文档库 最新最全的文档下载
当前位置:文档库 › 翻边成形与处理对策

翻边成形与处理对策

翻边成形与处理对策
翻边成形与处理对策

翻边成形与处理对策

翻边按变形性质分为伸长类翻边和压缩类翻边,进一步可细分为伸长类平面翻边与伸长类曲面翻边、压缩类平面翻边与压缩类曲面翻边。翻边过程中,存在着回弹、翻边面起皱、开裂、料厚变薄以及翻边后的制件变形与扭曲等问题。为满足焊接和装配的要求,在分析这些缺陷之前,必须进行翻边的变形特点分析,然后进行实际问题的处理。

翻边形式及特点分析

1.各种翻边形式

各种翻边形式如图1所示。

(1)伸长类翻边在翻边的变形区内,毛坯受到两向拉应力(切向和径向)的作用,其中切向拉应力是最大主应力,径向拉应力是中间主应力,其值远小于切向拉应力。在翻边变形区域内的边缘毛坯处于单向受拉的应力状态,只有切应力的作用。当伸长类翻边有直翻边时,在直翻边和圆弧翻边的交接区域将产生剪切变形。变形主要发生在圆弧部分,此区域容易发生制件料厚减薄和开裂现象。

(2)压缩类翻边在毛坯变形区域内,除靠近竖边根部圆角半径附近的材料产生弯曲变形外,其余主要部分都处于切向压应力和径向拉应力的作用,产生切向压缩变形和径向伸长变形,其中切向压应力和压缩变形起主要作用。变形主要发生在圆弧部分,这里容易发生失稳起皱。

2.翻边性质分析

在翻边顶面R上,材料处于弯曲变形状态(内侧材料受压,外侧材料受拉)

在平面上进行曲线翻边时,外缘的外凸形轮廓翻边为压缩类翻边,翻边部位的材料向邻区流动得越多,翻边质量越好。这种情况下,可使翻边部位的凹模镶块所组成的端面为凸形轮廓,翻边成形时,凹模镶块端面凸形形状的中间部位先与毛坯接触,使翻边部位从中间向两边顺序翻边,毛坯受到的切向压应力减小,不容易产生波纹、起皱以及积瘤等不良现象。

在平面上进行曲线翻边时,内孔的外凸形轮廓翻边为伸长类翻边,邻区的材料向翻边部位流动得越多,翻边质量越好。这种情况下,可使翻边部位的凹模镶块所组成的端面为凹形轮廓,翻边成形时,凹模镶块端面的凹形形状两边部位先与毛坯接触,使翻边部位从两边向中间顺序翻边,毛坯受到的切向拉应力减小,减小壁厚变薄、避免破裂等不良现象。

在曲面上翻边时,向曲面的曲率中心方向翻边是压缩类翻边,翻边部位的材料向邻区流动得越多,翻边质量越好。可使凹模镶块端面为凸形形状,翻边成形时,凸形形状的中间部位先与毛坯接触,可使翻边部位从中间向两边顺序翻边,毛坯受到的切向压应力减小。

在曲面上翻边时,向曲面的曲率中心的反方向翻边是伸长类翻边,邻区的材料向翻边部位流动得越多,翻边质量越好。这种情况下,可使翻边部位的凹模镶块所组成的端面为凹形轮廓,翻边成形时,凹模镶块端面的凹形形状两边部位先与毛坯接触,使翻边部位从两边向中间顺序翻边,毛坯受到的切向拉应力减小。

实际问题分析

在实际的覆盖件冲压过程中,不仅是某一类翻边形式或单纯的直翻边,而是具有多曲面、复杂轮廓的复合翻边或翻边成形(见图2)。在翻边过程中,压料器将制件压紧在凸模上,凹模镶块的端面与凸模顶面(通常为翻边前制件面)的初始接触确定了翻边过程中的基本材料流动状态,在具有成形性质的翻边过程中,侧壁面的性质和凸模R的状态是最终材料应力状态的关键因素。在具有凸缘面的翻边中,凸缘面与顶面(翻边前制件面)的关系尤其重要,必须结合各种类型的翻边确定伸长类和压缩类翻边的范围,确认多料和缺料的区域,分析一次成形的可能性和必要的预成形形状。

图3所示为表现了翻边过程中的几种状态,在开始翻边时,处于凸凹模R之间的材料是受到限制或控制的,当翻边凹模R完全进入翻边凸模R时,翻边凸凹模之间的材料是受到限制或控制的(伸长类翻边,翻边面处材料减薄通常未能贴住翻边凸模;压缩类翻边,内壁材料不流动但由于翻边凹模的挤压而紧贴翻边凸模);当制件翻边面未完全贴在凸模上或凸凹模之间时,由于材料的连续性和刚性,这些自由的材料将会充分体现伸长、压缩、变形出现材料变薄、材料波纹起皱等现象,当这些变形未能得到改善时,将会积累到最终状态。

翻边回弹可以通过角度补偿或面差补偿和在翻边R上增加畸形点得以改善;翻边面的平整度通过调整翻边间隙得以改善。对于刚性较差的部位或者具有较高屈服极限的制件,在翻边结束后,制件变形翘曲或扭曲是翻边回弹导致的结果,改善变形区的应力状态(不带凸缘翻边时调整翻边顺序、带凸缘时考虑二次翻边成形)是解决问题的根本方法,另外就是在制件上增加台阶(横向台阶和纵向台阶),将变形区分段化,减小同种变形的扩大延伸。值得注意的是,外板件翻边与刚性较差的部位,相对最小的相邻轮廓R或顶面R通常是回弹表现的起始区域,通过调整翻边顺序(翻入量)可以改善变形区的应力状态。

在凸缘和侧壁具有较复杂形状的情况下,增加如图4所示的形状将有利于改善变形趋势和走料趋势,但缺点是需增加一工步进行切断或调整修翻的顺序。

在外板件的翻边工序中,引入过翻(即翻边R轮廓小于翻边前的R轮廓)将会改善翻边制件顶面的质量和翻边棱线的光顺。另外,对于有较大变形量的翻边或翻边间隙较小的垂直翻边,必须有足够的压料力或者带压料翻边。

在翻边工序内容中,通常还有纯弯曲式翻边,它的变形区在翻边R上,它的翻边直壁面与其它形式的变形区之间将会产生剪切变形,这在更多的情况下通过改变翻边顺序而可以借料或套料的区域。

结语

对于有焊接和装配要求的翻边面,必须要提高翻边质量,通过对现场情况的了解和制件变形情况的掌握,努力找到解决问题的方法,进一步提高对冲压和结构设计的指导性,减少结构设计和调试的反复。

激光快速成型技术中STL文件的数据处理_崔洪斌

激光快速成型技术中STL文件的数据处理3① 崔洪斌 王宏伟 河北科技大学机械工程系,河北石家庄 050054 摘要:针对SL S快速成型中要对STL文件数据进行处理,使之转化为能被成型系统使用的数据,介绍了将STL文件中的数据转化为成型系统可使用数据的简便而又有效的算法,其中包括分层处理、激光扫描点确定等。 关键词:快速成型;数据处理;STL文件 中图分类号:TP274 文献标识码:A 文章编号:1001-2265(2004)02-0056-03 Data treatment of ST L format f ile in rapid prototype manufacturing technology CU I Hongbin WAN G Hongwei Abstract:The data in STL file needs to be changed for SL S rapid prototyping,so the rapid prototyping system can use the data. The paper presents an easy and effective arithmetic to change the data format in STL file into that which can be used by rapid pro2 totyping system,which include laying,scanning point determination etc. K ey w ords:Rapid prototyping;data treatment;STL format file 1 引言 快速成型(Rapid Prototyping,简称RP)是20世纪80年代末发展起来的应用于制造业的高新技术。该技术能够将由计算机创建的实体模型快速转换为实物,且整个加工过程不需要任何模具。RP技术是集CAD/CAM技术、激光技术、数控技术、材料科学等为一体的先进制造技术。它突破了传统的加工模式,大大缩短了样件试制周期,提高了制造业对市场的反应能力。 目前已有多种快速成型方法,其中包括以光敏树脂为加工材料的立体光刻成型法(Stereo Lithography Apparatus,简称SLA)、以箔材为加工材料的分层实体制造法(Laminated Object Manufacturing,简称LOM)、以粉末材料为加工材料的选择性激光烧结法(Selective Laser Sintering,简称SL S)等。用激光快速成型设备加工零件时,首先,应通过CAD软件创建零件的实体模型,并将其转换成STL格式;然后,利用分层技术将实体模型分层,即得到实体模型的各截面信息。完成上述数据处理后,就可以用快速成型设备加工零件。以SL S技术为例,具体加工过程为:先通过铺料辊向工作台铺一薄层粉末材料,利用激光对该层材料选择性烧结,即将属于零件截面上的材料加热到熔点以上,使其“烧结”。被烧结的材料固化在一起,构成零件的对应截面。而后,工作台下移一定距离,铺料辊再往工作台上铺撒一层材料,并通过激光对该层选择性烧结,从而不仅得到当前截面层,而且该层与前一层紧密粘结在一起。依次重复上述过程,层层叠加,就可以加工出整个零件。RP技术中,对表示实体模型的STL文件进行分层等数据处理是其重要研究内容之一。 2 STL文件格式 STL文件用一系列三角形面表示实体,且每一个三角形面由表示面方向的一个单位法向量和说明三角形面三个顶点位置的顶点坐标表示。STL文件有二进制和ASCII两种格式,以下是ASCII格式STL文件中某一面的表示方式: facet normal0.0000000e+0000.0000000e+0001.0000000e+000  outer loop vertex1.0000000e+0020.0000000e+0001.0000000e+ 002 vertex1.0000000e+0021.0000000e+0021.0000000e+ 002 vertex0.0000000e+0001.0000000e+0021.0000000e+ 002  endloop endfacet 其中第一行表示三角形面的法向量,第3~5行分别表示三角形面上三个顶点的坐标。可以看出,每一个三角形面由12个数据表示,即表示法向量的三个坐标分量,以及各顶点的坐标值(每个顶点有x、y、z三个坐标值)。STL文件由许多这样的数据组成。对STL文件进行数据处理,就是对这些表示三角形面的一系列数据进行处理。 3 数据处理 对STL文件进行数据处理包括读取STL文件中的数据、求三角形边与分层截面的交点、对交点排序以形成截面轮廓等过程。 3.1 读取STL文件 根据文件中的数据排列规则,利用Visual C++文件类中的打开fopen()、关闭fclose()、文件随机读写fseek()等函数可以读取相关数据,以供程序使用。另外,读取STL文件时,只需要读取STL文件中表示向量和三角形顶点的相应数据,不需要读文件中的其它信息。 3.2 求三角形与截面的交点 从STL文件中读入的三角形数据并不能直接由系统利用。根据成型系统的工作特点,应按照给定的层厚,用不同高度的截面去切割模型,即将模型分层,以找到各层的轮廓点,从而得到各截面的相关信息。设某一截面的高为h,求该截面与实体模型交点的步骤如下: ①基金项目:河北省教育厅资助项目(编号:2002262)

钣金工艺标准

1. 适用范围 本标准规定了钣金主要下料和成型工艺规程,适用于本公司圆桶、挡板、端盖、消音板、隔板等钣金的工艺,成型工艺又可以分为冲压和折弯等工艺。 2. 引用标准 [1]陈万里主编.《钣金工下料的基础知识》中国建筑工业出版社,1990. [2]王爱珍主编.《钣金技术手册》科学技术出版社,2006. [3]梅启钟,陈华杰主编.《简明冷作手册》上海科学技术出版社,1988. 3. 钣金材料 ①.冷轧板.简称SPCC,用于表面处理是电镀五彩锌或烤漆件使用. ②.镀锌板.简称SECC,用于表面处理是烤漆件使用.在无特别要求下,一般选用SPCC,可减少成本. ③.铜板.一般用于镀镍或镀铬件使用,有时不作处理.根据客户要求而定. ④.铝板. AL3003-H14、AL5052-H32一般用于表面处理是铬酸盐或氧化件使用. ⑤.不锈钢板.分镜面不锈钢和雾面不锈钢,它不需要做任何处理. 4.钣金加工的工艺流程 对于任何一个钣金件来说,它都有一定的加工过程,也就是所谓的工艺流程.由于钣金件结构的差异,工艺流程可能各不相同,但总的不超过以下几点. ①.设计并绘出其钣金件的零件图,又叫三视图.其作用是用图纸方式将其钣金件的结构表达出来. ②.绘制展开图.也就是将一结构复杂的零件展开成一个平板件. ③.下料.下料的方式有很多种,主要有以下几种方式: a.剪床下料.是利用剪床剪出展开图的外形长宽尺寸.若有冲孔、切角的,再转冲床结合模具冲孔、切角成形. b.冲床下料.是利用冲床分一步或多步在板材上将零件展开后的平板件结构冲制

成形.其优点是耗费工时短,效率高,可减少加工成本,在批量生产时经常用到. c.NC数控冲床下料.NC下料时首先要编写数控加工程序.就是利用编程软件,将绘制的展开图编写成NC数控加工机床可识别的程序.让其根据这些程序一步一步地在一块板材上,将其平板件的结构形状冲制出来. ④.冲床加工.一般冲床加工的有冲孔切角、冲孔落料、冲凸包、冲撕裂、抽孔等加工方式,以达到加工目的.其加工需要有相应的模具来完成操作.冲凸包的有凸包模,冲撕裂的有撕裂成形模等. ⑤.折弯.折弯就是将2D的平板件,折成3D的零件.其加工需要有折床及相应的折弯模具来完成操作.它也有一定的折弯顺序,其原则是对下一刀不产生干涉的先折,会产生干涉的后折. ⑥.焊接.焊接就是将多个零件组焊在一起,达到加工的目的或是单个零件边缝焊接,以增加其强度.其加工方一般有以下几种:CO2气体保护焊、氩弧焊、点焊、机器人焊接等.这些焊接方式的选用是根据实际要求和材质而定.一般来说CO2气体保护焊用于铁板类焊接;氩弧焊用于铝板类焊接;机器人焊接主要是在料件较大和焊缝较长时使用.如机柜类焊接,可采用机器人焊接,可节省很多任务时,提高工作效率和焊接质量. ⑦.表面处理.表面处理一般有磷化皮膜、电镀五彩锌、铬酸盐、烤漆、氧化等.磷化皮膜一般用于冷轧板和电解板类,其作用主要是在料件表上镀上一层保护膜,防止氧化;再来就是可增强其烤漆的附着力;其具体表面处理方式的选用,是根据客户的要求而定. ⑧.组装.所谓组装就是将多个零件或组件按照一定的方式组立在一起,使之成为一个完整的料品。其中需注意的就是对料件的保护,不可划碰伤.组装是一个料品完成的最后一步,若料件因划碰伤而无法使用,需返工重做,会浪费很多的加工工时,增加料品的成本.因此要特别注意对料件的保护. 5.钣金加工主要设备 ①.下料设备:普通剪床、数控剪床、数控冲床、等离子切割机。 ②.成形设备:普通冲床和数控冲床、普通折板床和数控折板床、自动卷圆机。 ③.表面处理设备:打磨机、抛光机。

常用快速成型基本方法简介

1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。

快速成型的基本原理图 快速成型的工艺过程原理如下: (1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。 (2)三维模型的离散处理:在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

钣金加工工艺介绍

第五讲:主讲人:吴书法 钣金加工工艺介绍 1简介 1.1简介 按钣金件的基本加工方式,如下料、折弯、拉伸、成型、焊接。本规范阐述每一种加工方式所要注意的工艺要求。 1.2关键词 钣金、下料、折弯、拉伸、成形、排样、最小弯曲半径、毛边、回弹、打死边、焊接 2 下料 下料根据加工方式的不同,可分为普冲、数冲、剪床开料、激光切割、风割,由于加工方法的不同,下料的加工工艺性也有所不同。钣金下料方式主要为数冲和激光切割 2.1数冲是用数控冲床加工,板材厚度加工范围为冷扎板、热扎板小于或等于 3.0mm,铝板小于或等于 4.0mm,不锈钢小于或等于2.0mm 2.2冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。

图2.2.1 冲孔形状示例 * 高碳钢、低碳钢对应的公司常用材料牌号列表见第7 章附录A 。 表1 冲孔最小尺寸列表 2.3 数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.3.1。当冲孔1.5t 。 2.4 折弯件或拉深件冲孔时,其孔壁与工件直壁之间应保持一定的距离(图2.4.1) 图2.4.1 折弯件、拉伸件孔壁与工件直壁间的距离 2.5 螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d 2和沉孔D ,应优先保证过孔d 2。

表2用于螺钉、螺栓的过孔 *要求钣材厚度t≥h。 表3用于沉头螺钉的沉头座及过孔 *要求钣材厚度t≥h。 表4用于沉头铆钉的沉头座及过孔 2.6激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板热扎板小于或等于20.0mm, 不锈钢小于10.0mm 。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是无法加工成形,网孔件不宜用此方式加工,加工成本高! 3折弯 3.1折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。

快速成型试题汇编

1、20世纪80年代末期出现了快速成形技术,它涉及CAD/CAM技术、数据处理技术、材料技术、激光技术和计算机软件技术等,是各种高技术的综合。 2、快速成形主要的成形工艺有四种:液态光敏聚合物选择性固化(SLA)、薄型材料选择性切割(LOM)、粉末材料选择性激光烧结(SLS)、丝状材料选择性熔融沉积。 3、快速成形技术、数字原型技术和虚拟原型技术一起,都是产品创新和快速开发的重要手段,他们已成为先进制造技术群的重要组成部分。 4、快速成形技术彻底摆脱了传统的“去除式”加工法,而采用全新的“添加式”加工法。 5、快速成形不必采用传统的加工机床和模具,快速成形建立产品样品或模具的时间和成本中有传统加工方法的10%-30%和20%-35%。 6、三维模型的构造,计算机在描述实体时常用的四种方法:构造实体几何法(CSG)、边界表达法(B-rep)、参量表达法、单元表达法。 7、模型输出常用的文件格式有多种,常用的有IGES、HPGL、STEP、DXF、STL等。 8、IGES是大多数CAD系统采用的一种美国标准,可以支持不同文件格式间的转换。 9、HPGL是HP公司开发的一种用来控制自动绘图机的语言格式,它以被广泛地接受,成为一项事项标准。这种表达格式的基本构成是描述图形的矢量,用X和Y坐标来表示矢量的起点和终点,以及绘图笔相应的抬起或放下。一些快速成型系统也用HPGL来驱动它们的成形头。10、STEP是一种正在逐步国际标准化的产品数据交换标准。目前,典型的CAD系统都能输出STEP格式文件,有些快速成形技术的研究者正试图借助STEP格式,不经STL格式的转换,直接对三维CAD模型进行切片处理,以便提高快速成形的精度。 11、DXF是用于AutoCAD输出的一种格式 12、STL格式是快速成形系统经常采用的一种格式 13、常用的扫描机有传统的坐标测量机、激光扫描机、零件断层扫描机、CT扫描机、磁共振扫描机等。 14、STL文件格式的规则有:共定点规则、取向规则、取值规则、充满规则 15、迄今为止,在国际市场上出现了很多与逆向工程相关的,主要有Imageware、Geomagic Studio、CopyCAD和RapidForm四大软件。 16、Geomagic Studio主要包括Quality、Shape、Wrape、Decimate、Capture五个模块。 17、RP 扫描填充方式发展到现在,主要有以下几种方式:单向扫描,多向扫描,十字网格扫描,Z 字型扫描和沿截面轮廓偏置扫描等。 18、快速成型的全过程包括三个阶段:前处理、自由成型、后处理。 19、光固化成型工艺中用来刮去每层多余树脂的装置是刮刀。 20、用于FDM的支撑的类型为:水溶性支撑和易剥离性支撑 21、快速成型技术建立在新材料技术、计算机技术、激光技术和数控技术四大技术之上的。 22、叠层实体制造工艺涂布工艺包括涂布形状和涂布厚度 叠层实体制造工艺常用激光器为CO2激光器 四种成型工艺不需要激光系统的是FDM。四种成型工艺不需要支撑结构系统的是SLS 光固化成型工艺树脂发生收缩的原因主要是树脂固化收缩和热胀冷缩。 就制备工件尺寸相比较,四种成型工艺制备尺寸最大的是LOM SLS周期长是因为有预热段和后冷却时间。(√)SLA过程有后固化工艺,后固化时间比一次固化时间短。(×)SLS工作室的气氛一般为氧气气氛。(×)SLS在预热时,要将材料加热到熔点以下。(√)LOM胶涂布到纸上时,涂布厚度厚一点效果会更好。(×)

钣金工艺规范

钣金工艺规范 1简介 1.1钣金所用材料 常用材料有:冷轧板SPCC、热轧板SPHC、电解板SECC、普通铝板及铝合金板AL1050、AL5052-H32,不锈钢板SUS304、覆铝锌钢板. 1.2典型钣金件加工流程 图面展开---编程---下料(剪、冲、割)----冲网孔----校平----拉丝----冲凸包----压铆----折弯-----焊接----立体拉丝----表处----组装 2下料 2.1数冲是用数控冲床加工,板材厚度加工范围为:冷扎板、热扎板小于或等于 3.0mm;铝板小于或等于 4.0mm;不锈钢小于2.0mm。 2.1.1 冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。t为材料厚度,冲孔尺寸一般不小于1.5t。如遇特殊情况,可参照下表: 图2.1.1 冲孔形状示例 * t为材料厚度,冲孔最小尺寸一般不小于1.2mm。 冲孔最小尺寸列表

2.1.2 数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.1.2。当冲孔边缘与零件外形边缘不平行时,该最小距离应不小于材料厚度t;平行时,应不小于1.5t。 2.1.3 折弯件及拉深件不可选用数冲下料,可选用二次激光切割。 2.1.4 螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2。 表1用于螺钉、螺栓的过孔 *要求钣材厚度t≥h。 表2用于沉头螺钉的沉头座及过孔

*要求钣材厚度t≥h。 表3用于沉头铆钉的沉头座及过孔 2.2激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板、热扎板小于或等于8.0mm;不锈钢小于或等于4.0mm ;铝板小于等于5.0mm。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是会产生热变型,网孔件不宜用此方式加工,加工成本高! 3折弯 3.1折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r 越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径等于0.5t。(弯曲半径是指弯曲件的内侧半径,t是材料的壁厚) 3.2弯曲件的直边高度 3.2.1一般情况下的最小直边高度要求 弯曲件的直边高度不宜太小,最小高度按(图4.2.1.1)要求:h>2t>2.5mm。 3.2.2特殊要求的直边高度

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

(完整版)钣金工艺规范及折弯及模具手册

钣金工艺规范及折弯机模具手册 1简介 1.1钣金所用材料 常用材料有:冷轧板SPCC、热轧板SPHC、电解板SECC、普通铝板及铝合金板AL1050、AL5052-H32,不锈钢板SUS304、覆铝锌钢板. 1.2典型钣金件加工流程 图面展开---编程---下料(剪、冲、割)----冲网孔----校平----拉丝----冲凸包----压铆----折弯-----焊接----立体拉丝----表处----组装 2下料 2.1数冲是用数控冲床加工,板材厚度加工范围为:冷扎板、热扎板小于或等于 3.0mm;铝板小于或等于 4.0mm;不锈钢小于2.0mm。 2.1.1 冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。t为材料厚度,冲孔尺寸一般不小于1.5t。如遇特殊情况,可参照下表: 图2.1.1 冲孔形状示例 * t为材料厚度,冲孔最小尺寸一般不小于1.2mm。 冲孔最小尺寸列表

2.1.2 数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.1.2。当冲 应不小于1.5t。 2.1.3 折弯件及拉深件不可选用数冲下料,可选用二次激光切割。 2.1.4 螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2。 用于螺钉、螺栓的过孔 *要求钣材厚度t≥h。 用于沉头螺钉的沉头座及过孔

*要求钣材厚度t≥h。 用于沉头铆钉的沉头座及过孔 激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板、热扎板小于或等于8.0mm;不锈钢小于或等于4.0mm ;铝板小于等于5.0mm。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是会产生热变型,网孔件不宜用此方式加工,加工成本高! 折弯 折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径等于0.5t。(弯曲半径是指弯曲件的内侧半径,t是材料的壁厚) 弯曲件的直边高度 一般情况下的最小直边高度要求 弯曲件的直边高度不宜太小,最小高度按(图3.2.1)要求:h>2t>2.5mm。 特殊要求的直边高度 如果设计需要弯曲件的直边高度h≤2t,,则首先要加大弯边高度,弯好后再加工到需要尺寸(可采用激光二次切割或者机加工);或者在弯曲变形区内加工浅槽后,再折弯(如下图所示)。

钣金件加工工艺教程

钣金件加工工艺教程 1简介 1.1简介 按钣金件的基本加工方式,如下料、折弯、拉伸、成型、焊接。本规范阐述每一种加工 方式所要注意的工艺要求。 1.2关键词 钣金、下料、折弯、拉伸、成形、排样、最小弯曲半径、毛边、回弹、打死边、焊接 2 下料 下料根据加工方式的不同,可分为普冲、数冲、剪床开料、激光切割、风割,由于加工方法的不同,下料的加工工艺性也有所不同。钣金下料方式主要为数冲和激光切割 2.1数冲是用数控冲床加工,板材厚度加工范围为冷扎板、热扎板小于或等于 3.0mm,铝板小于或等于 4.0mm,不锈钢小于或等于2.0mm 2.2冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。 图2.2.1 冲孔形状示例 * 高碳钢、低碳钢对应的公司常用材料牌号列表见第7章附录A。 表1冲孔最小尺寸列表 2.3数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.3.1。当冲孔

1.5t。 2.4 折弯件或拉深件冲孔时,其孔壁与工件直壁之间应保持一定的距离(图2.4.1) 图2.4.1 折弯件、拉伸件孔壁与工件直壁间的距离 2.5螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2。 表2用于螺钉、螺栓的过孔

*要求钣材厚度t≥h。 表3用于沉头螺钉的沉头座及过孔 *要求钣材厚度t≥h。 表4用于沉头铆钉的沉头座及过孔 2.6激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板热扎板小于或等于20.0mm, 不锈钢小于10.0mm 。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是无法加工成形,网孔件不宜用此方式加工,加工成本高! 3 折弯 3.1折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。

快速成型技术复习重点

1. 快速成型:简称RP,即将计算机辅助设计CAD\计算机辅助制造CAM\计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。.快速成形技术全过程步骤:a.前处理b.分层叠加成型c.后处理 快速成形制造流程:CAD模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型 2.什么是快速模具制造技术?该技术有何特点? 快速模具制造就是以快速成形技术制造的快速成型零件为母模,采用直接或间接的方法实现硅胶模、金属模、陶瓷模等模具的快速制造从而形成新产品的小批量制造,降低新产品的开发成本。特点:制模周期短、工艺简单、易于推广,制模成本低,精度和寿命都能满足特定的功能需要,综合经济效益好,特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产 3 LOM涂布工艺采用薄片型材料,如纸塑料薄膜金属箔等,通过计算机控制激光束,按模型每一层的内外轮廓线切割薄片材料,得到该层的平面轮廓形状,然后逐层堆积成零件原型。 SLS技术(选择性激光烧结成型技术)利用粉末材料如金属粉末非金属粉末,采用激光照射的烧结原理,在计算机控制下进行层层堆积,最终加工制作成所需的模型或产品。4.快速成形与传统制造方法的区别? 传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。 5 硅胶模及制作方法硅胶模具是制作工艺品的专用模具胶。制作工艺原型表面处理制作型框和固定型框硅橡胶计量,混合并真空脱泡硅橡胶浇注及固化拆除型框,刀剖并取出原型 7. 构造三维模型的主要方法:a应用计算机三维设计软 件,根据产品的要求设计三维模型b应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型c防制产品时,应用反求设备和反求软件,得到产品的三维模型d利用网络将用户设计好的三维模型直接传输到快速成形工作站 9 光固化快速成形(SLA)有那几种形式的支撑? a.角板支撑b.投射特征边支撑c.单臂板支撑d.臂板结构支撑e.柱形支撑 6. 目前比较成熟的快速成型技术有哪几种?它们的成型原 理上分别是什么? 液态光固化聚合物选择性固化成形简称SLA,粉末材料选择性烧结成形简称SLS,薄型材料选择性切割成形简称LOM,丝状材料选择性熔覆成形简称FDM ⑦SLA原理:1利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;2当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;3激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;4重复2、3步,至整个零件原型制造完毕。『或SLA是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(λ=325nm)和功率(P=30mW)的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也从液态转变成固态』 ⑦SLS原理: 1在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;2成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;3激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;4第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型 FDM原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作X—Y平面运动和高度Z方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。 LOM:LOM快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。热黏压机构将一层层成形材料粘合在一起。可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。b 原型制件过程模型剖分基底制作原型制作余料,废料去除后继处理

注塑成型常见不良现象及处理措施

射出成型中常见不良现象 产生原因分析及对策 以下所列举的成型中产生的不良原因及对策是指在一般情况下可能出现的﹐也仅以本人在工作中的一些心得﹐体验为例﹐如有不妥或不周之处﹐还请各位行家指正﹗ (一)短射(不饱模) (1)短射(不饱模)﹔即是溶融塑料未能完全填充填满成型空间(模穴)各个角落 的现象 (2)原因及改善对策(见下表) (二)毛边 (1)毛边﹔即是在分模面﹑流道周围及模仁镶块间隙内出现的膜状或毛刺状的 多余胶料 (2)原因及改善对策(见下表)

*注﹔成型时间过长﹐模温过低而采用高压﹐高速射出也是产生毛边的常见原因 (三)银线 (1)银条(银线)即是在成型产品表面或表面附近﹐沿塑料流动方向﹐呈放射状 的银白色条纹。 (2)原因及改善对策(见下表) (四)成品光泽度低 (1)成品光泽度低是指成品表面光泽达不到质量要求﹐表面无折光度。 (2)原因及改善对策(见下表)

(五)变形 (1)变形可分为对角线的扭曲及平行边沿的曲翘两种﹐是成品成型中发生的不规则弯曲现象 (2)原因及发善对策(见下表) (六)顶白 (1)顶白(也叫白化)是指成品在脱模之际﹐在顶针或其它脱模部位出现白色痕迹 (2)原因及改善对策(见下表)

(七)结合线 (1)结合线是指在成型中﹐二道或多道熔融材料融合时出现的细线状 (2)原因及改善对策(见下表) (八)冲料痕 (1)冲料痕是指熔融材料在进料点附近﹐以浇口为中心而呈现的条纹状(2)原因及改善对策 (九)异色(黑纹) (1)异色(黑纹)是指在成型过程中﹐在成品表面出现的黑色或其它深色条纹 (2)原因及改善对策(见下表)

快速成型技术与试题答案(供参考)

试卷 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个,是一种为技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多系统所应用的标准文件。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表面外),导致原型产生形状和尺寸上的误差。

钣金加工工艺流程

钣金加工工艺流程 1简介 1.1简介 按钣金件的基本加工方式,如下料、折弯、拉伸、成型、焊接。本规范阐述每一种加工方式所要注意的工艺要求。 1.2关键词 钣金、下料、折弯、拉伸、成形、排样、最小弯曲半径、毛边、回弹、打死边、焊接 2下料 下料根据加工方式的不同,可分为普冲、数冲、剪床开料、激光切割、风割,由于加工方法的不同,下料的加工工艺性也有所不同。钣金下料方式主要为数冲和激光切割 2.1数冲是用数控冲床加工,板材厚度加工范围为冷扎板、热扎板小于或等于 3.0mm,铝板小于或等于 4.0mm,不锈钢小于或等于2.0mm 2.2冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。 图2.2.1 冲孔形状示例 材料圆孔直径b矩形孔短边宽b 高碳钢 1.3t 1.0t 低碳钢、黄铜 1.0t0.7t

铝0.8t0.5t * 高碳钢、低碳钢对应的公司常用材料牌号列表见第7章附录A。 表1冲孔最小尺寸列表 2.3数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.3.1。当冲孔边缘与零件外形边缘不平行时,该最小距离应不小于材料厚度t;平行时,应不小于1.5t。 (图1.4) 图2.3.1 冲裁件孔边距、孔间距示意图 2.4 折弯件或拉深件冲孔时,其孔壁与工件直壁之间应保持一定的距离(图2.4.1) 图2.4.1 折弯件、拉伸件孔壁与工件直壁间的距离 2.5螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2。

注塑件常见不良的分析和处理方法

塑胶注塑不良的分析以及处理措施 注塑成型部分 注塑定型时发生不良现象的原因 *模具的缺陷 *塑料树脂的缺陷 *不适合的成型条件 *产品设计上的问题 *对成型机性能的过大评价 *周围环境的变化 1. 破裂白化 广义的破裂包括破裂及细微破裂的Crazing。按产生的原因可以分为机械性破裂与化学应力破裂。 [1]机械性破裂(Mechanical Crack) 作用于塑料上的物理性作用力比塑料固有物性及结构上的支持力大的时候,因承受不了而产生破裂。为了防止破裂的产生,在进行产品设计时,须引起注意。设计时,选好所使用的材料与型号后,应考虑到作用于物体上的外力,设计出既可反映稳定率又可以分散作用力的结构。提高结构上的支持力时,可加大产品的厚度或加固Rib,也可设计成Round结构以分散作用力。 [2]化学应力破裂(ESC Crack) 化学应力破裂(ESC:Environmental Stress Crack)是指因化学药品的作用,塑料膨胀,从而加重了部应力,致使总应力值高出塑料的破坏强度而产生的破裂。 化学应力破裂在成型品的装配过程中,使用润滑剂﹑洗剂等时,其所含有的一部分物质可诱发产品破裂。根据产品的脆弱结构﹑残留应力标准,是否产生破裂存在一定的差异,受温度﹑压力等的影响。因化学药品造成的破裂,其破裂面很干净,有时会产生光泽,可轻易得到确认。 为了防止因化学应力引起的破裂,工艺上应禁止使用可诱发破裂的化学药品。在用户的使用条件下,会形成问题的配件应通过改变材料等方法作到防患于未燃。引发化学应力破裂的化学药品如下:冰乙酸﹑增塑剂(DOP等)﹑酒精类﹑石蜡系列的油脂﹑酯﹑过多的硅系列脱模剂﹑汽油石油等油类﹑豆油等食用油﹑溶剂类等。 2. 熔接线 成型品表面形成细线的现象。 熔接线发生在注塑成型时熔融树脂合流的地方。熔融树脂填充凝固后,树脂互相遇合的界面显示在表面上,致使强度及外观降低。出现在具有两个以上Gate的产品中或Hole﹑厚度

钣金工艺流程精编版

钣金工艺流程 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

生产工艺流程 一:工艺流程:下料拉丝折弯焊接表处压铆 二:材料的选定 1: 不锈钢板。分镜面和雾面不锈钢,它不需要做任何处理。 2:镀锌钢板。在无听定要求下,一般选用。 随着钣金件结构的差异,工艺流程可能各不相同,但总的不超过以下几点. (本公司选用2-c) 1.设计并绘出其钣金件的零件图,又叫三视图.其作用是用图纸方式将其钣金件的结构表达出来. 2.绘制展开图.也就是将一结构复杂的零件展开成一个平板件. 3.下料.下料的方式有很多种,主要有以下几种方式: a.剪床下料.是利用剪床剪出展开图的外形长宽尺寸.若有冲孔、切角的,再转冲床结合模具冲孔、切角成形. b.冲床下料.是利用冲床分一步或多步在板材上将零件展开后的平板件结构冲制成形.其优点是耗费工时短,效率高,可减少加工成本,在批量生产时经常用到. c. NC数控下料.NC下料时首先要编写数控加工程序.就是利用编程软件,将绘制的展开图编写成NC数控加工机床可识别的程序.让其跟据这些程序一步一步的在一块铁板上,将其平板件的结构形状冲制出来. d.激光下料.是利用激光切割方式,在一块铁板上将其平板件的结构形状切割出来.

4.翻边攻丝.翻边又叫抽孔,就是在一个较小的基孔上抽成一个稍大的孔,再在抽孔上攻丝.这样做可增加其强度,避免滑牙.一般用于板厚比较薄的钣金加工.当板厚较大时,如、等以上的板厚,我们便可直接攻丝,无须翻边. 5.冲床加工.一般冲床加工的有冲孔切角、冲孔落料、冲凸包、冲撕裂、抽孔等加工方式,以达到加工目的.其加工需要有相应的模具来完成操作.冲凸包的有凸包模,冲撕裂的有撕裂成形模等. 6.压铆.压铆就本厂而言,经常用到的有压铆螺柱、压铆螺母、压铆螺钉等,其压铆方式一般通过冲床或液压压铆机来完成操作,将其铆接到钣金件上. 7.折弯.折弯就是将2D的平板件,折成3D的零件.其加工需要有折床及相应的折弯模具来完成操作.它也有一定的折弯顺序,其原则是对下一刀不产生干涉的先折,会产生干涉的后折. 8. 焊接.焊接就是将多个零件组焊在一起,达到加工的目的或是单个零件边缝焊接,以增加其强度.其加工方一般有以下几种:CO2气体保护焊、氩弧焊、点焊、机器人焊接等.这些焊接方式的选用是根据实际要求和材质而定.一般来说CO2气体保护焊用于铁板类焊接;氩弧焊用于铝板类焊接;机器人焊接主要是在料件较大和焊缝较长时使用.如机柜类焊接,可采用机器人焊接,可节省很多任务时,提高工作效率和焊接质量. 9. 表面处理.表面处理一般有磷化皮膜、电镀五彩锌、铬酸盐、烤漆、氧化等.磷化皮膜一般用于冷轧板和电解板类,其作用主要是在料件表上镀上一层保护膜,防止氧化;再来就是可增强其烤漆的附着力.电镀五彩锌一般用冷轧板类表面处理;铬酸盐、氧化一般用于铝板及铝型材类表面处理;其具体表面处理方式的选用,是根据客户的要求而定.

相关文档
相关文档 最新文档