文档库 最新最全的文档下载
当前位置:文档库 › 在ArcGIS Desktop中进行三参数或七参数精确投影转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换
在ArcGIS Desktop中进行三参数或七参数精确投影转换

ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。

方法1:在ArcMap中进行动态转换(On the fly)

假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。

在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明

了我们想从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method 下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。

输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对

当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。

方法2:对于有大量图层需要进行投影转换时,这种手工操作的办法显得比较繁琐,每次都需要设置参数。可以只定义一次投影转换公式,而在此后的转换中引用此投影转换公式即可。这种方法需要在ArcTools中进行操作。在Data Management Tools\Projections and Tranformations\下,有Create Custom Geographic Transformation命令。

打开这个命令,选择输入和输出的投影,可以是系统自带的也可以是自己设置的,选择转换方法,与方法1种介绍的类似,可选择三参数或者七参数,然后输入各个参数指。通过为这个投影转换公式指定一个名称,可以在以后的操作中直接引用此公式而不用重复输入各个参数了。点击OK生成这个投影转换公式。

在方法一里面,我们是动态的改变了地图的投影,然后通过数据导出的办法将要转换投影的图层重新生成的。在这里,我们可以直接使用Data Management Tools\Projections and Tranformations\下的Project命令,生成转换后的图层文件,Project命令分别位于Feature和Raster目录下,分别针对于矢量和栅格数据。在这个命令中,在指定了输入的图层后,Input Coordinate System 自动的识别出了输入的投影,需要用户指定输出的投影,如果两者与之前定义投影转换公式的输入和输入投影的话,在下面的Geographic Transformation下拉框中会出现之前定义的公式名称,直接选择即可使用。

点击OK以后就可以直接生成这个图层文件而不需要进一步的操作了。

ArcGIS中的地理坐标系转换方法参数

ArcGIS中的地理坐标系转换方法参数 地理坐标系变换是数据处理过程中常遇到的问题,今天就说下这方面的问题。 如果遇到这种情景:两份数据有不同的坐标系,想叠加在一起显示,作图或显示精度要求不高。 这种情况使用ArcMap 的动态投影即可,ArcMap 的内部动投影机制会解决地理坐标系变换的问题。数据在显示的过程中,会实时的被转换,但不改变数据本身。 如果我们需要进行地理坐标系转换,我们知道ArcGIS Desktop 中提供了Project 工具。 此工具界面上有个至关重要的参数:Geographic Transformation。我们发现它的后面赫然写着Optional 。依照使用其他工具的经验,这种打了Optional 标志的参数,不就是可填可不填的意思吗?但是,它真的让你随便的可填可不填吗?Naive!图样图森破!这个参数的填写与否,完全是受前面两个参数决定的,主要三种情景吧。 情景1: 不涉及到地理坐标系变换的坐标变换,这个参数完全不需要,而不是optional 哦。 例如:从GCS_Xian_1980 进行投影变换,转换为Xian_1980_3_Degree_GK_CM_120E 投影坐标系。整过转换中,仅使用了高斯克吕格投影变换,没有涉及到地理坐标变换。

情景2: 涉及到地理坐标系变换的坐标变换,并且ArcGIS 已知二者之间的变换方法,这个参数是必须的,在已知列表中做选择或者自定义。(自定义见:情景3) 例如:从GCS_Beijing_1954,转换为GCS_WGS_1984坐标系。 转换过程中涉及到地理坐标系变换,也就是进行了椭球体变换。 ArcGIS 中提供了6种已知转换方法,可以根据适用范围选择之。其中如何选择,此文不做介绍,请查看我的另一篇博客:https://www.wendangku.net/doc/b016065975.html,/kikitamoon/article/details/12914477 Beijing_1954_To_WGS_1984 Table 1: Geographic (datum) transformations: well-known IDs, accuracies and areas of use

中海达七参数计算

HI-RTK道路版简易操作流程 一、架设基准站: 选择视野开阔且地势较高的地方架设基站,基站附近不应有高楼或成片密林(卫星接收不好)、大面积水塘(多路径效应严重)、高压输电线或变压器(有干扰)。基站一般架设在未知点上,后面的说明均征对这种情况。(此种情况下基站无需对中整平) 二、新建项目: 打开HI-RTK道路软件,进入“项目”,选定Unnamed,“套用”,输入项目名称后确认,(选择‘套用’而不是‘新建’的目的是为了使建立的项目里面不含任何人为参数) 然后:项目信息---坐标系统---(将坐标系统名称改为“中国-‘项目名’ ”)并确认每个选项的原始参数是否正确,需要改动的地方请改正---保存---退出---(弹出“是否更新点库”)是。 三、设置基准站: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---基准站设置---平滑---(采集10秒后)确认---(查看并确认另外两个选项内容是否正确)---确定---断开蓝牙连接。 四、移动站设置: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---移动站设置---(确认每个选项内容)---确定。 五、采集已知点并求取参数: 1.采集已知点:已知点采集的时候建议采用“平滑采集”,按钮为工具栏倒数第二个按钮。(最少采集两个已知点,计算七参数时至少需要三个已知点)

2.输入已知点理论坐标到点库:碎步测量---控制点库---添加(工具栏第一个按钮)---(输入点名,X,Y,H后确认)。 3.参数计算: (主界面)参数---坐标系统---参数计算---(选择计算类型,采集两个已知点时用‘四参数+高程拟合’)---添加---(‘源点’为外业采集的点,‘目标’为输入的已知点,按钮为调用点库信息。)---保存---(继续添加)---解算---运用---(坐标系统)保存---(是否覆盖)确定---确定---(更新点库)是---退出。(请确认点对配对正确) 4.进行碎步采集或者放样。 5.数据导出:从项目或者测量界面进入“记录点库”,点击工具栏最后一个按钮,输入导出文件名、选择导出文件类型后确定,然后手簿连接电脑拷贝出对应数据即可。 这个是最全面,最权威的说明书了。

arcgis坐标转换

在ArcGIS中的西安80坐标系转北京54坐标系收藏 一、数据说明 本次投影变换坐标的源数据采用的是采用1980西安的地理坐标系统,1985国家高程基准的1:50000的DLG数据。 二、投影变换基础知识准备 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换。 在ArcGIS中定义了两套坐标系:地理坐标系(Geographic coordinate system)和投影坐标系(Projected coordinate system)。 1、地理坐标系,是以经纬度为地图的存储单位的,是球面坐标系统。地球是一个不规则的椭球,为了将数据信息以科学的方法放到椭球上,这就需要有一个可以量化计算的椭球体。具有长半轴,短半轴,偏心率。一下几行是GCS_Xian_1980椭球及其相应的参数。 Geographic Coordinate System: GCS_Xian_1980 Datum: D_Xian_1980 Prime Meridian: Greenwich Angular Unit: Degree 每个椭球体都需要一个大地基准面将这个椭球定位,因此可以看到在坐标系统中有Datum: D_Xian_1980的描述,表示,大地基准面是D_Xian_1980。 2、有了椭球体和基准面这两个基本条件,地理坐标系便可以定义投影坐标系统了。以下是已定义Beijing_1954坐标的投影坐标系统的参数: Projected Coordinate System: Beijing_1954_GK_Zone_19 Projection: Gauss_Kruger False_Easting: 19500000.00000000 False_Northing: 0.00000000 Central_Meridian: 111.00000000 Scale_Factor: 1.00000000

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

ArcGIS中坐标系统详解

ArcGIS的地理坐标系与大地坐标系 一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。近日,在网上看到一篇文章介绍它们,非常喜欢。所以在此转发一下,希望能够对制图的朋友们有所帮助。 地理坐标:为球面坐标。参考平面地是椭球面,坐标单位:经纬度 大地坐标:为平面坐标。参考平面地是水平面,坐标单位:米、千米等 地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。 -------------------------------------------------------------------------------- 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation:

ArcGis中三参数和七参数转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。方法1:在ArcMap 中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

转坐标系详细步骤

转坐标系详细步骤

————————————————————————————————作者:————————————————————————————————日期: ?

“北京54坐标系”转“西安80坐标系”一、数据说明 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面讲述利用已知的3个以上(本例采用4个点计算)的公共点计算七参数方法转换: 二、利用4个已知公共点计算转换七参数 1、数据准备 (1)将已知54、80坐标系直角坐标拷贝到文本文档,其排列格式如下(图1、图2):不加带号。 图1 54直角坐标 图2 80直角坐标 (2)将已知54、80坐标系直角坐标利用MAPGIS“投影变换”转换为经纬度坐标,且坐标单位为“秒”,这样计算出的参数用来转换为80坐标系时更精确。具体操作步骤如下: 1)启动MAPGIS下“投影变换模块”,点击“投影变换”下“用户文件投影转换”弹出“用户数据点文件投影转换”对话框,如图3; 2)点击“打开文件”,选择已准备的“54直角坐标.txt”文本文档,打开后选择“按指定分隔符”后弹出的对话框点击确定激活“设置分隔符”选项,点击“设置分隔符”,其设置方式为:①“Tal键”、“空格”两个选

图3 图4

项前画勾,②修改“属性名称所在行”,点击其下拉箭头选择“无”字下面一组数据,③将“属性名称”修改为x、y,④“数据类型”修改为“5双精度”,⑤“小数位”修改为“5”或其他均可,但最好至少为“2”,其设置与最终转换出坐标的小数位数相关。设置完成后点击“确定”。如图4。 3)设置“用户投影参数”及“结果投影参数”其设置方式如图5、图6。注意:投影中心点经度一定要输入,如经度为105°,其格式为1050000,“用户投影参数”为“投影平面直角坐标”;“结果投影参数”为“地理坐标系”,且“比例尺分母”为“1”,“坐标单位”为“妙”,“投影中心点经度”要输入。二者“椭球参数”均为“54坐标系”。 图5用户投影参数 图6 结果投影参数 4)以上参数设置完成后点击“投影变换”——“写到文件”,弹出对话框如图7 ,先新建“54经纬度坐标.txt”,选中后点击保存,选择替换。 5)按照上述1)—4)步骤将已知的80直角坐标转换为以“秒”为单位的经纬度坐标。注意:在“用户投影参数”及“结果投影参数”设置时,二者“椭球参数”均为“80坐标系”,其他参数同上。 转换后的54和80坐标系以“秒”为单位的经纬度坐标如下:图7、图8。坐标中小数点前为“6位数”的是“经度”,小数点前为“5位数”的是“纬度”。 图7 54经纬度坐标图8 80经纬度坐标

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原点相同,通过三次旋转,就可以使两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数 很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。 有关WGS84与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84的经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处理软件都是采用下述步骤进行的:

MAPGIS中坐标转换中七参数法

MAPGIS 中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,丫平移,Z平移,X旋转(WX,丫旋转(WY,Z旋转(WY,尺度变化(DM。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命 令,将演示数据“演示数据_北京54.WT、“演示数据_北京 54.WL、“演示数据—北京54.WP打开。1、单击“投影转换” 菜单下“S坐标系转换”命令,系统弹出“转换坐标值” “话框⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位—米”;⑵、在“输出”一栏中,坐标系设置为“西 安80坐标系”,单位设置为“线类单位—米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中, 输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z), 如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一

栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、 单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。 3、单击“投影转换”菜单下“ MAPGI毀影转换/选转换线文件”命令,系统弹出“选择文件”对话框 选中待转换的文件“演示数据_北京54.WL',单击“确定”按 钮; 4、设置文件的Tic点,在“投影变换”模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明; 5、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出 “输入投影参数”对话框,如图6所示,根据数据的实际情况来设置 其地图参数坐标系类型:大地坐标系 椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单

已知七参数输入方法

已知七参数输入方法 我们在测量过程中,常常会遇到要求我们利用已知的七参数进行测量的情况,下面我们来看一下如何在仪器中输入七参数。 1、在主菜单屏幕上选择管理: 七参数:使用严格3D 经典方法产生转换的参数. 该方法使用GPS 测量点(WGS84 椭球 )的直角坐标,并将这些坐标与地 方坐标的直角坐标相比较.通过这种方法,计算出用来将坐标从一个系统转换到另一个系统中平移量,旋转量和尺度因子.经典 3D 转换方法可确定最多7个转换参数(3个平移参数,3个旋转参数,和1个尺度因子). 2、选择坐标系: 3、新建一个坐标系:

4、在名称行里输入一个坐标系统的名字: 5、将光标移至转换一行,点击回车键: 6、点击F2新建:

7、在概要界面输入一个七参数名称,然后点击参数: 8、输入已知的七参数,(也有输入四参数的,即不输旋转参数): 9、在更多界面下选择莫洛金斯基或布沙-沃尔夫,一般选择后者,然后保存: Molodensky-Badekas ——莫洛金斯基 一种转换模型,其旋转原点是系统A 中公共点的重心. Bursa-Wolf ——布沙-沃尔夫 对系统A 来说,旋转原点为笛卡儿坐标系统原点的转换模型.

10、选择做好参数的转换文件,继续: 11、将光标移至椭球行,回车: 在大地测量中,除非特别定义,椭球是 指椭圆绕短半轴旋转形成的数学图形 (有时也称回转椭球体),两个量定义一 个椭球,它们是长半轴的长度; 扁率 f. The Flattening is one of the quantities to specify an ellipsoid. f = (a-b)/a = 1 - sqrt(1-e2) where: a ... semi-major axis b ... semi-minor axis e ... eccentricity 12、选择要用的椭球(西安-80或北京-54) 如果没有需要的椭球,请点击 SHIFT键,在点击F5键即可调 阅所有椭球 13、将光标移至投影行,回车,然后新建,选择横轴莫卡托,然后输入投影参数,保存: 假定东坐标:为避免坐标出现负值,我 国将坐标原点东坐标规定为500,000 米。 中央子午线:定义地图投影经度的中央 线。是使用在地图投影中的带常数。 带宽:投影带的宽度。 注意:投影参数一定要在开始工作前落 实清楚,否则将影响投影后坐标。

利用ArcGIS进行地图投影和坐标转换的方法

利用ArcGIS进行地图投影和坐标转换的方法 1、动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示。但此时数据文件所存储的数据并没有改变,只是显示形态上的变化。因此叫动态投影。表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data(当前数据框架的坐标系统)导出数据。 2、坐标系统描述(ArcCatalog) 大家都知道在ArcCatalog中可以一个数据的坐标系统说明。即在数据上鼠标右键→Properties→XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统。但有许多人认为在这里改完了,数据本身就发生改变了。但不是这样的。这里缩写的信息都对应到该数据的.aux文件。如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown。这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身。因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下。 但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的。因此你就无法在做对数据的进一不处理。比如:投影变换操作。因为你不知道要从哪个投影开始变换。 因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识。 3、投影变换(ArcToolBox) 上面说了这么多,要真正的改变数据怎么办,也就是做投影变换。在ArcToolBox->Data Management Tools->Projections and Transformations下做。 在这个工具集下有这么几个工具最常用, 1、Feature→Project 2、Raster→Project Raster 3、Create Custom Geographic Transformation

MAPGIS中坐标转换中七参数法

MAPGIS中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开。1、单击“投影转换”菜单下“S坐标系转换”命令,系统弹出“转换坐标值”“话框 ⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“西安80坐标系”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z),如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来; 2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示; 在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:

arcgis转换坐标

ArcGIS中的投影和坐标转换及编程实现 摘要:一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 ArcGIS中的投影和坐标转换 1 ArcGIS中坐标系统的定义 一般情况下地理数据库(如Personal GeoDatabase的Feature DataSet 、Shape File等)在创建时都具有空间参考的属性,空间参考定义了该数据集的地理坐标系统或投影坐标系统,没有坐标系统的地理数据在生产应用过程中是毫无意义的,但由于在数据格式转换、转库过程中可能造成坐标系统信息丢失,或创建数据库时忽略了坐标系统的定义,因此需要对没有坐标系统信息的数据集进行坐标系统定义。 坐标系统的定义是在不改变当前数据集中特征X Y值的情况下对该数据集指定坐标系统信息。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Define Projection 项打开坐标定义对话框。介下来在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class;在Coordinate System栏中输入或点击旁边的按钮选择需要为上述DataSet或Feature定义的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 112.2 Y 43.3 ,且该shape文件没有带有相应的Prj文件,即没有空间参考信息,也不知道X Y 的单位。通过坐标系统定义的操作定义其为Beijing1954坐标,那么点P的信息是东经112.2度北纬43.3度。 2 ArcGIS中的投影方法 投影的方法可以使带某种坐标信息数据源进行向另一坐标系统做转换,并对源数据中的X 和Y值进行修改。我们生产实践中一个典型的例子是利用该方法修正某些旧地图数据中X,Y 值前加了带数和分带方法的数值。 操作方法:运行ArcGIS9中的ArcMap,打开ArcToolBox,打开Data Management Tools ->Projections and Transformations->Feature->Project 项打开投影对话框。在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class(带有空间参考),Output DataSet or Feature Class栏中输入或点击旁边的按钮选择目标DataSet或Feature Class,在Output Coordinate System 栏中输入或点击旁边的按钮选择目标数据的坐标系统。最后点OK键即可。 例如某点状shape文件中某点P的坐标为X 40705012 Y 3478021 ,且该shape文件坐标系统为中央为东经120度的高斯克吕格投影,在数据使用过程中为了将点P的值改为真实值X 705012 Y478021,首先将源数据的投影参数中False_Easting和False_Northing值分别加上40000000和3000000作为源坐标系统,修改参数前的坐标系统作为投影操作的目标坐标系统,然后通过投影操作后生成一新的Shape文件,且与源文件中点P对应的点的坐标

ARCGIS中坐标系的定义及投影转换方法

ArcGIS中坐标系的定义及投影转换方法 张卫东 (安徽省环境信息中心 合肥 230001 ) 摘 要:本文就我省GIS项目中地理数据所涉及的多种坐标系及地图投影转换等问题作了详细分析,并在ESRI公司的ArcGIS软件平台上介绍了不同坐标系的定义及投影转换方法。 关键词:坐标系; 地图投影 一、问题的提出 GIS技术在我省环保工作中已应用多年,现有多套基于不同坐标系的地理数据,如全省1:5万的北京54坐标系数据,主要城市1:1万的西安80坐标系数据,GPS采集的WGS84坐标系数据以及同是北京54坐标系但不同投影的遥感解译数据等,这些不同坐标系的数据给我们的使用带来了困难:如何将遥感解译数据和不同的地理数据转换到一起,GPS采集的经纬度数据如何正确加载到地图上,以前在北京54坐标系上使用的数据又如何转换到新的西安80坐标系上来?通过摸索,本人找到了解决问题的一些方法,现介绍如下,首先介绍一下相关的几个概念。 二、相关概念 由于GIS所描述是位于地球表面的空间信息,所以在表示时必须嵌入到一个空间参照系中,这个参照系统就是坐标系,它是根据椭球体等参数建立的。另外,为了能够将地图从球面转换到平面,还要进行投影。 1. 椭球体(Spheroid)、基准面(Datum)、坐标系(Coordinate System)及投影(Projection) 尽管地球是一个不规则的椭球,但为了将数据信息以科学的方法存放到椭球上,我们需要用一个可以量化计算的椭球体作为地球的模型。这样的椭球体用长半轴a(semimajor axis),短半轴b(semiminor axis),偏心率倒数1/f(Inverse flattening)来描述,这三个参数数学关系为:1/f=a/(a-b),实际中我们一般用长、短半轴二个参数来表示就可以了,根据需要人们定义了多种参考椭球体模型。然而有了这个椭球体还不够,还需要一个大地基准面将这个椭球定位,它的作用是来确定地球与椭球体之间的位置关系,由于每个国家或地区需要最大限度的贴合自己的那一部分不同,基准面也不同。 有了基于椭球体参数的基准面,再加上角度单位(Angular Unit)和本初子午线(Prime Meridian),就定义了地理坐标系(Geographic Coordinate System),图2清楚地表明了这一点。 但地理坐标系是用经纬度表示球面的位置,很多时候我们精确分析需要在平面上来进行,这就要将地图从三维地理坐标通过投影转换成二维平面坐标,这样的坐标系叫投影坐标系(Projection Coordinate System),它是在地理坐标系上加上投影转换参数(参见图4)。 由于从球面到平面的转换会引起距离、面积、形状、方向一个或多个空间属性的变形失真,没有一种投影转换能保持所有的空间属性不变。所以一些地图投影通过损失其它空间属性来使某一属性失真最小,而另一些地图投影则努力平衡全部空间属性的失真,现有数百种地图投影,它们各自适合于表示整个地球表面或某些区域的不同需求,如我国1:50万和更大比例尺地形图使用的是高斯-克吕格 (Gauss-Kruger) 投影,它没有角度变形,在长度和面积上变形也很小,通过分带投影后能保证很高的精度(参见图4),而遥感解译数据常采用阿尔勃斯(Albers Equal-Area Conic)投影,它是等面积割圆锥投影,可以保持面积不变(参见图5)。

坐标投影的ArcGIS操作步骤

- 110 - 说明说明:: 投影投影其实其实其实是是实现实现((B ,L ,H )与(x,y,H )之间之间的的相互相互转换转换转换。。 步骤步骤如下如下如下:: 1.在ArcCatalog 中设置设置坐标坐标坐标参考参考参考((已知已知))。 2.投影投影转换转换 a. 动态动态投影投影投影::在ArcMap 中view 菜单菜单下下实现实现,,不改变 空间空间数据数据数据的的坐标值标值。。 b.持久持久化化投影投影::利用ArcToolBox 实现实现,,改变改变空间 空间空间数数据的坐标值标值。。

- 111 -第四章 空间数据的转换与处理 空间数据是GIS 的一个重要组成部分。整个GIS 都是围绕空间数据的采集、加工、存储、分析和表现展开的。原始数据往往由于在数据结构、数据组织、数据表达等方面与用户自己的信息系统不一致而需要对原始数据进行转换与处理,如投影变换,不同数据格式之间的相互转换,以及数据的裁切、拼接等处理。以上所述的各种数据转换与处理均可以利用ArcToolbox 中的工具实现。在ArcGIS9中,ArcToolbox 嵌入到了ArcMap 中。本章就投影变换、数据格式转换、数据裁切与拼接等内容分别介绍。 4.1 投影变换 由于数据源的多样性,当数据与研究、分析问题的空间参考系统(坐标系统、投影方式)不一致时,就需要对数据进行投影变换。同样,在完成本身有投影信息的数据采集时,为了保证数据的完整性和易交换性,要定义数据投影信息。以下就地图投影及投影变换的概念做简单介绍,之后分别讲述在ArcGIS 中如何实现地图投影定义及变换。 空间数据与地球上的某个位置相对应。对空间数据进行定位,必须将其嵌入到空间参照系中。因为GIS 描述的是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为空间数据的参照系统。而地球是一个不规则的球体,为了能够将其表面内 容显示在平面的显示器或纸面上,就必须将球面地理坐标系统变换到平面投影坐标系统(图4.1)。因此,运用地图投影方法,建立地球表面上和平面上点的函数关系,使地球表图4.1椭球体表面投影到平面的微分梯形 Y

手持GPS三参数计算方法

手持GPS三参数计算方法 南方测绘石家庄工程项目部靳超 新机拿到手之后,设计方都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。 一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(北京54坐标系△A=-108、△F=0.0000005西安80△A=-3、△F=0),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。 测算三参数的基本方法是,首先在已知控制点上测量一个稳定的WGS-84大地坐标(BLH)值,然后,运用专用测量程序既可算出一个三参数来。三参数计算出来后,将其输入GPS中再到已知控制点上观测比对,最好再到另一已知控制点上观测检校,如比对检校差值在规定允许误差范围之内,既可运用于实际工程测量工作。一般来说,只要到一新工区或工程点间距较远(数十至上百公里以外)都要到已知控制点上重新进行观测比对检校,没有问题才能进行实际工作。 三参数的求取步骤如下: 一、获取已知点的经纬度 利用手持GPS到一个已知控制点上测量一个稳定(即精度比较高)的WGS84大地坐标(即B,L,H),也就是在手持GPS中将坐标系设置为:WGS84坐标系,显示格式为:经纬度格式。每种手持机设置的位置有所不同,请参阅说明书进行操作。 二、计算转换参数 一般手持机参数为:△X、△Y、△Z、△A、△F。△A、△F在北京54和西安80为固定值,我们主要计算:△X、△Y、△Z,即三参数。 我们使用COORD4.1(在此,感谢软件的作者:Jerry , 注意网上有其它版本的软件,某些功能可能有错误,如4.2版本)软件来自己求三参数。打开软件如图

GIS笔记——ArcGIS中WGS84转为西安80

GIS笔记——ArcGIS中WGS84转为西安80 在ArcGIS中,如果想要把一种坐标系统的矢量数据转换为另一个坐标系统,通常应当使用ArcToolbox中的Project工具。但是我使用这个工具的时候遇到了一个问题。 我拿到的数据是一个点图层,经纬度坐标。给我这个图层的人说这些点是从Google Earth上取出来的,应该是WGS84坐标。但是项目中使用的是西安80坐标系统,于是就需要把WGS坐标系统转为西安80。使用Project做投影转换的时候遇到了一个问题,如图 本来是可选参数的Geographic Transformation变成了必选参数。而且在下拉列表里找不到WGS84与西安80间的转换选项。 -----分割线-----

在ESRI中国社区里发现了一些关于这个问题的帖子。帖子没有直接给出这个问题的解决方法,但是参考那些帖子的内容,我尝试了下面这个方法,并取得了初步的成功。这个方法的基本思路是,既然必须填Geographic Transformation,但是下拉列表里没有,那么就自定义一个。 1、首先,使用Creat Custom Geographic Transformation工具,定义一个Geographic Transformation。如图 2、完成定义后,再使用Project工具,就会发现Geographic Transformation下拉列表里出现了刚才自定义的那个Geographic Transformation,如图

绿点消失了,可以运行了。这里有件事需要说明,第三幅图里的Geographic Transformation与第二幅图里的Geographic Transformation本来应该是相同的。但是我刚开始做这个操作的时候没有截图,图都是后来截取的,所以图里它们两个不同名。这只是个示意而已。 -----分割线----- 这个方法有两个隐患 1、图2,Method参数我是根据网上一个例子填的,不知道是什么意思; 2、图2,Parameters似乎是投影转换的“七参数”,七个参数都是0,看起来似乎不妥。我做过检查,把转换前的数据和转换后的数据都加载到ArcMap里,发现它们是重合的。但是由于转换前后的数据属于不同的坐标系统,加载数据的时候ArcMap肯定对其中一个做过转换。所以即使它们是重合的,也不能完全确定这个方法是正确的。

相关文档
相关文档 最新文档