文档库 最新最全的文档下载
当前位置:文档库 › 集成运放参数测试仪设计报告 郭天祥

集成运放参数测试仪设计报告 郭天祥

集成运放参数测试仪设计报告 郭天祥
集成运放参数测试仪设计报告 郭天祥

……………………………………………………………………………………

试题编号B集成运放测试仪设计报告

学校:哈尔滨工程大学

姓名:郭天祥

姓名:杜勉柯

姓名:于振南

集成运放参数测试仪设计报告

内容摘要:

本文介绍了运算放大器闭环参数的测试原理,分析了影响运算放大器闭环参数测试精度和稳定性的诸多原因和因素,及所采取的针对性措施,还探讨了闭环参数的测试精度、测试稳定性和测试适应性的评价问题。此系统以凌阳16位单片机为核心,采用凌阳的片载AD与DA使系统简洁功能强大。

输出采用240128 LCD显示,可以显示多种字符及图形,拥有友好的人机界面及强大的显示功能。特别适用于智能控制的可编程人性化显示,并实现了菜单式中文图形界面,增强了系统的易用性。系统采用MAX038作为信号源,可以输出一定范围内的任意频率可调,灵活易用。外围单片机采用AT89C55单片机进行液晶屏的控制,键盘的驱动等。

This text introduce operation amplifier close test principle , ring of parameter , is it influence operation amplifier close ring parameter test precision and a great deal of reasons and factors of the stability to analyse, and the pertinence measures taken, have also probed into the precision of test of closing the ring parameter, appraisal question of testing the stability and testing adaptability . System this in order to is it as core , adopt AD and DA make the system succinct and powerful a year in Yang such as Ling to insult male genital 16 one-chip computer. Is it adopt 240128LCD show , can show many kinds of character and figure , have friendly man-machine interface and strong display function to output. The programmable humanization very much apply to intellectual control shows , have realized the menu type Chinese figure interface, have strengthened the apt using of the system. The system adopts MAX038 to do the signal source, it is adjustable , flexible and easy to use in frequency conversion that can output the signal . The peripheral one-chip computer adopts AT89C55 one-chip computer and carries on the control that the liquid crystal rejected , drive of the keyboard ,etc..

关键词:凌阳单片机人机界面信号源

第1章绪论

1.1、设计任务

设计并制作一台能测试通用型集成运算放大器参数的测试仪,示意图如图1所示。

图 1

1.2、设计要求

1.2.1、基本要求

(1)能测试V IO(输入失调电压)、I IO(输入失调电流)、A VD (交流差模开环电压增益)和K CMR(交流共模抑制比)四项基本参数,显示器最大显示数为

3999;

(2)各项被测参数的测量范围及精度如下(被测运放的工作电压为±15V):V IO:测量范围为0~40mV(量程为4mV和40mV),误差绝对值小于3%读数+1个字;

I IO:测量范围为0~4μA(量程为0.4μA和4μA),误差绝对值小于

3%读数+1个字;

A VD:测量范围为60dB~120dB,测试误差绝对值小于3dB;

K CMR:测量范围为60dB~120dB,测试误差绝对值小于3dB;

(3)测试仪中的信号源(自制)用于A VD、K CMR参数的测量,要求信号源能输出频率为5Hz、输出电压有效值为4 V的正弦波信号,频率与电压值误

差绝对值均小于1%;

(4)按照本题附录提供的符合GB3442-82的测试原理图(见图2~图4),再制作一组符合该标准的测试V IO、I IO、A VD和K CMR参数的测试电路,以此测试电路的测试结果作为测试标准,对制作的运放参数测试仪进行标定。

第2章方案比较与论证

运算放大器测量仪是一个相当复杂的仪表。涉及国标检测电路、精密电压测量、自动测量档位控制、DDS高频信号合成、扫频与测量、人机界面、多任务协调、数字滤波等许多方面。在如此复杂的软硬件任务的条件下,常规硬件设计显得有些力不从心。有以下几个设计方案:

2.1、采用OS2 R2TX-TINV等可用于单片机的嵌入式操作系统利用任务切换形式完成多程序并行操作与响应。这种方案的优点是编程相对简单、任务明确、易于扩展。它的缺点是当利用于51单片机等低端8位单片机时,占用系统资源过大。往往需要外扩SRAM和ROM等手段扩充硬件资源,增加系统硬件的复杂程度。在任务为较简单的操作时往往得不偿失,实时性也很难保证。若采用高端的

单片机势必会增加成本,所以未选择此种方案。

2.2、协调和利用单片机内部多个时钟中断源。时分制的并行处理多个任务与响应,这种方案的优点是在任务较简单时,占用系统资源极少,系统利用率高且无须外扩硬件,可靠性好,容易把握实时性。它的缺点是当任务较大时会造成时钟中断过长,多中断互相嵌套冗杂等情况,造成程序混乱,尤其是在各任务所需处理中断时间不一的时候,最容易发生。同时由于单个单片机数据处理能力有限,不可能处理过于复杂的任务,所以我们未采用此种方案。

2.3 用多个单片机各司其职协调合作,分别完成不同的任务。虽然一定程度上增加了硬件的复杂程度,但有利于模块化设计,并且与采用高端单片机相比更可行,低廉。所以我们选用此种方案。

在多单片机合作协调时,最大的难点是数据和命令在各单片机间传输的总线的结构设计问题。有以下几种方案:

2.3.1、采用单总线分支机构,以相同的数据命令传输协议,用呼号形式统一传输数据和命令。其优点是:可在任意分支单片机间双向数据连接,且硬件相对简单,可广播式发送数据与命令,且不用区分主从机。其缺点是:传输数据时只能有一个单片机发送信号,其他单片机只能接收,容易形成各单片机间抢占总线等问题。需要相应的总线仲裁机构来完成总线资源分配,硬件将相对复杂。我们的系统需要大数据流单向传输和小命令流双向传输,所以不能用此结构。

2.3.2、树状主从式总线机构,这种总线的最大优点是有利于数据从主机到从机之间的传输,易于寻址。适合于多路信号采集的汇总和主机对从机的操作。其缺点是:数据传输路径固定,在中继单片机运行时占用不必要的系统资源,不利于各分机之间的数据交流。

2.3.3、多总线、控制线传输机构,由于本作品设计的独特性,结合单片机硬件特点,采用多种专用控制总线。因此没有传输协议,以增大传输速率。

辅助CPU连接着液晶显示屏、打印机、键盘等模块。由于数据传输较为简单,分别采用若干IO控制线对其控制。

以下将详细介绍各个组成部分:

2.4 主控芯片:

方案1:采用51系列单片机,51单片简单易用,但考虑到本系统的复杂性,需要用到多片51单片机,这将使系统显得臃肿,也增大了开发的难度。

方案2:采用凌阳16位单片机。SPCE061A 是继μ’nSP?系列产品SPCE500A等之后凌阳科技推出的又一个16位结构的微控制器。与SPCE500A

不同的是,在存储器资源方面考虑到用户的较少资源的需求以及便于程序调试等功能,SPCE061A里只内嵌32K字的闪存(FLASH)。较高的处理速度使μ’nSP ?能够非常容易地、快速地处理复杂的数字信号。因此,与SPCE500A相比,以μ’nSP?为核心的SPCE061A微控制器是适用于数字语音识别应用领域产品的一种经济的选择。

性能如下:

16位μ’nSP?微处理器;

工作电压:V

DD 为2.6~3.6V(CPU), V

DDH

为V

DD

~5.5V(I/O);

CPU时钟:0.32MHz~49.152MHz ;

内置2K Words 的SRAM;

内置32K Words 的FLASH;

可编程音频处理;

系统处于备用状态下(时钟处于停止状态),耗电小于2μA@3.6V;

2个16位可编程定时器/计数器(可自动预置初始计数值);

2个10位DAC(数-模转换)输出通道;

32位通用可编程输入/输出端口;

14个中断源可来自定时器A / B,时基,2个外部时钟源输入,键唤醒;

具备触键唤醒的功能;

使用凌阳音频编码SACM_S240方式(2.4K位/秒),能容纳210秒的语音数据;

锁相环PLL振荡器提供系统时钟信号;

32768Hz实时时钟;

7通道10位电压模-数转换器(ADC)和一个单通道的声音专用模-数转换器;

声音模-数转换器输入通道内置麦克风放大器和自动增益控制(AGC)电路;

具备串行设备接口;

具有低电压复位(LVR)功能和低电压监测(LVD)功能;

内置在线仿真电路ICE(In- Circuit Emulator)接口;

具有保密能力;

具有WatchDog功能(由具体型号决定)

使用这种CPU可以大大简化系统设计,并且它的计算能力也能满足本作品的需要。

2.5 AD采样输入部分

前向通道的作用是对被测信号进行调理、量化。并将量化结果存入存储器,以被显示之用。它是整个设计的核心。

ADC采用自动方式工作,硬件ADC的最高速率限定为(Fosc/32/12)Hz,如果速率超过此值,当从P_ADC(读)(S7014H)单元读取数据时会发生错误。ADC

/16=1536KHz/16=96KHz。

第3章系统设计

3.1信号条理电路的设计

A/D对输入的模拟信号的幅值有一定的要求范围。为0~2V,而对于待测信号来说其幅值各不相同,有时大大超出了A/D所如许的最大输入范围,造成饱和失真,甚至烧毁硬件。有时信号较小,使A/D转换结果产生很大相对误差,甚至不响应。这些因素都使得无法对信号进行准确的测量。

信号条理电路的作用就是将不同幅度的输入信号都归整到适合A/D采集的输入信号范围,具体来说,就是对大的输入信号进行衰减,对小信号则要放大。

放大我们采用可编程增益放大器。PGA103,对输入信号进行调理。通过对可编程器件的控制,使其放大倍数可以为*1、*10两种不同值,来满足对大小不同信号的放大要求。

对于待测信号来说其幅值各不相同,我们在信号输入端加了前级衰减,从而将大信号进行相应的衰减,以满足不同幅度的输入信号都归整到适合A/D的输入信号范围。具体方法实现同样是采用数字电位器做精密衰减控制。我们采用256抽头的DCP(数字电位器),此数字电位器与系统采用SPI串行通讯方式,其控制总线少,体积结构小,对其控制较为灵活、方便,其最大的优点是数据的非易失性,当系统突然掉电时,数字电位器内部的存储单元会将当前值进行存储,待系统上电时,其存储数据即可恢复,实现数据的保存。

其控制方法简洁,方便,并且精度较高。

3.1.2采样方式的选择

再现代数字采集、存储系统中,通常有两种采样方式:实时采样和等效采样。

方案一:实时采样

实时采样是在信号存在期间对其采样。根据奈奎斯特采样定理,采样频率必须高于被测信号中最高频率分量的2倍,对于周期正弦信号,一个周期应该有两个采样点,考虑到实际因素的影响,为了不失真的恢复原被信号,通常对被测信号的一个周期至少应该有5个采样点,原被测信号不失真的恢复也受到A/D的采样深度的限制。实时采样方法简单,易于实现,当被测信号频率不是很高时,实时采样方法较为理想。如图1—1所示

图1—1 实时采样

方案二:等效采样

由于采样器工作的速率的限制,实际上在被测信号的频率较高时很难实现实时采样。并且采样速率愈高,要求A/D的转换速率愈高,其价格愈高。所以在价

格上很难接受。但对于周期信号可以采用等效采样方法。其中又分为顺序和随机等效采样方法。所谓顺序采样是对每一个信号周期仅采样一点,经过若干个信号周期后,就可以将被测信号的各个部分采样一遍,这种采样方法可以使采样点借助于“步进延迟”方法均匀的分布于被测信号波行的不同位置。所谓步进延时,是每一次采样比上一次采样点的位置延时Δt 时间。如图1—2。

等效采样虽然对很高频率的信号进行采样,但“步进延迟”的方法很难在短时间内实现,本设计要求信号频率5Hz 非常低。所以,在本设计中我们采用实时采样方法。

3.2 电平移位电路

由于被测信号是双极性的,即被转换的模拟信号为正或负极性,而A/D 的输入信号通常为单极性信号。为了对双极性信号的测量,以及适应A/D 的要求,在进行A/D 转换之前必须将双极性信号转换为单极性信号,所以我们设计了电平移位电路,在本设计中可将被测信号移位为单极性信号。电平转换电路,如图

用电位器精确分压生成一个电压为参考电压二分之一的偏置信号,然后信号通过OP-07组成的射随器隔离,跟输入信号混合,完成电平移位。

3.3 滤波电路的设计

被测信号的频谱分量较多,其中必然夹杂着许多高次谐波的干扰,这样对测量精度有严重的影响.所以,我们在被测信号的输入端加了一级低通滤波器,它Δt t 0 图1—2 等效采样

可以是有用的频率信号通过,而抑制(或大为衰减)无用的频率信号,这样许多高频干扰信号被滤除,提高了测量的精度。实现低通滤波器有下面几种方案。

方案一:采用切比雪夫滤波器

切比雪夫滤波器的显著特点是,其逼近误差峰值在一定规定的范围的频段尚为最小,而且是等纹波的即误差值在极大和极小值之间摆动。

方案二:二阶BUTTERWORTH (巴特沃兹)低通滤波器

二阶巴特沃兹滤波器,如MAXIM 公司的MAX291,其优点是通带内特性曲线平坦,但是其从导通到截至频率的坡度较为缓慢,且价格较高。

方案三:RC 积分滤波器

RC 积分滤波器使用方便,体积小,却完全满足本设计要求。其频率特性为: F(j Ω)=1/(1+j Ωτ) ,其中τ=RC 为时间常数。如图

我们选择的这种滤波器时间常数取5τ。

3.4键盘模块:

方案一 采用矩阵式键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O 口数目,缺点为电路复杂且会加大编程难度。

方案二 采用独立式按键电路,每个按键单独占有一根I/O 接口线,每个I/O 口的工作状态互不影响,此类键盘采用端口直接扫描方式。缺点为当按键较多时占用单片机的I/O 口数目较多,优点为电路设计简单,且编程极其容易。

综合考虑两种方案及题目要求,方案一需要8个I/O 口,方案二需要11个I/O 口,考虑到系统资源,故采用方案一。

3.5液晶模块:

方案1:使用数码管显示,该方案控制最简单,但是只能显示非常有限的符号和数字,对于设计中复杂的显示功能显然不能胜任。

方案2:使用点阵液晶显示,点阵液晶可以显示多种字符及图形,拥有友好的人机界面及强大的显示功能。特别适用于智能控制的可编程人性化显示。权衡之后,决定选用方案2,并实现了中文图形界面。

3.6打印模块:

方案1:采用台式打印机,台式打印机打印效果最好,能够打印出各种复杂的图形,但其价格也是最高的。

方案2:采用面板式微型打印机,这种打印机体积小,能够打印中英人,也能打印图像,能够满足要求。

综上两种方案,我们选用面板式微型打印机,用单片机控制其打印数据与文字。

输出设备构架如图1:

输出

输入 C

图1

3.6.1液晶驱动部分:

本系统采用240128点阵图形液晶模块,它采用T6963C作控制器。

T6963C的特点:

T6963C是点阵式液晶图形显示控制器,它能直接与80系列的8位微处理器接口;

T6963C的字符字体由硬件设置,其字体有4种:5*8、6*8、7*8、8*8;

T6963C的占空比可从1/16到1/128;

T6963C可以图形方式、文本方式用图形和文本合成方式进行显示,以及文本方式下的特征显示,还可以实现图形拷贝操作等等;

T6963具有内部字符发生器CGROM,共有128个字符,T6963C可管理64K显示缓冲区及字符发生器CGRAM。并允许MPU随时访问显示缓冲区,甚至可以进行位操作。

3.7关于软件的一些算法

软件滤波算法:

3.7.1、递推平均滤波法(又称滑动平均滤波法)

优点:

对周期性干扰有良好的抑制作用,平滑度高

适用于高频振荡的系统

缺点:

灵敏度低

对偶然出现的脉冲性干扰的抑制作用较差

不易消除由于脉冲干扰所引起的采样值偏差

不适用于脉冲干扰比较严重的场合

比较浪费RAM

3.7.2、中位值平均滤波法(又称防脉冲干扰平均滤波法)

优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差缺点:

测量速度较慢,和算术平均滤波法一样

比较浪费RAM

3.7.3、加权递推平均滤波法

优点:

适用于有较大纯滞后时间常数的对象

和采样周期较短的系统

C、缺点:

对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号

不能迅速反应系统当前所受干扰的严重程度,滤波效果差

3.7.4、消抖滤波法

优点:

对于变化缓慢的被测参数有较好的滤波效果,

可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动缺点:

对于快速变化的参数不宜

如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导

入系统.

3.8.关于信号源部分

信号源由MAXIM公司生产的MAX038芯片产生,其性能特点主要有以下几点:

(1)能产生精确的高频正弦波、矩形波(含方波)、三角波和锯齿波,输出波形既可以人工设定,亦可以由微机或其它数字手段控制;

(2)频率范围很宽,从0.1 Hz直到20 MHz,最高可达40 MHz,频率设定分为粗调和细调两种。改变振荡电容充、放电电流,可大幅度调节频率,改变FADJ 端的电位,能对频率进行精细调节;

(3)对于输出波形,电压幅度均为 2 V(P—P),对于地电位而言则是一 1 V-+lV,输出阻抗小于0.1n,低阻抗输出能力可以达到~20 mA;

(4)占空比调节范围宽,最大调节范围为10%~ 90%(一般应用在15%~85%的范围内),且占空比与频率均可单独调节,互不影响;

(5)输出波形失真小,正弦波总谐波失真度仅为0.75%,占空比调节的非线性度只有2%;

(6)内部基准电压源的电压值为2.50~0.02 V,电压温度系数低至20x10—6/oC,利用该基准电压源不仅可以提供充、放电的电流,以确定频率值,还

能设定FADJ端的电压,实现频率微调,此外还可设定DADJ端的电压,调节占空比;

(7)内含一个相位比较器,用于锁相环;

(8)具有扫描工作方式,扫描电压外部设置;

(9)采用5 V双电源供电,电压范围±4.75一±5.25 V,允许变化±5%,电流约80 mA,典型功耗为400mW 。

MAX038的主要应用有精密函数波形发生器、压控振荡器、频率调制器、脉宽调制器、锁相环、频

率合成器、正弦波或矩形波调频发生器等。以下是它的内部功能结构框图.

由上我们可知道MAX038芯片是一款功能非常强大的信号产生类芯片,根据本题目实现功能的要求我们只需要控制其输出频率的变化在40K到4M之间即可,只要选择好合适的振荡电容,再用足够精度的电流控制其振荡频率控制器,就能做到频率以预期的变化率变化.

根据题目基本部分和发挥部分有不同的要求,即第一次输出为固定不变的5Hz频率,第二次输出为从40K到4M按一定的速率变化的频率,由此条件可以计算出接入MAX038振荡电路的电容值,再用一继电器根据测试项目进行切换,这里需要说明的一点是,在本电路中我们选择对输出频率放大副度进行放大的芯片为两种,一种是在高频状态下进行副度放大,我们选用MAXIM公司的高速视频运放MAX4104,其最高速度可工作在750M的频率下,而其至命的弱点是在当它工作在低频状态下时芯片立刻会被烧坏,也正是因为如此我们才选择用LF356进行低频条件下的频率副度放大,综合以上各种条件绘制出如下图所示的信号源产生电路结构图如下

对上图电路各个部分现做简要的说明.

一,频率段选择电路:频率段的选择主要是针对整个测量过程中存在的两种状态进行选择,即固定不变的5Hz 测量频率与从40K 到4M 连续变化的扫描频率,对这两段的选择是通过核心处理芯片来控制的,对不同的测量选择相应的值即可,而其中的值主要即为振荡电容的大小与输入给频率调节端口电流的大小来决定,对电流调节其中心频率变化的过程将会在下面的小节中讲述.

二,压控流电路:其实所谓的压控流源就是将电压信号转换成电流信号,我们之所以这样做,主要是因为MAX038芯片的频率粗调控制端是通过接收电流强弱信号来决定输出频率大小的,而一般情况下我们很少对直流的大小进行控制,而是通过DA 对输出电压进行控制,在这里我们同样通过DA 对电压的大小进行控制,而有一特别之处需要说明的是,由于核心器件为凌阳十六位单片机,它本身自带有两个十位精度的DA,但考虑到仅用十位精度来控制4K 到40M 变化的频率,并且变化精度不大于1K 的条件,仅用凌阳自带的一个DA 是不能达到要求的,所以我们采用将凌阳片内两个十位精度电流输出的DA 进行整合变成一个二十位精度电压输出的DA,这样的电压输出精度再经过压流变化后将达到相当的精度,足以满足题目给出小于1K 变化率的精度,这也是本次我们做题中的一大创新点.

三,频率放大电路:题目要求5Hz 为固定2V 正弦波或为4K 到4M 幅度为4V 的正弦波,由于有幅度的改变所以我们用两块运放各自处理不同频率和不同幅度的正弦波,在两者之间切换采用继电器由核心处理芯片对起进行控制.

第4章 系统调试

4.1 硬件调试

4.1.1 利用标准板测运算放大器741A μ

(1)的输入失调电压

a 将开关K2断开,将开关K1闭合,用7位半的数字电压表,测输出电压 =OL V ,则IO V =

b 将开关K2闭合,开关K1断开,用7位半的数字电压表,测辅助运放的输出电压=OL V ,则IO V =

(2)测输入失调电流

a 、将开关K2断开,K1闭合,测辅助运放输出电压LO V ,将开关1K 断开,

测得辅助运放的输出电压1L V ,则有401510

10100100L L IO V V V -?+= b 、将开关K2闭合,K1闭合,测0L V

将K1断开,测1L V ,则有4

0141010100100L L IO V V V -?+=。 (3)测交流差模开环电压增益VD A

K4、K5闭合,用信号源产生一频率为5Hz,有效值为4V 的正弦波,用数字示波器测信号源的输出电压S V ,及辅助运放的输出电压0L V ,由

dB V V A L S VD )10010100lg(205

0+=。

(4) 测交流共模抑制比K CMR .

同上可测得交流共模抑制比.

第5章指标测试

5.1 测试仪器

双直流稳压电源HH1713

数字示波器DS510ZC

伟福编译器+S51+

七位半数字仿真器5000 DMM/SCANNER

四位半数字仿真器GDM-8145

信号源SG1641A

5.2指标测试

参考文献

[1]潘松, 黄继业编著. 电子测量技术实用教程[M]北京:科学出版社,2002.

[2]徐志军, 徐光辉编著. 模拟电路与数字设计[M]北京:电子工业出版社,2002:58-77.

[3]潘永雄,沙河,刘向阳.编著.电子线路CAD实用教程[M]西安电子科技大学出版社,2001:17-49,81-85,187-194,204-256.

[4]吕思忠, 施齐云.数字电路实验与课程设计[M] 哈尔滨:哈尔滨工程大学出版社,2001:17-47,200-211.

[5]余家春. Protel 99 SE电路设计实用教程[M] 北京:中国铁道出版社,2003.

[6]田良,王尧,黄正瑾,陈建元,束海泉编著.综合电子设计与实践[M]东南大学出版社,2002.3:103-115,269-272.

[7]谢自美等编著.电子线路设计·实验·测试(第二版)[M]华中理工大学出版社,2000.7:247-252,380-388.

[8]安钟利编著.Word 2000和WPS 2000文学处理好帮手[M]电子科技大学出版社,1999.9:30-32,42-48.

[9]张後,顾新.编著.电子系统设计与实践(修订版)[M]西安电子科技大学出版社,2004.6:11-34.

[10]王松武,于鑫,武思军.编著.电子创新与实践[M]国防工业出版社,2005.1:7-11,165-185.

[11]包明,赵明富,陈渝光.编著.EDA技术与数字系统设计[M]北京航空航天大学出版社,2002.7:45-50,57-67.

附录:测量部分原理图

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成运放参数测试仪

集成运放性能参数测试仪 一、集成运放性能参数测试仪性能指标 工作电压:±15V V IO:测量范围:0~40mV(<小于3%读数±1个字); I IO:测量范围:0~4μA(<3%读数±1个字); A VD:测量范围:60dB~120dB±3dB; K CMR:测量范围:60dB~120dB±3dB; 输出频率:5Hz 输出电压有效值:4 V 频率与电压值误差绝对值均小于1%; 二、设计思路: 本设计以单片机STC89C52为控制核心,利用数模转换器ADS1110以及继电器,为切换开关,对被测量信号进行采样,通过单片机处理完成对运算放大器LM741的UIO,IIO,AVC,KCMR等参数的测量。并通过系统显示接口,利用液晶显示装置将测试的结果进行显示,同时本系统还能通过键盘进行人机交流,实现按下一个按键就可以对该运放的某个参数进行测试。 三、系统结构图

四、方案比较与选择: 主控芯片部分 方案一:采用STC89C52单片机。优点是芯片结构简单,使用相对容易;缺点是不带AD转换电路,需要外接AD转换芯片,测量精度相对较低。 方案二:采用凌阳SPCE061A单片机。优点是自带AD转换模块,测量精度相对较高,能进行音频处理等多种智能化功能;缺点是结构复杂,使用起来相对繁琐。 由于此方案的核心内容在测试电路部分,主控芯片的选择对结果的影响相对较小,综合以上芯片的性能以及自身的情况,选择使用相对简单的STC89C52单片机。 信号发生器的选择

方案一:利用传统的模拟分立元件或单片压控函数发生器 MAX038,可产生三角波、方波、正弦波,通过调整外围元件可以改变输出频率、幅度,但采用模拟器件由于元件分散性太大,即使用单片函数发生器,参数也与外部元件有关,外接电阻电容对参数影响很大,因而产生的频率稳定度较差、精度低、抗干扰能力差、成本也较高。 方案二:采用ICL8038芯片产生信号。优点是电路简单,波形好,控制方便,缺点是频率有限。 由于需要的频率不宽,综合以上考虑,选择电路简单,波形好,控制方便,精度和抗干扰能力更强的ICL8038作为信号发生器。 显示模块的选择 方案一:采用液晶显示模块SVM12864(LCD)。占用I/O口多,控制复杂,但可以显示汉字和简单图形等,功能强大 方案二:采用液晶显示模块1602。占用I/O口少,控制简单,每行可显示16个字符。 虽然SVM12864功能相对强大,但是采用1602更为合理。因为需要显示的参数不多,且都是英文字母和数字,因此选择控制简单的1602液晶显示模块。 五、测量原理 2.1 失调电压Vios 理想运放当输入电压为零时,其输出电压也为零,但实际运放电路当

集成电路课程设计报告

课程设计 班级: 姓名: 学号: 成绩: 电子与信息工程学院 电子科学系

CMOS二输入与非门的设计 一、概要 随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本论文讲的是数字集成电路版图设计的基本知识。然而在数字集成电路中CMOS与非门的制作是非常重要的。 二、CMOS二输入与非门的设计准备工作 1.CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路

2.计算相关参数 所谓与非门的等效反相器设计,实际上就是根据晶体管的串并联关系,再根据等效反相器中的相应晶体管的尺寸,直接获得与非门中各晶体管的尺寸的设计方法。具体方法是:将与非门中的VT3和VT4的串联结构等效为反相器中的NMOS 晶体管,将并联的VT 1、VT 2等效PMOS 的宽长比(W/L)n 和(W/L)p 以后,考虑到VT3和VT4是串联结构,为保持下降时间不变,VT 3和VT 4的等线电阻必须减小为一半,即他们的宽长比必须为反相器中的NMOS 的宽长比增加一倍,由此得到(W/L)VT3,VT4=2(W/L)N 。 因为考虑到二输入与非门的输入端IN A 和IN B 只要有一个为低电平,与非门输出就为高电平的实际情况,为保证在这种情况下仍能获得所需的上升时间,要求VT 1和VT 2的宽长比与反相其中的PMOS 相同,即(W/L)VT1,VT2=(W/L)P 。至此,根据得到的等效反向器的晶体管尺寸,就可以直接获得与非门中各晶体管的尺寸。 如下图所示为t PHL 和t PLH ,分别为从高到低和从低到高的传输延时,通过反相器的输入和输出电压波形如图所示。给其一个阶跃输入,并在电压值50%这一点测量传输延迟时间,为了使延迟时间的计算简单,假设反相器可以等效成一个有效的导通电阻R eff ,所驱动的负载电容是C L 。 图2 反相器尺寸确定中的简单时序模型 对于上升和下降的情况,50%的电都发生在: L eff C R 69.0=τ 这两个Reff 的值分别定义成上拉和下拉情况的平均导通电阻。如果测量t PHL 和t PLH ,可以提取相等的导通电阻。 由于不知道确定的t PHL 和t PLH ,所以与非门中的NMOS 宽长比取L-Edit 软件中设计规则文件MOSIS/ORBIT 2.0U SCNA Design Rules 的最小宽长比及最小长度值。 3.分析电路性质 根据数字电路知识可得二输入与非门输出AB F =。使用W-Edit 对电路进行仿真后得到的结果如图4和图5所示。

集成运放的主要参数和含义

集成运放数据手册中的主要参数和含义 一、直流参数: 1.---输入失调电压 为了是集成运放在零输入时达到零输出,需在其输入端加一个直流补偿电压,这个直流补偿电压的大小即为输入失调电压,两者方向相反。输入失调电压一般是毫伏(mV)数量级。采用双极型三极管作为输入级的运放,其为1-10mV;采用场效应管作为输入级的运放,其大得多;而对于高精度的集成运放,其的值一般很小。 2.---输入失调电压的温度系数 在确定的温度变化范围内,失调电压的变化与温度的变化的比值定义为输入失调电压的温度系数。一般集成运放的输入失调电压的温度系数为10-20;而高精度、低漂

移集成运放的温度系数在1以下。 3.----输入偏置电流 当集成运放的输入电压的输入电压为零,输出电压也为零时,其两个输入端偏置电流的平均值定义为输入偏执电流。两个输入端的偏置电流分别记为和,而表示为 双极型晶体管输入的集成运放,其为10nA-1;场效应管输入的集成运放,其一般小于1nA。 4.—输入失调电流 当集成运放的输入电压威灵,输出电压也为零时,两个输入偏置电流的差值称为输入失调电流,即 一般来说,集成运放的偏置电流越大,其输入失调电流也越大。输入偏置电流和输入失调电流的温度系数,分别用/ 和/来表示。由于输入失调电压和输入失调电流及输入偏置电流均为温度的函数,所以产品手册中均应注明这些参数的测试温度。另外,需要指出的是,上述各参数均与电源电压及集成运放输入端所加的共模电压值有关。手册中的参数一般指在标准电源电压值及零共模输入电压下的测试值。 5.---差模开环直流电压增益 集成运放工作在线性区时,差模电压输入以后,其输出电压变化与差模输入电压变化的比值,称为差模开环电压增益,即 = 差模开环电压增益一般用分贝(dB)为单位,可用下式表示 ( )=20lg()(dB)

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

毕业设计133集成运放参数测试仪

集成运放参数测试仪——程序设计 内容摘要:该课题设计的运算放大器闭环参数测试系统是基于MSC-51单片机控制模块,并且 由LCD(Liquid Crystal Display)显示模块,键盘模块,数据采集和转换模块,采用DDS芯片(AD9851)实现了40kHz~4MHz的扫频输出模块等五部分组成。采用辅助运放测试方法,可对运放的输入失调电压、输入失调电流、交流差模开环电压增益和交流共模抑制比以及单位增益带宽进行测量。在软件上,用C语言来编程实现。其要实现的功能包括:对来自TLC2543A/D转换的数字信号进行接收、分析、计算和对结果的显示;通过不同键值的接收、分析来控制对不同对象的测量,并在LCD上显示对应的人机界面;对来自DDS的高频信号源的频率进行控制来实现对集成运放的带宽参数的测试和显示。而且具有自动量程转换、自动测量功能和良好的人机交互性。 关键词:单片机 C语言 DDS LCD 人机交互界面 The Instrument for testing the Parameters of Integrated Operation Amplifier ——program design Abstract:This system is designed based on C51 microcontroller to measure the close loop parameters of the operation amplifier. The system conclude five modules: LCD (liquid crystal display) display module, keyboard module, data collection module, conversion module, and the module of generating sweep sine-wave signal with frequency range from 40 kHz to 4 MHz, using the DDS chip of AD9851. The system can measure the input offset voltage、the input offset current、the open loop AC differential mode voltage gain、the AC common mode rejection ratio and unit gain bandwidth,using the measure method of assistant amplifier. The data can be display on the LCD which is using of C program. And the function concludes: receiving, analysing and calculating the digital signals from TLC2543A/D then send them to show; accepting different key value on keyboards, analysing and processing it for controlling the measurement of different target and display on the LCD with different computer interface; controlling the bandwidth of HF signal source from DDS chip to measure the integrated transport bandwidth parameters and display the result. What’s more C51 microcontroller can control relays to complete auto measurement range switching ,auto measuring and good interface. Key Words:MCU CLanguage DDS LCD interface

集成电路课程设计(CMOS二输入及门)

) 课程设计任务书 学生姓名:王伟专业班级:电子1001班 指导教师:刘金根工作单位:信息工程学院题目: 基于CMOS的二输入与门电路 初始条件: 计算机、Cadence软件、L-Edit软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) & 1、课程设计工作量:2周 2、技术要求: (1)学习Cadence IC软件和L-Edit软件。 (2)设计一个基于CMOS的二输入的与门电路。 (3)利用Cadence和L-Edit软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。 | 学习Cadence IC和L-Edit软件,查阅相关资料,复习所设计内容的基本理论知识。 对二输入与门电路进行设计仿真工作,完成课设报告的撰写。 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 # 摘要 (2) 绪论…....………………………………………….………………….. ..3 一、设计要求 (4) 二、设计原理 (4) 三、设计思路 (4) 3.1、非门电路 (4) 3.2、二输入与非门电路 (6) 、二输入与门电路 (8) } 四、二输入与门电路设计 (9) 4.1、原理图设计 (9) 4.2、仿真分析 (10) 4.3、生成网络表 (13) 五、版图设计........................ (20) 、PMOS管版图设计 (20) 、NMOS管版图设计 (22) 、与门版图设计 (23)

实验5 集成运算放大器参数测试

实验五 集成运算放大器参数测试 一、实验目的: 1.通过对集成运算放大器741参数的测试,了解集成运算放大器组件主要参数的定义和表示方法。 2.掌握运算放大器主要参数的测试方法。 二、实验原理: 集成运算放大器是一种使用广泛的线性集成电路器件,和其它电子器件一样,其特性是通过性能参数来表示的。集成电路生产厂家为描述其生产的集成电路器件的特性,通过大量的测试,为各种型号的集成电路制定了性能指标。运算放大器的性能参数可以使用专用的测试仪器进行测试(“运算放大器性能参数测试仪”),也可以根据参数的定义,采用一些简易的方法进行测试。本次实验是学习使用常规仪表,对运算放大器的一些重要参数进行简易测试的方法。 实验中采用的集成运算放大器型号为741,其引脚排列如图5.1所示。它是一种八脚双列直插式器件,其引脚定义如下: ①、⑤调零端; 图 5.1 741引脚 ②反相输入端; ③同相输入端; ④电源负极; ⑥输出端; ⑦电源正极; ⑧空脚。 以下为主要参数的测试方法: 1.输入失调电压: 理想运算放大器,当输入信号为零时其输出也为零。但在真实的集

成电路器件中,由于输入级的差动放大电路总会存在一些不对称的现象(由晶体管组成的差动输入级,不对称的主要原因是两个差放管的U BE 不相等),使得输入为零时,输出不为零。这种输入为零而输出不为零的现象称为“失调”。为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做“输入失调电压”,记作U IO或V OS。 输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数: 式中:U IO — 输入失调电压 U OO — 输入为零时的输出电压值 A od — 运算放大器的开环电压放大倍数 本次实验采用的失调电压测试电路如图5.2所示。闭合开关K1及K2, 使电阻R B短接,测量此时的输出电压U O1即为输出失调电压,则输入失调电压 图5.2 U IO,I IO测试电路 实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO一般在1mV以下。 测试中应注意: ①要求电阻R1和R2,R3和R F的阻值精确配对。 2.输入失调电流I IO 当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO(有的资料中使用符号I OS)。 式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。 输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(μA或nA级),因此它们的差值通常不是直接测量的,测试电路如图5.2所示,测试分两步进行:1)闭合开关K1及K2,将两个R B短路。在低输入电阻下,测出输出

集成运算放大器实验报告

集成运算放大器实验报告 2.4.1 比例、加减运算电路设计与实验 由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。 一、实验目的 1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法; 3.熟悉比例放大电路、求和电路的调试及测量方法。 二、实验仪器及备用元器件 (1)实验仪器 (2)实验备用器件 三、电路原理 集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。 图2.4.3(a )示出了典型的反相比例运算电路。依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1 f o i i R A R υυυυ==- 2.4.1 式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。当1f R R =时,o i υυ=-,电路成为反相器。合理选择1f R R 、的比值,可以获得不同比例的放大功能。反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。为了使 电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =, 电阻称之为平衡电阻。

(a) 反相比例运算电路 (b) 同相比例运算电路 图2.4.3 典型的比例运算电路 图2.4.3(b )示出了典型的同相比例运算电路。其输出输入电压之间的关系为 1 (1)f o i i R A R υυυυ==+ 2.4.2 由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。同样,为了保证电路的运算精度,要选择高精度运放和稳定性好的电阻器,而且电阻的取值一般在几十千欧到几百千欧。为了使电路的结构对称,同样应满足1//P f R R R =。 图2.4.4(a )为典型的反相求和电路,利用叠加原理和线性运放电路“虚短”、“虚断”的概念可以求得 121 2 ( )f f o i i R R R R υυυ=-+ 2.4.3 当满足12R R R ==时,输出电压为 12()f o i i R R υυυ=- + 2.4.4 实现比例求和功能。当满足12f R R R ==时,,输出电压为 12()o i i υυυ=-+ 2.4.5 实现了两个信号的相加运算。电路同样要求12////P f R R R R =。该电路的性能特点与反相运算电路相同。 (a) 反相求和运算电路 (b) 同相求和运算电路 图2.4.4 典型的求和运算电路 同理,对于图2.4.4(b )所示的同相求和电路,当电路满足12////f R R R R =的条件下,可以得到输出电压为 121 2 f f o i i R R R R υυυ= + 2.4.6

集成运放参数测试仪(B题)

集成运放参数测试仪(B题) 一、任务 设计并制作一台能测试通用型集成运算放大器参数的测试仪,示意图如图1所示。 图1 二、要求 1、基本要求 (1)能测试V IO(输入失调电压)、I IO(输入失调电流)、A VD (交流差模开环电压增益)和K CMR (交流共模抑制比)四项基本参数,显示器最大显示数为3999; (2)各项被测参数的测量范围及精度如下(被测运放的工作电压为±15V): V IO:测量范围为0~40mV(量程为4mV和40mV),误差绝对值小于3%读数+1个字; I IO:测量范围为0~4μA(量程为0.4μA和4μA),误差绝对值小于3%读数+1个 字; A VD:测量范围为60dB~120dB,测试误差绝对值小于3dB; K CMR:测量范围为60dB~120dB,测试误差绝对值小于3dB; (3)测试仪中的信号源(自制)用于A VD、K CMR参数的测量,要求信号源能输出频率为5Hz、输出电压有效值为4 V的正弦波信号,频率与电压值误差绝对值均小于1%; (4)按照本题附录提供的符合GB3442-82的测试原理图(见图2~图4),再制作一组符合该标准的测试V IO、I IO、A VD和K CMR参数的测试电路,以此测试电路的测试结果作 为测试标准,对制作的运放参数测试仪进行标定。 2、发挥部分 (1)增加电压模运放BW G (单位增益带宽)参数测量功能,要求测量频率范围为100kHz~3.5MHz,测量时间≤10秒,频率分辨力为1kHz; 为此设计并制作一个扫频信号源,要求输出频率范围为40kHz~4MHz,频率误差绝对值小于1%;输出电压的有效值为2V±0.2 V; (2)增加自动测量(含自动量程转换)功能。该功能启动后,能自动按V IO、I IO、A VD、K CMR 和BW G的顺序测量、显示并打印以上5个参数测量结果; (3)其他。

青岛农业大学电子设计自动化与专用集成电路课程设计报告汇总

青岛农业大学 理学与信息科学学院 电子设计自动化及专用集成电路 课程设计报告 设计题目一、设计一个二人抢答器二、密码锁 学生专业班级 学生姓名(学号) 指导教师 完成时间 实习(设计)地点信息楼121 年 11 月 1 日

一、课程设计目的和任务 课程设计目的:本次课程设计是在学生学习完数字电路、模拟电路、电子设计自动化的相关课程之后进行的。通过对数字集成电路或模拟集成电路的模拟与仿真等,熟练使用相关软件设计具有较强功能的电路,提高实际动手,为将来设计大规模集成电路打下基础。 课程设计任务: 一、设计一个二人抢答器。要求: (1)两人抢答,先抢有效,用发光二极管显示是否抢到答题权。 (2)每人两位计分显示,打错不加分,答对可加10、20、30分。 (3)每题结束后,裁判按复位,重新抢答。 (4)累积加分,裁判可随时清除。 二、密码锁 设计四位十进制密码锁,输入密码正确,绿灯亮,开锁;不正确,红灯亮,不能开锁。密码可由用户自行设置。 二、分析与设计 1、设计任务分析 (1)二人抢答器用Verilog硬件描述语言设计抢答器,实现: 1、二人通过按键抢答,最先按下按键的人抢答成功,此后其他人抢答无效。 2、每次只有一人可获得抢答资格,一次抢答完后主持人通过复位按键复位,选手再从新抢答。 3、有从新开始游戏按键,游戏从新开始时每位选手初始分为零分,答对可选择加10分、20分,30分,最高九十分。 4、选手抢答成功时其对应的分数显示。 (2)密码锁 1、第一个数字控制键用来进行密码的输入 2、第二个按键控制数字位数的移动及调用密码判断程序。当确认后如果显示数据与预置密码相同,则LED 亮;如不相等,则无反应。按下复位键,计数等均复位

运放的主要参数

集成运放的参数较多,其中主要参数分为直流指标和交流指标。其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏臵电流、输入失调电流、输入偏臵电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 1、输入失调电压VIO(Input Offset Voltage)输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。 输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 2、输入失调电压的温漂αVIO(Input Offset Voltage Drift) 输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 3、输入偏臵电流IB(Input Bias Current) 输入偏臵电流定义为当运放的输出直流电压为零时,其两输入端的偏臵电流平均值。输入偏臵电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏臵电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏臵电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏臵电流一般低于1nA。对于双极性运放,该值离散性很大,但几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 4、输入失调电流(Input Offset Current)输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏臵电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏臵电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 5、输入阻抗 (1)差模输入阻抗差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。 (2)共模输入阻抗共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。 6、电压增益 (1)开环电压增益(Open-Loop Gain)在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,记作AVOL,有的datasheet上写成:Large Signal Voltage Gain。AVOL 的理想值为无限大,一般约为数千倍至数万倍,其表示法有使用dB及V/mV等。 (2)闭环电压增益(Closed-Loop Gain顾名思义,就是在有反馈的情况下,运算放大器的放大倍数、

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。 (3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

集成电路综合实验报告

集成电路设计综合实验 题目:集成电路设计综合实验 班级:微电子学1201 姓名: 学号:

集成电路设计综合实验报告 一、实验目的 1、培养从版图提取电路的能力 2、学习版图设计的方法和技巧 3、复习和巩固基本的数字单元电路设计 4、学习并掌握集成电路设计流程 二、实验内容 1. 反向提取给定电路模块(如下图1所示),要求画出电路原理图,分析出其所完成的逻辑功能,并进行仿真验证;再画出该电路的版图,完成DRC验证。 图1 1.1 查阅相关资料,反向提取给定电路模块,并且将其整理、合理布局。 1.2 建立自己的library和Schematic View(电路图如下图2所示)。 图2 1.3 进行仿真验证,并分析其所完成的逻辑功能(仿真波形如下图3所示)。

图3 由仿真波形分析其功能为D锁存器。 锁存器:对脉冲电平敏感,在时钟脉冲的电平作用下改变状态。锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值,当锁存器处于使能状态时,输出才会随着数据输入发生变化。简单地说,它有两个输入,分别是一个有效信号EN,一个输入数据信号DATA_IN,它有一个输出Q,它的功能就是在EN有效的时候把DATA_IN的值传给Q,也就是锁存的过程。 只有在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号。其中使能端A 加入CP信号,C为数据信号。输出控制信号为0时,锁存器的数据通过三态门进行输出。所谓锁存器,就是输出端的状态不会随输入端的状态变化而变化,仅在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号到来时才改变。锁存,就是把信号暂存以维持某种电平状态。 1.4 生成Symbol测试电路如下(图4所示) 图4

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告 一、实验目的 1. 了解运算放大器的特性和基本运算电路的组成; 2. 掌握运算电路的参数计算和性能测试方法。 二、实验仪器及器件 1 .数字示波器; 2. 直流稳压电源; 3. 函数信号发生器; 4. 数字电路实验箱或实验电路板; 5. 数字万用表; 6. 集成电路芯片UA741 2块、电容个,各个阻值的电阻若干个。 三、实验内容 1、在面包板上搭接卩A741的电路。首先将+12V和-12V直流电压正确接入卩A741的Vcc+(7脚)和Vcc- (4脚)。 2、用卩A741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。 3、用卩A741组成积分电路,用示波器观察输入和输出波形,并做好记录。 四、实验原理 (1)集成运放简介 集成电路运算放大器(简称集成运放或运放)是一个集成的高

增益直接耦合放大器,通过外接反馈网络可构成 各种运算放大电路和 其它应用电路。集成运放uA741 的 引脚图下图所示 uA741电路符号及引脚图 任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。 (a)电源端:通常由正、负双电源供电,典型电源电压为土15V、±12V等。如:uA741的7脚和4脚。 (b)输出端:只有一个输出端。在输出端和地(正、负电源公共端) 之间获得输出电压。如:uA741的6脚。最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1?2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。这表明集成运放的输出电阻很小,带负载能力较强。 (c)输入端:分别为同相输入端和反相输入端。如:uA741的3脚和2脚。输入端有两个参数需要注意:最大差模输入电压V id max和最大共模输入电压V ic max 。 两输入端电位差称为“差模输入电压” V id :V id V V 。两输入端电 位的平均值,称为“共模输入电压”V ic : 任何一个集成运放,允许承受的V d max和V c max都有一定限制。两输入端的输入电流i + 和i - 很小,通常小于1?A ,所以集成运放的输入电阻很大。 (2)集成运放的主要参数

相关文档