgR

C.12mgR

D.34

mgR 解析:设铁块在圆轨道底部的速度为v ,则1.5mg -mg =m v 2R

,由能量守恒有:mgR -ΔE =12mv 2,所以ΔE =34mgR .

答案:D 2.

图5-3-21

如图5-3-21所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止

下滑,在物体下滑过程中,下列说法正确的是( )

A .物体的重力势能减少,动能增加

B .斜面的机械能不变

C .斜面对物体的作用力垂直于接触面,不对物体做功

D .物体和斜面组成的系统机械能守恒

解析:物体下滑过程中,由于物体与斜面相互间有垂直于斜面的作用力,使斜面加速运动,斜面的动能增加;物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,其合速度方向与弹力方向不垂直,且夹角大于90°,所以物体克服相互作用力做功,物体的机械能减少,但动能增加,重力势能减少,故A 项正确,B 、C 项错误.对物体与斜面组成的系统内,只有动能和重力势能之间的转化,故系统机械能守恒,D 项正确. 答案:AD 3.

图5-3-22

如图5-3-22所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),演员a 站于地面,演员b 从图示的位置由静止开始向下摆,运动过程中绳始终处于伸直状态,当演员b 摆至最低点时,演员a 刚好对地面无压力,则演员a 与演员b 质量之比为( )

A .1∶1

B .2∶1

C .3∶1

D .4∶1

解析:由机械能守恒定律求出演员b 下落至最低点时的速度大小为v . 12

mv 2=mgl (1-cos 60°),v 2=2gl (1-cos 60°)=gl .此时绳的拉力为T =mg +m v 2l

=2mg ,演员a 刚好对地压力为0.则m a g =T =2mg .故m a ∶m =2∶1. 答案:B 4.

图5-3-23

如图5-3-23所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a 和b .a 球质量为m ,静置于地面;b 球质量为3m ,用手托住,高度为h ,此时轻绳刚好拉紧.从静止开始释放b 后,a 可能达到的最大高度为

( )

A .h

B .1.5h

C .2h

D .2.5h

解析:考查机械能守恒定律.在b 球落地前,a 、b 球组成的系统机械能守恒,

且a 、b 两球速度大小相等,根据机械能守恒定律可知:3mgh -mgh =12

(m +3m )v 2,v =gh ,b 球落地时,a 球高度为h ,之后a 球向上做竖直上抛运动,在这个

过程中机械能守恒,12mv 2=mg Δh ,Δh =v 22g =h 2

,所以a 球可能达到的最大高度为1.5h ,B 项正确. 答案:B 5.

图5-3-24

如图5-3-24所示,在动摩擦因数为0.2的水平面上有一质量为3 kg 的物体被一个劲度系数为120 N/m 的压缩轻质弹簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m 才停下来,下列说法正确的是(g 取10 m/s 2)( )

A .物体开始运动时弹簧的弹性势能E p =7.8 J

B .物体的最大动能

为7.8 J

C .当弹簧恢复原长时物体的速度最大

D .当物体速度最大时弹簧的压缩量为x =0.05 m

解析:物体离开弹簧后的动能设为E k ,由功能关系可得:E k =μmgx 1=7.8 J ,

设弹簧开始的压缩量为x 0,则弹簧开始的弹性势能E p 0=μmg (x 0+x 1)=7.8 J +μmgx 0>7.8 J ,A 错误;当弹簧的弹力kx 2=μmg 时,物体的速度最大,得

x 2=0.05 m ,D 正确,C 错误;物体在x 2=0.05 m 到弹簧的压缩量x 2=0的过程

做减速运动,故最大动能一定大于7.8 J ,故B 错误. 答案:D

6.

图5-3-25

如图5-3-25所示,电梯由质量为1×103 kg 的轿厢、质量为8×102 kg 的配重、定滑轮和钢缆组成,轿厢和配重分别系在一根绕过定滑轮的钢缆两端,在与定滑轮同轴的电动机驱动下电梯正常工作,定滑轮与钢缆的质量可忽略不计,重力加速度g =10 m/s 2.在轿厢由静止开始以2 m/s 2的加速度向上运行1 s 的过程中,电动机对电梯共做功为( )

A .2.4×103 J

B .5.6×103 J

C .1.84×104 J

D .2.16×104 J

解析:电动机做功:W =(M -m )gh +12(M +m )v 2=(1 000-800)×10×1+12

(1 000+800)×22=5 600 J.

答案:B 7.

图5-3-26

来自福建省体操队的运动员黄珊汕是第一位在奥运会上获得蹦床奖牌的中国选手.蹦床是一项好看又惊险的运动,如图5-3-26所示为运动员在蹦床运动中完成某个动作的示意图,图中虚线PQ 是弹性蹦床的原始位置,A 为运动员抵达的最高点,B 为运动员刚抵达蹦床时的位置,C 为运动员抵达的最低点.不考虑空气阻力和运动员与蹦床作用时的机械能损失,A 、B 、C 三个位置运动员的速度分别是v A 、v B 、v C ,机械能分别是E A 、E B 、E C ,则它们的大小关系是( )

A .v A

B ,v B >v

C B .v A >v B ,v B E C

D .

E A >E B ,E B =E C A 机械能守恒,E A =E B ,B →A 机械能守恒,E A =E B ,B →C 弹力对人做负功,机械能减小,E B >E C .

答案:AC

8.

图5-3-27

如图5-3-27所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正确的是( )

A.小球从A出发到返回A的过程中,位移为零,合外力做功为零

B.小球从A到C过程与从C到B过程,减少的动能相等

C.小球从A到B过程与从B到A过程,损失的机械能相等

D.小球从A到C过程与从C到B过程,速度的变化量相等

解析:小球从A出发到返回A的过程中,位移为零,重力做功为零,支持力不做功,摩擦力做负功,所以A选项错误;从A到B的过程与从B到A的过程中,位移大小相等,方向相反,损失的机械能等于克服摩擦力做的功,所以C选项正确;小球从A到C过程与从C到B过程,位移相等,合外力也相等,方向与运动方向相反,所以合外力做负功,大小相等,所以减少的动能相等,因此,B 选项正确;小球从A到C过程与从C到B过程中,减少的动能相等,而动能的大小与质量成正比,与速度的平方成正比,所以D错误.答案:BC

9.

图5-3-28

在2008北京奥运会上,俄罗斯著名撑杆跳运动员伊辛巴耶娃以5.05 m的成绩第24次打破世界记录.图5-3-28为她在比赛中的几个画面,下列说法中正确的是( )

A.运动员过最高点时的速度为零 B.撑杆恢复形变时,弹性势能完全转化为动能

C.运动员要成功跃过横杆,其重心必须高于横杆 D.运动员在上升过程中对杆先做正功后做负功

解析:撑杆跳运动员过最高点时竖直速度为零,水平速度不为零,选项A错误;

当运动员到达最高点杆恢复形变时,弹性势能转化为运动员的重力势能和动能,选项B错误;运动员可以背跃式跃过横杆,其重心可能低于横杆,选项C错误;

运动员在上升过程中对杆先做正功转化为杆的弹性势能后做负功,杆的弹性势

能转化为运动员的重力势能和动能,选项D 正确. 答案:D 10.

图5-3-29

如图5-3-29所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v 0,若v 0大小不同,则小球

能够上升到的最大高度(距离底部)也不同.下列说法中正确的是( )

A .如果v 0=gR ,则小球能够上升的最大高度为R 2

B .如果v 0=2gR ,则小球能够上升的最大高度为R 2

C .如果v 0=3gR ,则小球能够上升的最大高度为3R 2

D .如果v 0=5gR ,则小球能够上升的最大高度为2R

解析:根据机械能守恒定律,当速度为v 0=gR ,由mgh =12mv 20解出h =R 2

,A 项正确,B 项错误;当v 0=5gR ,小球正好运动到最高点,D 项正确;当v 0=3gR

时小球运动到最高点以下,若C 项成立,说明小球此时向心力为0,这是不可能的. 答案:AD

11.

图5-3-30

如图5-3-30所示,AB 为半径R =0.8 m 的1/4光滑圆弧轨道,下端B 恰与小车右端平滑对接.小车质量M =3 kg ,车长L =2.06 m ,车上表面距地面的高度h =0.2 m .现有一质量m =1 kg 的滑块,由轨道顶端无初速释放,滑到B 端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s 时,车被地面装置锁定.(g =10 m/s 2)试求:

(1)滑块到达B 端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道B 端的距离;

(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;

(4)滑块落地点离车左端的水平距离.

解析:(1)设滑块到达B 端时速度为v ,由动能定理,得mgR =12

mv 2 ,由牛顿第二定律,得F N -mg =m v 2R

联立两式,代入数值得轨道对滑块的支持力:F N =3mg =30 N.

(2)当滑块滑上小车后,由牛顿第二定律,得:对滑块有:-μmg =ma 1, 对小车有:μmg =Ma 2

设经时间t 两者达到共同速度,则有:v +a 1t =a 2t, 解得t =1 s .由于1 s

<1.5 s ,此时小车还未被锁定,两者的共同速度:v ′=a 2t =1 m/s

因此,车被锁定时,车右端距轨道B 端的距离:x =12

a 2t 2+v ′t ′=1 m. (3)从车开始运动到被锁定的过程中,滑块相对小车滑动的距离Δx =v +v ′2

t -12

a 2t 2=2 m 所以产生的内能:E =μmg Δx =6 J.

(4)对滑块由动能定理,得-μmg (L -Δx )=12mv ″2-12

mv ′2, 滑块脱离小车后,在竖直方向有:h =12

gt ″2 所以,滑块落地点离车左端的水平距离:x ′=v ″t ″=0.16 m.

答案:(1)30 N (2)1 m (3)6 J (4)0.16 m

2.如图7-7-11所示,质量为2m 和m 可看做质点的小球A 、B ,用不计质量的不可伸长的细线相连,跨在固定的半径为R 的光滑圆柱两侧,开始时A 球和B 球与圆柱轴心等高,然后释放A 、B 两球,则B 球到达最高点时的速率是多少?

图7-7-11

2.解:此题用运动学很难解答,但选取A 、B 球及细线为研究系统,重力以外的力不做功,故用机械能守恒定律求解.

选取轴心所在水平线为势能零点,则刚开始时系统机械能为零,即 E 1=0. 当B 球到达最高点时,系统机械能为 E 2=mgR +2

1mv 2-

2mg 2142+R π (2m )v 2 由于E 1=E 2 即0=mgR +21mv 2-2mg 2142+R π(2m )v 2 解得 v =)1(32-πgR

高中物理必修二机械能守恒经典试题

1.下面说法中正确的是() A.地面上的物体重力势能一定为零 B.质量大的物体重力势能一定大 C.不同的物体中离地面最高的物体其重力势能最大 D.离地面有一定高度的物体其重力势能可能为零 2.下列关于功率的说法,错误的是( ) A.功率是反映做功快慢的物理量 B.据公式P=W/t,求出的是力F在t时间内做功的平均功率 C.据公式P=Fv可知,汽车的运动速率增大,牵引力一定减小 D.据公P=Fv cosα,若知道运动物体在某一时刻的速度大小,该时刻作用力F的大小以及二者之间的夹角.便可求出该时间内力F做功的功率 3、由一重2 N的石块静止在水平面上,一个小孩用10 N的水平力踢石块,使石块滑行了1 m的距离,则小孩对石块做的功 A、等于12 J B、等于10 J C、等于2 J D、因条件不足,无法确定 4、一起重机吊着物体以加速度a(a < g)竖直加速下落一段距离的过程中,下列说法正确的是 A、重力对物体做的功等于物体重力势能的增加量 B、物体重力势能的减少量等于物体动能的增加量 C、重力做的功大于物体克服缆绳的拉力所做的功 D、物体重力势能的减少量大于物体动能的增加量 5、某汽车的额定功率为P,在很长的水平直路上从静止开始行驶,下列结论正确的是 A、汽车在很长时间内都可以维持足够的加速度做匀加速直线运动 B、汽车可以保持一段时间内做匀加速直线运动 C、汽车在任何一段时间内都不可能做匀加速直线运动 D、若汽车开始做匀加速直线运动,则汽车刚达到额定功率P时,速度亦达最大值 6、.如图所示,木块A放在木块B的左上端,两木块间的动摩擦因数为μ。用水平恒力F将木块A拉至B的右端,第一次将B固定在地面上,F做的功为W1;第二次让B可以在光滑地面上自由滑动,F做的功为W2,比较两次做功,判断正确的是() A.W1<W2B.W1=W2 C.W1>W2 D.无法比较 7、跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的() A.空气阻力做正功B.重力势能增加 C.动能增加 D.空气阻力做负功 8、一个人站在阳台上,以相同的速率v分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速度() A.上抛球最大B.下抛球最大C.平抛球最大D.三球一样大 9、质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到低

高一物理机械能守恒定律教案

高一物理机械能守恒定 律教案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

机械能守恒定律 ★新课标要求 (一)知识与技能 1、知道什么是机械能,知道物体的动能和势能可以相互转化; 2、会正确推导物体在光滑曲面上运动过程中的机械能守恒,理解机械能守恒定律的内容,知道它的含义和适用条件; 3、在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。 (二)过程与方法 1、学会在具体的问题中判定物体的机械能是否守恒; 2、初步学会从能量转化和守恒的观点来解释物理现象,分析问题。 (三)情感、态度与价值观 通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题。 ★教学重点 1、掌握机械能守恒定律的推导、建立过程,理解机械能守恒定律的内容; 2、在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式。 ★教学难点 1、从能的转化和功能关系出发理解机械能守恒的条件; 2、能正确判断研究对象在所经历的过程中机械能是否守恒,能正确分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能。 ★教学方法 演绎推导法、分析归纳法、交流讨论法。 ★教学工具 投影仪、细线、小球、带标尺的铁架台、弹簧振子。 ★教学过程 (一)引入新课 教师活动:我们已学习了重力势能、弹性势能、动能。这些不同形式的能 是可以相互转化的,那么在相互转化的过程中,他们的总量是 否发生变化这节课我们就来探究这方面的问题。 (二)进行新课 1、动能与势能的相互转化 教师活动:演示实验1:如右图,用 细线、小球、带有标尺的 铁架台等做实验。 把一个小球用细线悬挂起来,把小球拉到一定高度 的A 点,然后放开,小球在摆动过程中,重力势能和动能相互 转化。我们看到,小球可以摆到跟A 点等高的C 点,如图甲。 如果用尺子在某一点挡住细线,小球虽然不能摆到C 点,但摆 到另一侧时,也能达到跟A 点相同的高度,如图乙。 A 甲 乙

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理解题方法例话:2转换法

2、转换法 故事链接 :佛律基亚(Phrygia)的国王戈耳迪,用乱结把轭系在他原来使用过的马车的辕上,其结牢固难解,神谕凡能解开此结者,便是亚洲之君主。好几个世纪过去了,没有人能解开这个结。公元前3世纪时,古希腊罗马的马其顿国王亚历山大大帝(Alexander the Great,公元前356-323),在成为希腊各城邦的霸主后,大举远征东方。公元前334年,他率领进入小亚细亚,经过佛律基亚时,造访了这座神殿, 看到这辆马车。有人把往年的神谕告诉他,他也无法解开这个结。为了鼓舞士气,亚历山大拔出利剑一挥,斩断了这个复杂的乱结,并说:"我就是这样解开的"。 后来,亚历山大以其雄才大略,东征西讨,先是确立了在全希腊的统治地位,后又灭亡了波斯帝国,他果然建立起了一个西起古希腊、马其顿,东到印度恒河流域,南临尼罗河第一瀑布,北至药杀水的横跨欧、亚两大洲国家,创下了前无古人的辉煌业绩。 这个故事中亚历山大用剑“解”开绳结的方法用的就是转换法。在研究物理问题时,如果用常规的思路无法达到目的,我们可以换一个角度去考虑问题,这种方法称为转换法。如求变力做功很困难,可以通过求能量的变化来间接求功。研究曲线运动时通常研究它的分运动,这些都是转换法,常用的转换法有:研究对象的转换,研究变量的转换,参考系的转换。下面分别举例说明。 (1) 研究对象的转换 [例题1]如图所示,在加速向左运动的车厢中,一人用力向前推 车厢(人与车厢始终保持相对静止),则下列说法正确的是( ) A 、 人对车厢做正功 B 、人对车厢做负功 C 、 人对车厢不做功 D 、无法确定人对车厢 是否做功 解析:本题中虽然问人对车做功情况,但我们可转变一下研究对象,将人当作研究对象,由于车匀加速向左运动,人和车是一个整体,所以人的加速度方向也向左,所以车对人的合力也向左,根据牛顿第三定律可得,人对车的合力方向向右,运动位移向左,则人对车厢做负功,选项B 正确。 [例题2]如图所示,物体a 、b 和c 叠放在水平桌面上,水平为F b =5N 、F c =10N 分别作 用于物体b 、c 上,a 、b 和c 仍保持静止。以1f 、2f 、 3f 分别表 示a 与b 、b 与c 、c 与桌面间的静摩擦力的大小,则( ) A N f f N f 5,0,5321=== B 0,5,5321===f N f N f C N f N f f 5,5,0321=== D N f N f f 5,10,0321=== 解析:判定a 、b 之间的静摩擦力的大小时取a 为研究对象,所以f 1=0;判定b 、c 之间的静摩擦力的大小时取ab 整体为研究对象,根据平衡条件可得f 2=f b =5N ,判定c 与地之间的静摩擦力的大小时取a 、b 、c 三者整体为研究对象,根据平衡条件可得f 3=f C -f b =5N 。

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题 (1)只有重力做功时机械能守恒. 设一个质量为m 的物体自然下落,经过高度为1h 的A 点(初位置)时速度为1v ,下落到高度为2h 的B 点(末位置)时速度为2v (图8-42),由动能定理得:21222 121mv mv W G -=. 又由重力做功与重力势能的关系得:21mgh mgh W G -= 则2121222121mgh mgh mv mv -=-或2221212 121mgh mv mgh mv +=+ 这表明,在自由落体中,物体的动能与重力势能之和保持不变,则机械能守恒. 事实上,上面推导过程中涉及重力做功与动能变化、势能变化的关系,与物体的运动轨迹形状无关,因而物体只受重力作曲线运动(如平抛运动、斜抛运动等)时,机械能也一定守恒. (2)只有弹力作用时机械能守恒. 如图8-43所示,一个质量为m 的小球被处于压缩状态的弹簧弹开,速度由1v 增大到2v ,由动能定理得:

1221222 121k k N E E mv mv W -=-= 由弹力做功与弹性势能的关系得:21p p N E E W -= 则2112p p k k E E E E -=-即2211p k p k E E E E +=+,物体的动能与弹性势能之和保持不变,机械能守恒. (3)既有重力做功,又有弹力做功,并且只有这两个力做功时,机械能也守恒. 如图8—44所示,一根轻弹簧一端固定在天花板上,另一端固定一质量为m 的小球,小球在竖直平面内从高处荡下,在速度由1v 增大到2v 的过程中,由动能定理得 21222 121mv mv W W N G -=+ 又由重力做功与重力势能的关系得21p p G E E W -= 由弹力做功与弹性势能的关系得''21p p N E E W -= 则212221212 121mv mv 'E 'E E E p p p p -=-+- 即222221112 1'21'mv E E mv E E p p p p ++=++,物体的动能、重力势能和弹性势能之和保持不变,机械能守恒.

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

高中物理解题方法例话:2判别式法

2判别式法 .对于一元二次方程02 =++c bx ax , 方程有解时,042≥-=?ac b ;方程无解时,042<-=?ac b [例题1]在一平直较窄的公路上,一辆汽车以22m/s 的速度匀速行驶,正前方有一辆自行车以4m/s 的速度向匀速行驶,汽车刹车的最大加速度为2/6s m ,若两车不相撞,则两车的间距至少为多少? 解析:要使两车不相撞,设它们间距为S ,则地者在任一时间内位移关系应满足 S S S +≠自汽即S vt at t v +≠-202 1代入数值得 01832≠+-S t t 所以关于t 的一元二次方程无实数解,所以当042<-=?ac b 时上式成立,即0341842 2,所以最小间距为27m 是 车不与自行车相撞的条件 [例题2]如图所示,侧面开有小孔s 的量简中注满水,高为h 的量简放图在高为H 的平台上,问小孔s 应开在何处,从孔中喷出的水为最远? 解析:设小孔s 的位置离地面的高度为y ,水的水 平射程为x ,并设某一时刻质量为m 的水由小孔喷 出,做初速度为0V 的平抛运动,经时间l 落地,由 运动学公式可得 t v x 0= ① 22 1gt y = ② 喷出的水的动能可相当于它从水面处下落)(y H h -+的高度量力所做的功。 根据机械能守值定律有 202 1)(mv y H h mg = -+ ③ 联立①②③式得 022)(44=++-x y H h y 这是一个关于y 的一元二次方程,由于y 必须是正实数,所以△≥0,即 044)](4[22≥?-+-x H h , 又因x>0,所以x ≤h+H ,故最大水平射程H h x +=max ,此时方程的解为

(完整版)高中物理机械能守恒经典习题30道带答案

一.选择题(共30小题) 1.(2015?金山区一模)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1 2.(2008?山东)质量为1500kg的汽车在平直的公路上运动,v﹣t图象如图所示,由此可求() A.前25s内汽车的平均速度 B.前10s内汽车的加速度 C.前10s内汽车所受的阻力 D.15﹣25s内合外力对汽车所做的功 3.(2007?上海)物体沿直线运动的v﹣t图如图所示,已知在第1秒内合外力对物体做的功为W,则下列结论正确的是() A.从第1秒末到第3秒末合外力做功为W B.从第3秒末到第5秒末合外力做功为﹣2W C.从第5秒末到第7秒末合外力做功为W D.从第3秒末到第4秒末合外力做功为﹣0.75W 4.(2015?武清区校级学业考试)如图所示,物体在力F的作用下沿水平面移动了一段位移L,甲、乙、丙、丁四种情况下,力F和位移L的大小以及θ角均相同,则力F做功相同的是() A.甲图与乙图B.乙图与丙图C.丙图与丁图D.乙图与丁图5.(2015?赫山区校级一模)如图所示,A、B两物体质量分别是m A和m B,用劲度系数为k的弹簧相连,A、B 处于静止状态.现对A施竖直向上的力F提起A,使B对地面恰无压力.当撤去F,A由静止向下运动至最大速度时,重力做功为()

高一物理-机械能守恒(讲解及练习)

机械能守恒 模块一机械能守恒定律 知识导航 1.机械能的定义 力做功的过程,也是能量从一种形式转化为另一种形式的过程。我们把物体 的动能,重力势能和弹性势能统称为机械能,用E 表示,单位是J 重力做功 或弹簧弹力做功可以使机械能从一种形式转化为另一种形式。 2.机械能守恒定律 在只有重力或弹簧弹力做功的物体系统内,动能和势能可以互相转化,而系统的机械能保持不变这叫做机械能守恒定律。 由于势能是一个系统内物体所共有的能量,所以机械能守恒定律适用的是一个物体系统而不是单个物体。 对机械能守恒定律同学们可以从两个不同角度理解 (1)初态的机械能等于末态的机械能(需要选择零势能参考平面) (2)系统内动能的减小量等于势能的增加量(或者势能的减小量等于动能的增加量) 3.机械能守恒的条件除了重力、弹力以外没有其他 力除了重力、弹力以外还受其他力,但其他力不 做功 除了重力、弹力以外还受其他力,且其他力也做功,但做功的代数和为零 实战演练 【例1】下列关于机械能是否守恒的说法中正确的是() A.做匀速直线运动的物体的机械能一定守恒B.做匀加 速直线运动的物体的机械能不可能守恒C.运动物体只要 不受摩擦阻力的作用,其机械能一定守恒D.物体只发生 动能和势能的相互转化,其机械能一定守恒

【例2】下列运动中满足机械能守恒的是()A.手 榴弹从手中抛出后的运动(不计空气阻力) B.子弹射穿木块 C.细绳一端固定,另一端拴着一个小球,使小球在光滑水平面上做匀速圆周运动 D.吊车将货物匀速吊起 E.物体沿光滑圆弧面从下向上滑动F.降落伞在 空中匀速下降 【例3】如图所示,下列关于机械能是否守恒的判断正确的是() A.甲图中,物体A 将弹簧压缩的过程中,A 机械能守恒B.乙图中,在大小等 于摩擦力的拉力下沿斜面下滑时,物体B 机械能守恒C.丙图中,不计任何阻力 时,A 加速下落,B 加速上升过程中,A、B 机械能守恒D.丁图中,小球沿水平 面做匀速圆锥摆运动时,小球的机械能守恒 【例4】如图所示,一轻弹簧的一端固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速度释放,让它自由下摆,不计空气阻力,则在重物由A 点摆向最低点B 的过程中() A.弹簧与重物的总机械能守恒B.弹簧的 弹性势能增加C.重物的机械能定恒 D.重物的机械能增加

高中物理-常考题型与解题方法全汇总

高中物理-常考题型与解题方法全汇总 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都

(完整版)高中物理机械能守恒定律典例解题技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动 的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等 θsin 2120?==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动? 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力 分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等 221)cos 1(t mv mgL =-θ 得:)cos 1(22θ-=gL v t 由向心力的公式知:L mv mg T t 2=-可

高中物理解题方法

高中物理解题方法专题指导 方法专题一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中, 根据得出的一组数据作出U-I图像,如图所示, 由图像得出电池的电动势E=______ V,内电阻 r=_______ Ω. 3.挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?

高中物理解题方法例话:2逆向思维法

2逆向思维法 故事链接:传统的破冰船,都是依靠自身的重量来压碎冰块的,因此它的头部都采用高硬度材料制成,而且设计得十分笨重,转向非常不便,所以这种破冰船非常害怕侧向漂来的流水。前苏联的科学家运用逆向思维法,变向下压冰为向上推冰,即让破冰船潜入水下,依靠浮力从冰下向上破冰。新的破冰船设计得非常灵巧,不仅节约了许多原材料,而且不需要很大的动力,自身的安全性也大为提高。遇到较坚厚的冰层,破冰船就像海豚那样上下起伏前进,破冰效果非常好。这种破冰船被誉为“本世纪最有前途的破冰船”。 以前的发电机共同的构造是各有一个定子和一个转子,定子不动,转子转 动。1994年,我国著名的物理学家苏卫星突发奇想,利用逆向思维法,让定子也“旋转起来”。他经过多次的实验,发明了“两向旋转发电机”定子也转动,发电效率比普通发电机提高了四倍。同年8月获中国高新科技杯金奖,并受到联合国TIPS 组织的关注。1996年,丹麦某大公司曾想以300万元人民币买断其专利,可见其发明价值之巨大。说到“两向旋转发电机”的发明,也应归功于逆向思维。 逆向思维法就是打破原来的顺序或向问题的反方向去思考的一种思维方式。常用的逆向思维法有过程逆向思维法和状态逆向思维法。下面分别举例说明。 (1) 过程逆向思维法 [例题1]有一个斜面和竖直放置的半径为2.5m 的半圆形环 组成的光滑轨道如图所示,要想在水平地面上抛出一小球, 使它在半环的的最高点A 平滑地(无碰撞)进入环形轨道下 落到D 点,再沿斜面上升到离地面为10m 高的B 点,求小球 在距D 多远的地方以多大的速度与地面成多大的角度抛出才 能到达B 点? 解析:由于轨道光滑,不计空气阻力,所以小球从C 到A 到D 到B 运动与B 到D 到A 到C 的运动是可逆的,所以我们可采用逆向思维法,将小球从B 点静止释放求到C 点的速度大小方向以及位置。设小球在A 点时的速度为A v ,以地面为零势面,根据机械能守恒定律 B 到A 的过程R mg mv mgh A 22 12+= 解得s m gR gh v A /1042=-= B 到C 的过程221c mv mgh =解得s m gh v C /2102== A 到作平抛运动 竖直速度s m v v v A C y /102 2=-= 设速度与水平方向夹角为α则1tan ==A y v v α所以α为45度, 下落的时间g R t 4=水平位移m g R v t v x A A 204===

高中物理必修二机械能守恒经典试题

1.下面说法中正确的是 ( ) A .地面上的物体重力势能一定为零 B .质量大的物体重力势能一定大 C .不同的物体中离地面最高的物体其重力势能最大 D .离地面有一定高度的物体其重力势能可能为零 2.下列关于功率的说法,错误的是 ( ) A .功率是反映做功快慢的物理量 B .据公式P =W /t ,求出的是力F 在t 时间内做功的平均功率 C .据公式P =Fv 可知,汽车的运动速率增大,牵引力一定减小 D .据公P =Fv cos α,若知道运动物体在某一时刻的速度大小,该时刻作用力F 的大小以及二者之间的夹角.便可求出该时间内力F 做功的功率 3、由一重2 N 的石块静止在水平面上,一个小孩用10 N 的水平力踢石块,使石块滑行了1 m 的距离,则小孩对石块做的功 A 、等于12 J B 、等于10 J C 、等于2 J D 、因条件不足,无法确定 4、一起重机吊着物体以加速度a (a < g )竖直加速下落一段距离的过程中,下列说法正确的是 A 、重力对物体做的功等于物体重力势能的增加量 B 、物体重力势能的减少量等于物体动能的增加量 C 、重力做的功大于物体克服缆绳的拉力所做的功 D 、物体重力势能的减少量大于物体动能的增加量 5、某汽车的额定功率为P ,在很长的水平直路上从静止开始行驶,下列结论正确的是 A 、汽车在很长时间内都可以维持足够的加速度做匀加速直线运动 B 、汽车可以保持一段时间内做匀加速直线运动 C 、汽车在任何一段时间内都不可能做匀加速直线运动 D 、若汽车开始做匀加速直线运动,则汽车刚达到额定功率P 时,速度亦达最大值 6、.如图所示,木块A 放在木块B 的左上端,两木块间的动摩擦因数为μ。用水平恒力F 将木块A 拉至B 的右端,第一次将B 固定在地面上,F 做的功为W 1;第二次让B 可以在光滑地面上自由滑动,F 做的功为W 2,比较两次做功,判断正确的是( ) A .W 1<W 2 B .W 1=W 2 C .W 1>W 2 D .无法比较 7、跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的( ) A .空气阻力做正功 B .重力势能增加 C .动能增加 D .空气阻力做负功 8、一个人站在阳台上,以相同的速率v 分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速度( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9、质量为m 的滑块沿着高为h ,长为L 的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到低端的工程中 A 、重力对滑块所做的功等于mgh B 、滑块克服阻力所做的功等于mgh C 、合外力对滑块所做的功等于mgh D 、合外力对滑块所做的功为零 10、一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置缓慢地移到Q 点,如图所示,则此过程中力F 所做的功为( ) A .m g l cos θ B .Fl sin θ C .θ?Fl D .).cos 1(θ-mgl

高一物理机械能守恒定律练习题及答案分析

机械能守恒定律计算题(基础练习) 班别:姓名: 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. F mg 图5-2-5

h 1 h 2 图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀 门关闭时两桶液面的高度分别为h 1和h 2,现将 连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

最新高中物理解题方法+高考物理知识点总结优秀名师资料

高中物理解题方法高考物理知识点总结物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪,哪个关键之处不懂,这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论(讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法

1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件?F,0,?M,0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ? 力的合成和分解规律的运用。 ? 共点力的平衡及变化。 ? 固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 ,对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度为零,则称为平衡,欲使质点平衡须有?F,0。若将各力正交分解则 有:?F,0,?F,0 。 XY ,对于刚体而言,平衡意味着,没有平动加速度即,0,也没有转动加速度即,,0(静止或匀逮转动),此时应有:?F,0,?M,0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据?F,0可以引伸得出以下结论: be carried out in time rust and antirust paint twice. While skeleton construction curtain wall fireproof, antisepsis, mine should be simultaneously, all skeletons complete after the required time and

高中物理解题方法大全

高中物理解题方法大全 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑F X=0,∑F Y=0 。 对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。

高中物理机械能守恒经典习题30道带答案

高中物理机械能守恒经典习题30道带答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一.选择题(共30小题) 1.(2015?金山区一模)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1 2.(2008?山东)质量为1500kg的汽车在平直的公路上运动,v﹣t图象如图所示,由此可求() A.前25s内汽车的平均速度 B.前10s内汽车的加速度 C.前10s内汽车所受的阻力 D.15﹣25s内合外力对汽车所做的功 3.(2007?上海)物体沿直线运动的v﹣t图如图所示,已知在第1秒内合外力对物体做的功为W,则下列结论正确的是() A.从第1秒末到第3秒末合外力做功为W B.从第3秒末到第5秒末合外力做功为﹣2W C.从第5秒末到第7秒末合外力做功为W D.从第3秒末到第4秒末合外力做功为﹣0.75W 4.(2015?武清区校级学业考试)如图所示,物体在力F的作用下沿水平面移动了一段位移L,甲、乙、丙、丁四种情况下,力F和位移L的大小以及θ角均相同,则力F做功相同的是() A.甲图与乙图B.乙图与丙图C.丙图与丁图D.乙图与丁图5.(2015?赫山区校级一模)如图所示,A、B两物体质量分别是m A和m B,用劲度系数为k的弹簧相连,A、B处于静止状态.现对A施竖直向上的力F提起A,使B对地面恰无压力.当撤去F,A由静止向下运动至最大速度时,重力做功为() A.B. C.D.

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

相关文档
相关文档 最新文档