文档库 最新最全的文档下载
当前位置:文档库 › Brouwer不动点定理的初等证明

Brouwer不动点定理的初等证明

Brouwer不动点定理的初等证明
Brouwer不动点定理的初等证明

不动点定理及其应用

不动点定理及其应用 一、不动点定理 不动点定理fixed-point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =???,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。 (一)、压缩算子: 1、定义: 设(1)X 距离空间; (2)算子:T X X →的映射。 若(01),..,s t x y X θθ?≤

(2)定理的条件是结论成立的充分非必要条件。 (3)迭代的收敛性和极限点与初始点无关。但T 的选取及初始点0x 的选取对迭代速度有影响。初始点离极限点越近,其收敛速度越快,而不影响精确度。 (4)误差估计 ①事前(或先验)误差:根据预先给出的精确度,确定计算步数。此方法有时理论上分析困难。 设迭代到第n 步,将* n x x ≈,则误差估计式为 * 0010(,)(,)(,)11n n n x x Tx x x x θθρρρθθ ≤=-- ②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取* n x x ≈。此方法简单,但有时无法估计计算步数。 设迭代到第n 步,将*n x x ≈,则误差估计式为 *1(,)(,)1n n n x x x x θ ρρθ -≤ - 或 *11 (,)(,)1n n n x x x x ρρθ +≤ - 3、求解不动点的具体步骤: Step1 提供迭代初始点0x ; Step2 计算迭代点10x Tx =; Step3 控制步数,检查10(,)x x ρ,若10(,)x x ρε>。则以1x 替换0x 转到第二步,继续迭代,当10(,)x x ρε≤时终止,取1x 为所求结果。误差不超过 1θ εθ -。 对于不动点理论,为了便于应用,下面给出两种不同情况下所适合的方法。 推论1 设(1)X ----完备的距离空间; (2):T X X →的算子。

角谷静夫不动点定理

一、不动点算法 又称固定点算法。所谓不动点,是指将一个给定的区域A,经某种变换?(x),映射到A时,使得x=?(x)成立的那种点。最早出现的不动点理论是布劳威尔定理(1912):设A为R n中的一紧致凸集, ?为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=?(x)。其后,角谷静夫于1941年将此定理推广到点到集映射上去。设对每一x∈A,?(x)为A的一子集。若?(x)具有性质:对A上的任一收敛序列x i→x0,若y i∈?(x i)且y i→y0,则有y0∈?(x0),如此的?(x)称为在A上半连续,角谷静夫定理:设A为R n中的一紧致凸集,对于任何x∈A,若?(x)为A的一非空凸集,且?(x)在A上为上半连续,则必存在x∈A,使x∈?(x)。J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。 不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明?(x)=0必有一根,只须证明在适当大的圆│x│≤R内函数?(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min{?(x)│g i(x)≤0,i=1,2,…,m},在此,?和g1,g2,…,g m皆为R n中的凸函数。通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。 在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。 H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n维单纯形S n为例来说明这一概念,在此, 。对每一i, 将区间0≤x i≤1依次分为m1,m2…等分,m10}。由著名的施佩纳引理,在G i中必存在一三角形σi,它的n+1个顶点y i(k)的标号分别为k(k=1,2,…,n+1)于是可得一列正数 i j(j→),使得(k)→y k,k=1,2,…,n+1。根据σi的作法,当i j→时,收敛成一个点x。

不动点原理及其应用

题目:不动点原理及其应用 摘要 本文主要讨论了压缩映射原理,Schauder不动点定理以及不动点的应用三个方面。在解决微分方程,积分方程,以及其他方程的解的存在唯一性时,将问题转换为求某一映射的不动点,利用不动点原理进行解决。 关键词:压缩映射原理;Schauder不动点定理;不动点原理应用

Abstract In this paper ,we talked about contraction mapping principle,Schauder’s fixed point theorem and the application of the fixed point theorem.As we deal with the solutions about differential equation, integral equation and other kinds of equations, it is a useful way to transform the problem into fixed point theorem.We can use it to solve plenty of practice problems too. Keywords: contraction mapping principle; Schauder’s fixed point theorem;the application of fixed point theorem.

目录 引言 (1) 1.压缩映射原理 (1)

1.1压缩映射原理(距离空间) (1) 1.2压缩映射原理(巴拿赫空间) (7) 2.Schauder不动点定理 (9) 3不动点定理的应用 (11) 总结 (12) 参考文献 (14)

费马大定理的初等证明

费马大定理的初等证明 倪晓勇 (中国石化仪征化纤短纤生产中心生产管理室,江苏 仪征211900) E-mail:nxyong.yzhx.@https://www.wendangku.net/doc/bc16130501.html, 费马大定理:不定方程n n n y x z +=当n ≥3时无正整数解。 证明:一、当n=2时,有222y x z +=,所以))((222y z y z y z x +-=-=(1)。令22)(m y z =-,则22m y z +=,代入(1)得222222222222)(2)22(2l m m y m m y m y z x =+=+=-=,所以ml x 2=, 22m l y -=,22m l z +=(x 、y 、z 、l 、m 都是自然数) ,显然x 、y 、z 有正整数解。 二、当n=3时,有333y x z +=,所以 ))((22333y zy z y z y z x ++-=-=(2)。令323)(m y z =-, 则323m y z +=,代入(2)得] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++=。 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某自然数的三次幂,即 363322)33(l m y m y =++,所以 )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+,所以 )33(3)3(4222322m l m l m y m l y ++=+-=和,所以l -3m 2+32m 3=l 2+3m 2l +32m 4,所以l = l 2+3m 2l ,且32m 3=3m 2+32m 4,所以1=l +3m 2,3m=1+3m 2,所以 l +3m=2。因为l 和m 都是自然数,所以l +3m ≥4,所以l +3m=2不可能,所以当n=3时,333y x z +=无正整数解。 三、当n=4时,有z 4=x 4+y 4,所以x 4= z 4-y 4=(z -y )(z 3+z 2y+zy 2+y 3)(3) 。令(z -y )=43m 4,则z=y+43m 4,代入 (3) 得x 4= z 4- y 4=43m 4[(y+43m 4)3+(y+43m 4)2+(y+43m 4)y+ y 3]=43m 4 (4y 3+47m 8y+6×43m 4y 2+49m 12)= 44m 4(y 3+46m 8y+6×42m 4y 2+48m 12 ) 。 若方程z 4=x 4+y 4有正整数-解,则(y 3+46m 8y+6×42m 4y 2+48m 12)为某自然数的四次幂,即(y 3+46m 8y+6×42m 4y 2+48m 12) =l 4,所以y 3+46m 8y+6×42m 4y 2=l 4-48m 12 =(l 42m 3)(l 3+l 242m 3+l 44m 6+46m 9),所以y =l -42m 3且y 2+46m 8+6×42m 4y =l 3+l 242m 3+l 44m 6+46m 9),所以(l -42m 3)2+46m 8+6×42m 4(l -42m 3) =l 3+l 242m 3+l 44m 6+46m 9),所以l 2-32m 3 l + 44m 6 + +46m 8+6×42m 4(l -42m 3)=l 3+l 242m 3+l 44m 6+46m 9),所以 44m 6 +46m 8=6×44m 7+46m 9 ,l 2+6×42m 4l =l 3+l 242m 3+l (44m 6+32m 3),所以1+42m 2=6m+42m 3,所以l 2+l (42m 2-6m )+42m 3(42m 2-12m+5)=0。因为l 和m 都是自然数,所以l 2+l (42m 2-6m )+42m 3(42m 2-12m+5)>0,所

不动点定理研究

前言 不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3]. 我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、 许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。 作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧

泛函分析中不动点理论及其应用

泛函分析与微分方程有着密切的联系,泛函分析的算子半群理论、巴拿赫代数、拓扑线性空间理论,不动点原理等在常微分方程中都有重要的应用。 首先,算子半群最简单的原型在线性常微分方程的初值问题,且由 H i l l e Yo s i d a -定理表明:当稠定闭算子A 满足定理条件时,是下列方程的解, 且解是唯一的。 设A 是一个n n ?实矩阵,方程组 () ()()00n dx t Ax t dt x x R ?=? ? ?=∈? 在空间中解存在唯一。设0t ≥,考察映射 ()()0:.T t x x t → 则(){}0T t t ≥是强连续算子半群。在常微分方程中把算子半群(){} 0T t t ≥通过矩阵写出来: ()0 !n n tA N t A T t e n ∞ ===∑. 且不动点在常微分方程中有很多应用。例如,应用不动点定理证明微分方程解的存在性定理 微分方程解的存在性与唯一性定理 若常微分方程 ()0 0,,x dy F x y y y dx ==满足以下条件: (1)(),F x y 在整个平面上连续; (2)()()11,,F x y F x y K y y -≤-,其中K >0; 那么存在唯一的连续函数()y x j =满足 () (),d x F x y dx ?=且()00x y ?=。 证明:用()() 0,X C U x d =表示所有定义在()0,U x d 上取值于R 的连续函数全 体,其中d 满足1K d <。,f g X "?,用()( ) ()()0,,m a x xUx f g f x g x a r ? =-表示,f g 间 的距离,同样由泛函分析的知识知X 为完备度量空间。上述常微分方程等价于

不动点定理及其应用(高考)

摘要 本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用. 关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性. Abstract This article firstly introduced the Fixpoint Theorem in Banach space, the one-dimensional extended form of the Fixpoint Theorem in other linear topological space and the extended form in general complete metric space. Then, we summarized the problem on sequence of number using Fixpoint Theorem, analyzing the characteristics of tests emerged on math papers of all parts of our country recent years, including the problem of general term and boundedness of a sequence of number. At last, attractive fix point and rejection fix point in Fixpoint Theorem v/ere introduced v/hich can solve the problem about the monotonicity and astringency of sequence of number. Keywords:Banach fixed point theorem, Sequence, Boundedness, Monotonicity Convergence. 第1章绪论 (1) 1.1导论 (1) 1.1.1选题背景 (1)

“猜想”的费马猜想初等数学证明(简稿)

“猜想”的费马猜想初等数学证明(简稿) 求证:当正整数n>2时不定方程z n = x n + y n没有正整数解。 证明:因为不定方程z n = y n + x n有正整数解则( kz )n = ( kx )n + ( ky )n(k为正整数)也有正整数解,各倍数解组中必有一组为最小的正整数,所以假设( x ,y ) = 1使z n = y n + x n (1) 正整数等式成立。 依据约数分析法○1将(1)式变形为z n – x n = y n左边进行因式分解: ( z – x ) (z n-1 + xz n-2+ ... + x n-2z + x n-1) = y n (2) 由(2)式,因为z>x等式左边为两个正整数之积,所以等式右边y n 亦分解为两个正约数之积,设正整数y n = CD得两个―约数式‖和―余约数式‖: z –x = C (3) z n-1 + xz n-2 + ... + x n-2z + x n-1= D (4) 判断(3)式、(4)式确定成立的正整数等式是否成立便可证明费马猜想。 分析(3)式、(4)式,对于正整数z、x所决定y n的C、D两个约数,存在互质或不互质两种情形:即(C ,D)= 1或(C ,D)>1。 当(C ,D)= 1时,根据引理○2确定正整数C = c n、D = d n,y = cd,由(3)式(4)式得: z –(x + c n)= 0 (5) z n-1 + xz n-2+ ... + x n-2z +(x n-1– d n)= 0 (6) 并同时用计算的方法:同理以x n为约数设x n = (st)n可得z –(y + s n)= 0,x + c n = y + s n,x – y= s n– c n,―x –y‖是确定的整数,由此计算得到c n、s n从而确定y n分解c n及d n是满足(2)式约数分解使(5)式、(6)式为确定的正整数等式。 当(C ,D)>1时,由(4)式: D = z n-1 + xz n-2 + x2z n-3 + x3z n-4 + x4z n-5 +x 5z n-6+ … +x n-2z + x n-1 = z n-2(z – x)+2xz n-3(z – x)+3x2z n-4(z – x)+ … +(n-1)x n-2(z – x)+ nx n-1

Banach不动点理论及其应用

不动点定理及其应用综述 摘要本文主要研究Banach 空间的不动点问题。[1]介绍了压缩映射原理证明隐函数存在定理和常微分方程解得存在唯一性定理上的应用;[2][3]介绍了应用压缩映射原理需要注意的问题;[4]介绍了不动点定理在证明Fredholm 积分方程和V olterra 积分方程解的存在唯一性以及在求解线性代数方程组中的应用;[5]讨论了不动点定理在区间套定理的证明中的应用。 一、压缩映射原理 压缩映射原理的几何意义表示:度量空间中的点x 和y 在经过映射后,它们在像空间中的距离缩短为不超过d(x,y)的α倍(1α<)。它的数学定义为: 定义1.1设X 是度量空间,T 是X 到X 的映射,若存在α,1α<,使得对所有 ,x y X ∈,有下式成立 (,)(,)d Tx Ty d x y α≤(1.1) 则称T 是压缩映射。 定理1.1(不动点定理):设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有唯一的不动点,即方程Tx=x 有且只有唯一解。 证明:设0x 是X 种任意一点,构造点列{}n x ,使得 21021010,,,n n n x Tx x Tx T x x Tx T x -===== (1.2) 则{}n x 为柯西点列。实际上, 111(,)(,)(,)m m m m m m d x x d Tx Tx d x x α+--=≤ 21212(,)(,)m m m m d Tx Tx d x x αα----=≤ 10(,)m d x x α≤≤ (1.3) 根据三点不等式,当n m >时, 1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++ 1101()(,)m m n d x x ααα+-≤++ 011(,)1n m m d x x ααα --=- (1.4) 由于1α<,故11n m α--<,得到 01(,)(,)()1m m n d x x d x x n m αα ≤>-(1.5) 所以当,m n →∞→∞时,(,)0m n d x x →,即{}n x 为柯西列。由于X 完备, x X ?∈,

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

不动点理论及其应用

不动点理论及其应用 主要内容: 不动点理论一压缩映像原理 不动点理论在微分方程中的应用 不动点理论在中学数学中的应用目录: 一、弓丨言 二、压缩映像原理 三、在微分方程中的应用 四、在中学数学中的应用 五、其它

一、引言 取一张照片,按比例缩小,然后把小照片随手放在大照片上, 那么大小两张照片在同一个部位,一定有一个点是重合的这个重合点就是一个不动点 函数的不动点,在数学中是指被这个函数映射到其自身的一个点 即函数f(x)在取值过程中,如果有一个点X。使f(X0)X o,则X o就是 一个不动点。 二、压缩映像原理 定理:(Banach不动点定理一压缩映像原理) 设(X,)是一个完备的距离空间,T是(X,)到其自身的一个压缩映射,则T 在X上存在唯一的不动点

这里有三个概念:距离空间,完备的距离空间,压缩映射 距离空间又称为度量空间 定义:(距离空间)设X 是一个非空集合。X 称为距离空间,是指在X 上定义了一个双变量的实值函数(x, y) ,满足下面三个条件: (1)。(x,y) 0,而且(x, y) 0,当且仅当x y; (y,x); (2)。(x,y) (3)。(x,z)(x, y) (y,z), ( x,y,z X )。 这里叫做X 上的一个距离,以为距离的距离空间X 记作(X, ) 定义:(完备的距离空间) 距离空间( X, ) 中的所有基本列都是收敛列,则称该空间是完备的。 定义:(压缩映射)称映射T : (X, ) (X, ) 是一个压缩映射,如果存在0 a 1,使得(Tx,Ty) a (x,y) ( x,y X )成立。

三、在微分方程中的应用 定理:(存在和唯一性)考虑如下初值问题 d y f(x,y), dx y(x o) y o. 假设f(x,y)在矩形区域 R: |x x o | a, | y y°| b 内连续,而且对y满足Lipschitz条件,则上述问题在区间I [X。h,X。h]上有且仅有一个解,其中 h min2,寻}, M (m y a>R| f(x,y)|. (1)。传统的证明方法 通常,我们分成四步来证明: a.转换成等价的积分方程 x y y o x f(t,y)dt x o b.构造皮卡迭代序列 c.证明皮卡迭代序列一致收敛,而且极限函数是解 d.证明解唯一 (2)。压缩映像原理证明 根据上面的理论,先定义X C[x。h, X。h] C(l) 然后,给一个度量(x,y) max|x(t) y(t)|

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

不动点定理及其应用

不动点定理及其应用 摘要不动点定理是研究方程解的存在性与唯一性理论的重要工具之一.本文给出了线性泛函分析中不动点定理的几个应用,并通过实例进行了说明.同时,介绍了非线性泛函分析中的不动点定理——Brouwer不动点定理和Leray-Schauder不动点定理. 关键词不动点;不动点定理;Banach空间 Fixed Point Theorems and Its Applications Abstract The fixed point theorem is one of important tools in studying the existence and uniqueness of solution to functional equation .In this paper,the fixed theorem in linear functional analysis and its applications are introduced and the corresponding examples are given.Meanwhile,the Brouwer and Leray-Schauder fixed point theorems are also involved. Key Words Fixed point , Fixed point theorem, Banach Space

不动点定理及其应用 0 引言 在线性泛函中,不动点定理是研究方程解的存在性与解的唯一性理论 [1-3] .而在非线性泛函中是 研究方程解的存在性与解的个数问题[4],它是许多存在唯一性定理(例如微分方程,积分方程,代数方程等)的证明中的一个有力工具. 下面给出不动点的定义. 定义 0.1设映射X X T →:,若X x ∈满足x Tx =,则称x 是T 的不动点.即在函数取值的过程中,有一点X x ∈使得x Tx =. 对此定义,有以下理解. 1)代数意义:若方程x Tx =有实数根0x ,则x Tx =有不动点0x . 2)几何意义:若函数()x f y =与x y =有交点()00,y x 则0x 就是()x f y =的不动点. 在微分方程、积分方程、代数方程等各类方程中,讨论解的存在性,唯一性以及近似解的收敛性始终是一个极其重要的内容. 对于许多方程的求解问题,往往转化为求映射的不动点问题,同时简化了运算. 本文将对不动点定理及其变换形式在线性分析和非线性分析中的应用加以探索归纳. 1 Banach 不动点定理及其应用 1.1相关概念 首先介绍本文用的一些概念. 定义1.1.1[3] 设X 为距离空间,{}n x 是X 中的点列,若对任给的0>ε,存在 0>N ,使得当N n m >,时,()ερ

Brouwer不动点定理的几种证明

Brouwer不动点定理的几种证明 学院名称: 专业名称: 学生姓名: 指导教师: 二○一一年五月

摘要 Brouwer不动点定理是很著名的定理.其中,关于它的证明很多有:代数拓扑的证明、组合拓扑的证明、微分拓扑的证明等.都涉及拓扑学上许多复杂的概念和结果. 关于该定理,也可以用图论的方法证明,用离散离散理论解决连续系统中问题.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍来体现这一思想. 关键词:Brouwer;不动点.

ABSTRACT Brouwer fixed point theorem is very famous theorem . Among them , about its proof many : algebra topologies, proof of the proof, differential combined topology etc. The proof of topological Involves many complex on the concept of limited and results. About this theorem, also can use graph method to prove, in a discrete discrete theory in solving continuous system. This article tries to summarize the other proof method based on the method of graph theory prove Brouwer fixed point theorem for detailed introduction to reflect this thought. Keywords: Brouwer; Fixed point.

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

泛函分析中不动点理论及其应用

目录 内容摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 1.引言 (1) 2.不动点定义及定理介绍 (2) 2.1不动点相关定义 (2) 2.2不动点思想 (2) 2.3不动点相关定理 (6) 3.不动点思想在其他学科的应用 (8) 3.1在求数列通项公式中的应用 (8) 3.2在求方程解中的应用 (11) 3.3在求函数解析式中的应用 (12) 4.不动点定理在证明中的应用 (14) 4.1 应用不动点定理证明数列极限 (14) 4.2 应用不动点定理证明隐函数定理 (15) 4.3 应用不动点定理证明微分方程解的存在性定理 (17) 4.4 应用不动点定理证明积分方程解的存在性定理 (17) 4.5 不动点定理在图论中的证明 (14) 参考文献 (18) 致谢 (19)

内容摘要:本文简要介绍了不动点思想及相关定理,对Banach不动点定理做了一些简单的推论,应用不动点思想解决数列通项公式、方程的解、函数的解析式等问题。并对隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理做出了证明。 关键词:不动点不动点思想不动点定理应用 Abstract: Key words:

1.引言 泛函分析是本世纪出才逐渐形成的一个新的数学分支,以其高度的统一性和广泛的应用性,在现代数学领域占有重要的地位。在泛函分析中。许多分散在各个数学分支中的事实都得到了统一的处理,例如隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理,在泛函分析中都归结为一个定理——不动点定理。这正是抽象的结果。 不动点定理实际上是算子方程T x x =的求解问题,是分析学的各个分支中存在和唯一性定理的重要基础,它是关于具体问题解的存在唯一性的定理,其中Banach 不动点定理,亦称压缩映射原理,它提供了线性方程解的最佳逼近程序,给出了近似解的构造,在常微分方程、积分方程等领域中也有着广泛的应用,在现代数学发展中有着重要的地位和作用。 2.不动点相关定义及定理介绍 2.1不动点相关定义 定义1 设X 为非空集合,:T X X ?是一个映射,如果x X $ 使得T x x =成 立,则称x 为映射T 的一个不动点。 特别地,函数()f x 是定义在D R ì上的函数,如果x D $ 使得()f x x =成立,则称x 为函数()f x 的一个不动点。 定义 2 设(),X r 是距离空间,T 是X 到其自身的映射,且对于任意的 ,x y X ?,不等式()(),,Tx Ty x y r qr £都成立,其中q 是满足01q ?的常数。则 称T 是X 上的压缩映射。 2.2不动点思想 首先,对于函数()y f x =的不动点,有两个方面的理解: 1)()y f x =的不动点,是方程()0f x x -=的根。 2)()y f x =的不动点,是函数()y f x =与y x =的交点。 有了这两个方面的理解,很显然,可以用不动点思想来求方程的根和函数的

相关文档
相关文档 最新文档