文档库 最新最全的文档下载
当前位置:文档库 › 球磨机工作原理及研磨体运动的基本状态

球磨机工作原理及研磨体运动的基本状态

球磨机工作原理及研磨体运动的基本状态
球磨机工作原理及研磨体运动的基本状态

1.1 球磨机工作原理及研磨体运动的基本状态

1.1.1 球磨机工作原理

球磨机的主要工作部分是一个装在两个大型轴承上并水平放置的回转圆筒,筒体用隔仓板分成几个仓室,在各仓内装有一定形状和大小的研磨体。研磨体一般为钢球、钢锻、钢棒、卵石、砾石和瓷球等。为了防止筒体被磨损,在筒体内壁装有衬板。

图1 磨机粉磨物料的作用

当球磨机回转时,研磨体在离心力和与筒体内壁的衬板面产生的摩擦力的作用下,贴附在筒体内壁的衬板面上,随筒体一起回转,并被带到一定高度(如图1所示),在重力作用下自由下落,下落时研磨体像抛射体一样,冲击底部的物料把物料击碎。研磨体上升、下落的循环运动是周而复始的。此外,在磨机回转的过程中,研磨体还产生滑动和滚动,因而研磨体、衬板与物料之间发生研磨作用,使物料磨细。由于进料端不断喂入新物料,使进料与出料端物料之间存在着料面差能强制物料流动,并且研磨体下落时冲击物料产生轴向推力也迫使物料流动,另外磨内气流运动也帮助物料流动。因此,磨机筒体虽然是水平放置,但物料却可以由进料端缓慢地流向出料端,完成粉磨作业。

1.1.2研磨体运动的基本状态

球磨机筒体的回转速度和研磨体的填充率对于粉磨物料的作用影响很大。当筒体以不同转速回转时,筒体内的研磨体可能出现三种基本状态,如图7.2所示。

图7.2(a),转速太慢,研磨体和物料因摩擦力被筒体带到等于动摩擦角的高度时,研磨体和物料就下滑,称为“倾泻状态”,对物料有研磨作用,但对物料的冲击作用很小,因而使粉磨效率不佳;图7.2(c),转速太快,研磨体和物料在其惯性离心力的作用下

图7.2 筒体转速对研磨体运动的影响

(a)低转速;(b)适宜转速;(c)高转速

贴附筒体一起回转(作圆周运动),称为“周转状态”,研磨体对物料起不到冲击和研磨作用;图7.2(b),转速比较适宜,研磨体提升到一定高度后抛落下来,称为“抛落状态”,研磨体对物料较大的冲击和研磨作用,粉磨效率高。

实际上,研磨体的运动状态是很复杂的,有贴附在磨机筒壁向上的运动;有沿筒壁和研磨体层向下的滑动;有类似抛射体的抛落运动;有绕自身轴线的自转运动以及滚动等。所谓研磨体对物料的基本作用,正是上述各种运动对物料的综合作用的结果,其中主要的可以归结为冲击和研磨作用。

分析研磨体粉碎物料的基本作用,目的是为确定研磨体的合理运动状态,这是正确选择与计算磨机的适宜工作转速、需用功率、生产能力以及磨机机械计算的依据。

1.2球磨机内研磨体的运动分析

球磨机的粉磨作用,主要是研磨体对物料的冲击和研磨。为了进一步了解磨机操作时研磨体对物料作用的实质,以便确定磨机的工作参数,如适宜的工作转速、功率消耗、生产能力、研磨体装填量以及掌握影响磨机粉磨效率的各项因素、筒体受力情况与强度计算等,都必须对研磨体在磨机内的运动状态加以分析研究。

1.2.1基本假设

研磨体运动的实际状态是很复杂的,为了使问题分析简单化,作如下基本假设:

(1) 当磨机在正常工作时,研磨体在筒体内按所在位置的运动轨迹只有两种:一种是一层层地以筒体横断面几何中心为圆心,按同心圆弧轨迹随着筒体回转作向上运动;另一种是一层层地按抛物线轨迹降落下来;

(2) 研磨体与筒壁间及研磨体层与层之间的相对滑动极小,具体计算时略去不计;

(3)磨机筒体内物料对研磨体运动的影响略去不计;

(4) 研磨体作为一质点,因此最外层研磨体的回转半径,可以用筒体的有效内径表示。

研磨体按圆弧随筒体回转作向上运动,当达到某一高度时,开始离开圆弧轨迹而沿抛物线轨迹下落,此瞬时的研磨体中心称为脱离点,各层研磨体脱离点的连线称为脱离点轨迹,如图7.3中AB线。当研磨体以抛物线轨迹降落后,到达降落终点,此瞬时的研磨体中心点称为降落点,各层研磨体降落点的连线称为降落点轨迹,如图7.3中的CD线。

图7.3 研磨体层示意图 7.4 磨体内研磨体所受作用力

1.2.2研磨体运动的基本方程式

取紧贴筒体衬板内壁的最外层研磨体作为研究对象,研磨体以质点A表示

如图7.4所示。

研磨体在随筒体作圆弧轨迹向上运动的过程中,当达到某一位置时,其离心力Pc小于或等于它本身重力的径向分力Gcosα,研磨体就离开圆弧轨迹,开始抛射出去,按抛物线轨迹运动。由此可见,研磨体在脱离点开始脱离应具备的条件为

Pc≤Gcosα (1)

Gg·v2R≤Gcosα又v=πRn30代入上式中,得

cosα≥π2Rn2900g

由于π2g≈1

所以

cosα≥Rn2900 (7.2)

式中:Pc——离心力,N;

G——研磨体的重力,N;

v——研磨体运动的线速度,m/s;

R——筒体的净空半径,m;

α——研磨体脱离角;

g——重力加速度,m/s2;

n——筒体转速,r/min。

公式(7.2)为磨机内研磨体运动基本方程式,从此方程式中可以看出:研磨体脱离角与筒体转速及筒体有效半径有关,而与研磨体质量无关。

1.2.3研磨体运动脱离点轨迹

当磨机在一定转速下工作时,研磨体运动的基本方程式(7.2)代表任一层研磨体脱离点三个量间的关系,它有着普遍意义。

图7.5 脱离点和降落点轨迹

把式(7.2)改写成

Rcosα=900n2=R1cosα=Ricosαi=常数 (7.3)

式中:R1、Ri及α1、αi代表意义参阅图7.5。

从图中看出:OO1E是直角三角形,直角边OO1=R1,夹角为α1的直角三角形,其斜边大小如果不改变,保持恒量时(即OE=2Rt=常数),这个三角形的顶点O1的轨迹是一个圆。

故2Rt=Rcosα=900n2=常数

因此,这个圆的半径为

Rt=450n2 (7.4)

由此得出结论:球磨机筒体内研磨体脱离点的轨迹AC是一个圆的部分圆弧,这个圆弧的圆心位于Y-Y轴上,半径为450n2,且在圆周通过坐标原点O所作的圆上。

1.2.4研磨体运动降落点轨迹

研磨体自脱离点A抛出后,沿抛物线轨迹下落,其降落点位置仍在原来上升时研磨体层的圆弧轨迹上。由此可见,降落点正是这两个轨迹,即抛物线和圆弧的交点。为求得降落点坐标,必须列出抛物线及圆的轨迹方程式,联立求解这两式,所得结果即为降落点的轨迹。取脱离点A(图7.5)为坐标原点,则抛物线方程式为:

x=vtcosα (7.5)

y=vtsinα-12gt2 (7.6)

式中:v——研磨体自脱离点抛出时的初速度,m/s;

t——时间,s。

将上式消去t得抛物线方程式

y=xtanα-gx22v2cos2α (7.7)

以O点为圆心,XX YY轴为坐标基准,半径为R的圆的方程式为X2+Y2=R2此圆对xx-yy 轴之方程式应为

(x-Rsinα)2+(y+Rcosα)2=R2 (7.8)

将公式(7.7)、公式(7.8)联立求解,其结果就是降落点B的坐标。

x=4Rsinαcos2α (7.9)

y=-4Rsin2αcosα (10)

式中:“-”号表示降落点在横坐标之下。

以绝对值表示

y=|4Rsin2αcosα|

由图7.5可把方程式(10)改写成|y|=4Rcos2θsinθ又可写成

|y|=R(sinθ+sinλ)

所以

4Rcos2θsinθ=R(sinθ+sinλ)

则sinλ=4cos2θsinθ-sinθ=3sinθ-4sin3θ=sin3θ

所以λ=3θ (11)

根据上述这些夹角关系,降落点的轨迹就可按下法作出:从脱离点的轨迹曲线AC上取一系列点Oi′,由各点与筒体中心O连成直线,因而作出一系列角αi、θi,还可作一系列角λi,其大小为θ的三倍(λ=3θ),它与脱离点对于O之同心圆的交点轨迹为DB,即为降落点的轨迹曲线。显然降落点的轨迹曲线应通过筒体中心O,故脱离点和降落点均应汇交在一起。

1.2.5研磨体运动最内层半径

研磨体最内层是指运动着的研磨体在某一最小半径R2圆弧上,随筒体回转提升至一定高度后,仍能按抛物线轨迹降落,降落点处于极限位置(图7.5中D)。

欲求得此最内层半径R2,首先应按降落曲线求得横坐标X的最小值,因Xmin(图7.5所示)处在降落点的极限位置。

把方程式(7.9)移轴至XX YY为坐标基准(如图7.5所示),

则X=x-Rsinα=4Rsinαcos2α-Rsinα (12)

为了求得最小值,取导数dXdα=0。在求解时将公式(7.3)代入上式,简化整理后得16cos4α-14cos2α+1=0根据代数公式解得X为最小值时的脱离角为α2=73°44′与此脱离角相对应的研磨体最内层的半径即为研磨体最内层半径R2,运用公式(7.3)得R2=900n2cosα2=900n2cos73°44′=252n2 (13)

式中:R2——研磨体最内层半径,m;

α2——脱离角。

因此在确定研磨体装填量时,务必使研磨体最内层的半径比252/n2要大,否则研磨体在降落时,将会互相干扰、碰撞,这就会损失它们的能量,降低粉磨效率。

1.2.6研磨体在磨机筒体横断面的分布

磨机筒体内研磨体在工作过程中是连续不断地运动,主要可分为两种运动状态:一种是贴着筒体一起回转(如图7.6所示),用斜线表示的横断面F1,另一种是研磨体呈抛落状态的横断面F2。

图7.6 研磨体的分布

(1)面积F1

采用微量概念分析如下:dF1=(θ+λ)RdR=(θ+3θ)RdR=4θRdR因为

R=2Rtcosα=2Rtcos(90°-θ)=2Rtsinθ对R微分得

dR=2RtcosθdθdF1=16θR2tsinθcosθdθ=8R2tθsin2θdθ进行积分得F1=8R2t∫θ1θ2θsin2θdθ=8R2tθsin2θ-θ2+sin2θ4θ1θ2 (14)

(2) 面积F2

在时间t内抛出的微小面积dF2为

dF2=vtdR (15)

由式(7.5)x=vtcosα=vtcos(90°-θ)=vtsinθ由式(7.9)

x=4Rsinαcos2α=4Rcosθsin2θ则得vtsinθ=4Rcosθsin2θ

所以t=4Rcosθsinθv (16)

将上式中R=2Rtsinθ代入,得t=4×2Rtsinθ×cosθsinθv=8Rtsin2θcosθv把上式代入式(15)中得dF2=v·8Rtsin2θcosθv×2Rtcosθdθ=16R2tsin2θcos2θdθ进行积分得

F2=∫θ1θ216R2tsin2θcos2θdθ=R2t2θ-sin2θcos2θθ1θ2 (17)

式中:θ1、θ2——分别为磨机内研磨体的最外层和最内层的脱离角的余角。

当磨机筒体净空(有效)直径和转速一定时,θ1即可确定,θ2则与磨机内研磨体的填充率有关。

图7.7 Z-θ图线

(3) Z θ计算图线

磨机内研磨体的填充系数(填充率)φ可用下式确定

F1+F2=φπR21 (18)

式中:R1——磨机筒体有效半径,m。

把式(14)和式(17)代入式(18)中,得

R2t8θsin2θ-4θ+2sin2θ+2θ-sin2θcos2θθ1θ2=4πφR2tsin2θ1 8θsin2θ-2θ+sin2θ(2-cos2θ)θ1θ2=4πφsin2θ1 (19)

上式为超越函数,为便于求解,宜采用图解法。

设Z=8θsin2θ-2θ+sin2θ(2-cos2θ) (7.20)

取Z为纵坐标轴,θ为横坐标轴。将θ分别以5°、10°、15°……50°代入式(7.20)中求出相对应的Z值,便可将坐标上的各点连成一条曲线,如图7.7所示。此Z θ曲线能适应一般情况下的磨机转速n及研磨体填充系数φ的变化。

【例1】已知磨机筒体转速n=32.2D1,φ=0.3,求θ1、θ2、R2R1、F1、F2各占全部研磨体的比例,研磨体最大填充系数φmax的理论值。

【解】(1) 求θ1

由式(7.2)得cosα1=R1n2900=R132.2D12900=0.576所以α1=54°50′则

θ1=90°-α1=90°-54°50′=35°10′

(2) 求θ2

由|Z|θ1θ2=4φπsin2θ1=4×0.3×3.14×sin235°10′=1.25在图7.7中,过

θ1=35°10′作垂线交于曲线,由此交点向下取Z1=1.25,再作水平线交于曲线,由此交点作垂线交于θ轴,此交点所指的θ值,即为θ2=24°10′。

(3) 求R2R1R2R1=2Rtsinθ22Rtsinθ1=sin24°10′sin35°10′=0.71所以

R2=0.71R1

由式(13)知R2min=252n2=25232.2D12=0.486R1由于R2>R2min,因此在n=32.2D1

及φ=0.3时,最内层的研磨体仍作分层运动,而不互相干扰、碰撞,且最内层半径R2为磨机筒体有效半径R1的0.71倍。

(4) 求F1F1+F2和

F2F1+F2F1F1+F2=8R2tθsin2θ-θ2-sin2θ4θ1θ24φπR2tsin2θ1将θ1=35°10′和

θ2=24°10′代入上式,可得F1F1+F2=55%而F2F1+F2=45%这两个数值说明,n=32.2D1和

φ=0.3时,贴着筒体一起回转上升的研磨体占全部加入研磨体的55%,而处于抛落状态的研磨体则占45%。

(5) 求φmax的理论值

当最内层研磨体仍能保持有规律的分层循环运动时的极限条件为α2=73°44′。

θ2=90°-α2=90°-73°44′=16°16′将极限条件的θ1=35°10′和θ2=16°16′代入式(19)中得φmax=8θsin2θ-2θ+sin2θ(2-cos2θ)θ1θ24πsin2θ1=0.42对于短筒球磨机,研磨体的填充系数φ一般为0.35~0.45,这是由于研磨体最内层实际上存在着局部向下滑落的缘故。对于水泥厂的管磨机,由于磨筒体较长,研磨体填充系数可选取小些,常取φ=0.25~0.35。合理的填充系数必须与筒体转速和衬板提升力以及粉磨工艺特点相适应,才能得到最佳的综合技术经济指标。

1.2.7动态研磨体作用力的分析

在确定机器零件的强度和尺寸时,必须先确定该零件所受到的外载荷。为了解决这个问题,必须在理论上分析动态研磨体所产生的各种作用力。磨机在正常运转时,动态研磨体所产生的作用力有以下三个方面:

(1)研磨体生产的离心力Pc

从微量概念出发,在图7.8中,取一小块微质量dm,以角速度ω运转时所产生的筒体单位长度上的离心力dPc为:

dPc=Rω2dm (7.21)

dm=ρdV

式中:ρ——研磨体的容积密度,kg/m3;

dV——微小体积,m3,又dV=微小面积×单位长度=dβ×R×dR×1;

dβ——β角的微小增量,β角如图7.8所示。

将dV代入dm式中

dm=ρRdRdβ (7.22)

将式(7.22)代入式(7.21)中,得dPc=ρω2R2dRdβ因R=2Rtsinθ,则dR=2Rtcosθdθ代入上式中得

dPc=8ρω2R3tsin2θcosθdθdβ (7.23)

① 离心力在垂直方向的分力

PcydPcy=dPc·sinβ=8ρω2R3tsin2θcosθdθsinβdβ

Pcy=8ρω2R3t∫θ1θ2sin2θcosθdθ∫3θ-θsinβdβ

=8ρω2R3t∫θ1θ2sin2θcosθ(4sin2θcosθ)dθ

=32ρω2R3t∫θ1θ2sin4θcos2θdθ

Pcy=16ρω2R3tθ8+cosθsin5θ3-sin3θ12-sinθ8θ1θ2 (7.24)

设函数fcy(θ)=θ8+cosθsin5θ3-sin3θ12-sinθ8θ1θ2又因ω=πn30,

ω2=π2n2900,Rt=450n2,则ω2=π22Rt。

把上述式代入式(7.24)中,并π2≈g,得

Pcy=8ρR2tfcy(θ) (7.25)

② 离心力在水平方向的分力

PcxdPcx=dPc·cosβ (7.26)

Pcx=8ρω2R3t∫θ1θ2sin2θcosθdθ∫3θ-θcosβdβ

=8ρω2R3t∫θ1θ2sin2θcosθ[4sinθ(1-sin2θ)]dθ

=32ρω2R3t∫θ1θ2(sin3θcosθ-sin5θcosθ)dθ

=16ρω2R3tsin4θ2-sin6θ3θ1θ2 (7.27)

设函数fcx(θ)=sin4θ2-sin6θ3θ1θ2将ω2=π22Rt 代入式(7.27)中,并π2≈g,得

Pcx=8ρR2tfcx(θ) (7.28)

③ 筒体单位长度上研磨体产生的离心力

PcPc=P2cy+P2cx=8ρR2t[fcy(θ)]2+[fcx(θ)]2 (7.29)

离心力Pc的方向(与铅垂轴的夹角θc)tanθc=PcxPcy=fcx(θ)fcy(θ)所以

θc=arctanfcx(θ)fcy(θ) (7.30)

(2) 研磨体的重力G1

筒体单位长度上由F1部分研磨体的重力G1为

G1=ρF1×单位长度=ρ8R2tθsin2θ-θ2+sin2θ4θ1θ2 (7.31)

设G(θ)=θsin2θ-θ2+sin2θ4θ1θ2则

G1=8ρR2tG(θ) (7.32)

图7.8研磨体对筒体的作用力

G1方向恒垂直向下。

(3)研磨体产生的冲击力Ps

在磨机筒体运转过程中,研磨体处于不断的抛落状态,它所产生的冲击力,则连续不断地传给筒体,犹如瀑布冲击岩石,岩石只承受水流的冲击而不承受水流的自重。基于这一概念出发,可作如下推导。

在图7.8的降落点轨迹BD上任取一点E′,此质点以R为半径绕O点沿E′E运动,当到达E点时便开始抛射,其抛射速度为v0,当降落到E′点时,便产生冲击力Ps,此瞬时的速度为v,因冲击力与冲击速度方向一致,为便于运算,将v分解为vx和vy。当忽略物料层的缓冲作用,取微小质量dm,以速度v在单位冲击时间内所产生的冲击力为dPs时,则dPs=vdm (7.33)

dPsy=vydm

dPsx=vxdm又因dm=ρ·dV,而抛射的微小体积为dV=微小面积×单位长度=v0dR×1所以dm=ρv0dR

由抛物线方程知vx=v0sinθ

vy=v0cosθ+gt由式(7.5)知t=xv0cosα=xv0sinθ又由式(7.9)知x=4Rsin2θcosθ根据前述知:v0=Rω,R=2Rtsinθ,dR=2Rtcosθdθ。

又ω2g=12Rt把这些关系式代入dPsy及dPsx中,并积分,则得在筒体单位长度上的冲击力为

Psy=12ρR2t∫θ1θ2sin2θcos2θdθ=12ρR2t14θ2-sin4θ8θ2θ1=3ρR2tfsy(θ) (7.34)

Psx=4ρR2t∫θ1θ2sin3θcosθdθ=3ρR2tsin4θ3θ1θ2=3ρR2tfsx(θ)

(7.35)

其合力(总的冲击力)为

Ps=P2sy+P2sx=3ρR2t[fsy(θ)]2+[fsx(θ)]2 (7.36)

Ps与铅垂轴(y轴)夹角θs为tanθs=PsxPsy=fsx(θ)fsy(θ)所以

θs=arctanfsx(θ)fsy(θ) (7.37)

(4) 动态研磨体产生的合力P

在垂直方向上的合力为Py=Pcy+G1+Psy在水平方向上的合力为Px=Pcx+Psx总合力为P=P2y+P2x (7.38)

总合力P与y轴夹角θp为tanθp=PxPy所以

θp=arctanPxPy (7.39)

【例7.2】已知磨机筒体转速为n=32.2D1,研磨体填充系数φ=0.3。求磨机筒体所受的总合力P。

【解】在例1中已求得θ1=35°10′,θ2=24°10′,由式(7.4)知

Rt=450n2=45032.2D12=0.434D1按上述计算方法运算后,可得到磨机筒体每米有效长度的动态研磨体所产生的离心力Pc、重力G1以及冲击力Ps的数值如下

Pcy=0.0268D21ρ,Pcx=0.0458D21ρ,Pc=0.0531D21ρ,θc=59°39′,G1=0.132D21ρ, Psy=0.0796D21ρ,Psx=0.0154D21ρ,Ps=0.0811D21ρ,θs=10°58′

式中:D1——磨机筒体有效直径,m;

ρ——研磨体的容积密度,kg/m3。

上式中力的单位均为N。

设装载研磨体部分筒体的有效长度为L,研磨体总装载量为G,则在垂直方向的合力Py 为Py=(Pcy+G1+Psy)×L=(0.0268+0.132+0.0796)D21ρL=0.2384D21ρL(N) G=ρ×π4D21Lφ=ρ×π4D21L×0.3=0.2355D21ρL(N)所以D21ρL=G0.2355(N)即

Py=0.2384×G0.2355=1.012G(N)在水平方向的合力Px为Px=(Pcx+Psx)L=

[(-0.0458)+0.0154]D21ρL=-0.0304D21ρL(N)即Px=-0.0304×G0.2355=-0.129G(N)所以总合力P=P2y+P2x=(1.012G)2+(-0.129G)2=1.02G(N)由式(7.39)知P与y轴的夹角θp为θp=arctanPxPy=arctan0.129G1.012G=7°15′由此结论说明:当磨机筒体转速n=32.2D1和填充系数φ=0.3时,动态研磨体所产生的合力P只比静态研磨体的自重G大2%。因此,只要筒体转速n和填充系数φ变化不大时,在设计计算动态研磨体所产生的外载荷时,就可以用研磨体的自重G来近似地代替繁杂的动态分析和计算(按动态研磨体的合力P进行运算)。

(5) 物料的动态力

在计算研磨体动态作用力的同时,还应把混合在研磨体之间被粉磨物料的动态力计算进去,设研磨体和物料所占体积为V,物料在V中所占的体积为Vw,研磨体在V中所占的体积为Vn,即V=Vw+Vn,则可求得填充在研磨体之间的物料质量Gw为

Gw=1-ρρa×ρw (7.40)

式中:Gw——填充物料质量,t/m3;

ρ——研磨体的密度,如图7.9所示,一般取中间值为4.5t/m3;

ρa——钢球的密度,为7.85t/m3;

ρw——被粉磨物料的密度,细碎状态的水泥熟料和石灰石生料,均为1.5t/m3。

图7.9研磨体的密度将上述数值代入式(7.40)中,可得单位容积研磨体中所含的物料质量,即Gw=1-4.57.85×1.5=0.64(t/m3)若以单位体积的研磨体质量的百分数来表示物料的质量,即

Gwρ×100%=0.644.5×100=14.2% (7.41)

即物料的质量相当于研磨体质量的14.2%。

对于湿法粉磨作业来说,还应将相当于物料质量的33%左右的水分质量计算进去。若研磨体用钢棒,钢棒的密度ρb=6.1t/m3,代入式(7.41)可求得填充在钢棒之间物料质量,相当于钢棒质量的5%。

1.3 球磨机主要参数的确定 1.3.1 球磨机的转速

(1)球磨机的临界转速n0

当磨机筒体的转速达到某一数值时,研磨体产生的离心力等于它本身的重力,因而使研磨体升举至脱离角α=0°,即研磨体将紧贴附在筒壁上,随筒体一起回转而不会降落下来,这个转速就称为临界转速,用n0表示。

由于磨机在某一转速下进行工作时,筒体内各层研磨体运动的脱离角各不相同,在确定磨机筒体转速时,一般均以最外层研磨体为基准,也就是取磨机筒体的有效内径D1作为基准进行参数计算。

在图7.4中,当研磨体处于极限位置E点即它升举至顶点时,脱离角α=0°,此为临界条件,把它代入式(7.2),可得临界转速n0cosα=cos0°=1即1=R1n20900 所以n0=30R1=42.4D1 (7.42)

式中:n0——临界转速,r/min;

R1——最外层研磨体至磨筒体断面中心的距离(即筒体有效半径),m;

D1——磨机筒体有效直径,m。

从理论上讲,当磨机转速达到临界转速时,研磨体将紧紧贴附在筒体内壁上,随筒体一起回转,不会降落,不能起任何粉磨作用。但实际上并非如此,因为在推导研磨体运动的基本方程时,只考虑离心力,而忽略了研磨体的滑动、自转及物料对研磨体运动的影响。因此球磨机的实际临界转速比上述的理论计算值要高一些。

(2) 球磨机的理论适宜转速n

当磨机筒体达到临界转速n0时,由于研磨体紧贴筒壁上,不能起到粉碎作用,因此对物料的粉碎功为零。当筒体转速较慢时,研磨体呈泻落状态运动,对物料的粉碎作用很弱,即对物料的粉碎功很小,可见研磨体对物料的粉碎所消耗的功是筒体转速的函数。因此,使研磨体产生最大粉碎功时的筒体转速就称为球磨机的理论适宜转速n。要想得到最大的粉碎功,研磨体必须具有最大的降落高度。

如图7.5所示,筒体内研磨体的总降落高度H为

H=h+y (7.43)

研磨体由脱离点A抛射上升的高度为h,根据抛射体运动学知

h=v2y2g=(vsinα)22g (7.44)

以式(1)中cosα=v2gR(即v2=gRcosα)代入式(7.44)中,得

h=gRcosαsin2α2g=12Rsin2αcosα (7.45)

以式(10)和式(7.45)代入式(7.43)中,得

H=12Rsin2αcosα+4Rsin2αcosα=4.5Rsin2αcosα (7.46)

研磨体总降落高度H是其脱离角α的函数。为了求得H的最大值,必须取导数dHdα=0,即

dHdα=(4.5Rsin2αcosα)′=0 (7.47)

4.5Rsinα(2cos2α-sin2α)=0由研磨体脱离条件得出脱离角α≠0,则sinα≠0,因此2cos2α-sin2α=0

tan2α=2所以α=54°44′所以,当靠近筒壁的最外层研磨体的脱离角α=54°44′时,可获得研磨体最大的降落高度。将α=54°44′代入式(7.2)中,就可求得最外层研磨体获得最大粉碎功时的转速n为

cos54°44′=R1n2900 n=22.8R1=32.2D1 (7.48)

式中:n——理论适宜转速,r/min。

令ψ为球磨机的理论适宜转速与临界转速之比,简称转速比,即

ψ=nn0=22.8/R130/R1=0.76 (7.49)

即磨机的理论适宜转速为临界转速的76%。实际生产的磨机都在76%上下波动。

(3) 球磨机的实际工作转速

磨机的理论最适宜转速是在球磨机最外层研磨体达到最大降落高度时的转速。但是这时全体研磨体的最大粉碎功不一定最大。另一方面,随着磨机规格的增大,一定的进料粒度,需要一定量的粉碎功。如果入料粒度一定,则需要磨机提供的粉碎功是一定的,在研磨体规格一定时,当磨机规格大,如果最外层研磨体获得最大的降落高度,则其降落高度的绝对值增大,研磨体能提供的粉碎功将大于物料粉碎所需要的粉碎功,这样势必造成浪费。

由于当前的球磨机一般为多仓磨,前后仓的粉碎区有差别,按理前仓转速应高一些,使钢球带得高,以抛落为主增加破碎作用;后仓可适当降低转速,钢球以泻落为主,增加研磨作用。但是多仓磨筒体只能是一个转速,唯有改变衬板形状来解决此矛盾。所以一般均在前仓安装“提升式”衬板,而在后仓安装“平滑形”衬板。

磨机研磨体的填充率计算公式修订稿

磨机研磨体的填充率计 算公式 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

磨机研磨体的填充率计算公式: 在磨机中研磨体的填充率对磨机的产量和粉磨效率有非常大的影响。填充率又称为装载量,计算比例是按装载研磨体的截面积除以磨机内截面积的比值为填充率。计算时可根据磨机内径和研磨体表面到磨机内衬最高点的距离计算,如果衬板为一特殊形状,如波浪型或阶梯型等,则必须进行合理校正,选用平均值。 填充率可以简化为:填充率=乘以研磨面到衬板最高点的距离再除以磨机内径。 研磨体的总重量可以按研磨体的松散密度和磨机或仓室有效长度计算 即磨机或仓室中研磨体的重量等于四分之一π乘以磨机内径的平方乘以填充率再乘以松散密度再乘以磨机有效长度 即可以得出研磨体的质量 ?磨机在运行过程中,由于研磨体之间以及研磨体与物料之间不断冲击和摩擦,研磨体不断磨损,填充率不断减小,因此,保证稳定合理的填充率,对磨机的产量非常重要。本文介绍5种研磨体填充率的测定方法,对不同材质的研磨体(如钢球、瓷球等)均适用。?? ?

?? ?研磨体填充率的计算式为:? ?Φ=β/360-sinβ/2π(1)? ?式中:Φ———研磨体填充率,%;? ?β———钢球表面对磨机中心的圆心角,°。? ?研磨体表面到磨内顶端高度:? ?H=(1/2)Di+h=(1/2)Di+(1/2)Dicos(β/2)(2)? ?式中:H———研磨体表面到磨内顶端高度,m;? ?Di———磨机有效内径,m;? ?h———研磨体表面到磨机中心的高度,m。? ?整理得:? ?cos(β/2)=2·(H/Di)-1(3)? ?由(3)式可知,测量出H值后,Di对于某一磨机来说,为已知数,可计算出β值,根据式(1)可计算出填充率值,H/Di与Φ值的关系见表? 1.

球磨机实验室实验介绍

球磨机实验室实验介绍 球磨机通过把实验室的球磨机一端端盖做成透明,快速拍摄球磨机转动时的每一个瞬间来研究球磨介质运动的每一个状态。戴维斯、胡基等都采用了这一方法来研究钢球运动,井验证了钢球的层运动理论。这一方法的特点是局限于实验室,且随着摄像手段和设备的不断发展而不断完善,如国外目前采用先进的位置密度显示法《PDPs)‘川研究,这是一种数字式的、可视化的并基于统计学的方法。通过迭加大量各自独立的球磨机稳态工作时的介质运动图像,能够较好的系统的研究球磨机的载荷特性(介质动态休止角、开始抛落或泻落位置、落下底脚位置等),甚至可以直接利用扭矩公式计算出球磨机的功率。积极应对复杂形势,着力应对球磨机最新研究方法,球磨机的研究是随着研究手段的发展而进步的,有时甚至研究成果极大程度地取决于所采取的研究手段。尤其是现在随着矿产的“贫化、细化、杂化”,球磨机的设计变得越来越大型化,这对研究手段提出了更高的要求。目前采用的球磨机研究手段主要有以下几种: 照相实测是自球磨机出现以来就采用也一直到现在还在采用的重要手段之一。球磨机实践试验 之所以把实践试验作为一种手段,主要是考虑到它对于球磨机研究的重要性.可以说,自球磨机产生以来实际试验就一直存在,也可以称之为经验法。由于球磨机研究的复杂性,理论应用具有很大的局限性,很多情况经验往往比理论更能指导实践。于是,在长期的实践

过程中,就积累了很多的经验,甚至有的已经上身为理论,如有关功率计算的经验公式,介质填充率的大小,甚至球磨机转速的选取等等’峰旧.直到今天,很多企业、厂矿仍在不断总结实际经验,并用于指导生产实践. 3.球磨机仿真模拟 仿真模拟是最近几十年逐渐兴起的先进的方法。按目前的报导可以分为两类:一类是有限元仿真分析;一类是离散元仿真分析。二者的侧重点有所不同。有限元仿真分析主要是通过商业化有限元软件建立球磨机的离散化有限元模型,将球磨机的载荷和约束作为边界条件输入,求解整个球磨机结构在承受载荷时的变形以及应力水平,并进行相关的校核,从而得出球磨机结构的安全系数等等。它是随着有限元理论的成熟以及商业化有限元软件的形成而发展起来的一种先进 分析手段。生产厂家主要运用有限元仿真球磨机对球磨机进行结构设计。离散元仿真分析则多见于国外的研究。从理论上来说,离散元是一种模拟非连续体的代表性数值计算方法(这点恰好与有限元不同),对于粒子流动的不连续行为,它以离散体的力学理论,配合牛顿第二运动定律及显式时间积分法来描述离散体的运动。这种方法运用于球磨机的研究当中在国外已得到实验验证并有相关专用软件(耐llsoft),国内目前未见有用它来仿真模拟球磨机的相关报导。它主要是通过建立筒体忖板和钢球的模型对钢球在不同填充率和转率的 条件下的相互运动及于忖板的碰撞等进行模拟。这种方法配合照相实测及其他实验手段,能很好的预测所应该采取的球磨机最佳工况如转

球磨机给料器详解,研磨体的装载量详解

球磨机给料器详解,研磨体的装载量详解 以下是4种常用的球磨机给料器: 1、溜管给料 进料漏斗进入位于磨机中空轴颈里面的锥形套筒,沿着旋转的筒壁自行滑入磨机内,溜管断面呈椭圆形。 2、蜗形给料器 蜗形给料器有一螺旋形的勺子,在转动时使物料沿勺子内壁逐渐向勺底滑动。勺底处的侧壁上有一个圆孔,圆孔与球磨机的中空轴颈的孔对齐,物料经侧壁圆孔和中空轴颈进入球磨机内。 3、螺旋给料器 螺旋给料器的工作原理同鼓形给料器相同,但结构不相同。物料由给料漏斗送入勺轮,回转的勺轮将物料提升上去,再由轮叶直接倒在位于中空轴里面的螺旋套筒内,内螺旋叶片就把物料输送到磨机内。 4、联合给料器 粗粒给料可以通过盖的孔直接由螺旋形隔板提升并送入中空轴颈,而在料槽中的返砂由勺和勾头掏起后经筒体的螺旋隔板送入中空轴颈。这种方式不仅提高给料器的生产量,而且粗粒物料不需由勺子掏起,从而减少勺子的磨损。

1.调整球磨机研磨体的装载量 根据生产试验,发现增大研磨体装载量,并不能达到增产的效果。摸索发现,最合适的研磨体装载量应将钢球配球控制在额定装载量的95%。 2.优化球磨机钢球的级配 分析Φ3200×13000mm水泥球磨机筛余曲线,得知一仓料端曲线下降不明显,说明该仓的粉碎能力不是很强;二仓出现较长的水平线段,说明该仓钢球级配有问题,为此对研磨体做出相应的调整: (1)增大一仓平均球径,降低二仓平均球径; (2)优化一,二仓填充料。 3.辊压机挤压效果的改进方法 Φ3200×13000mm水泥球磨机是双仓磨,破碎功能部分转到辊压机上,这种情况下,挤压物料更易达到质量指标。但考试由于产量的增加,辊压机压力减小,辊缝仍是原来设定的范围,致使通过量增大,物料挤压效果差,10mm以上颗粒含量较多,吐槽量增大,出口篦板易堵塞,部分颗粒沉积于二仓内消弱了研磨作用,辊压机主题故障频繁,运转率仅达40%左右,影响水泥球磨机产量。改进措施:大修辊压机,焊补辊面,将辊缝设定稍微减小。

球磨机6种不同分类及适用范围介绍,附球磨机工作流程及注意事项

球磨机6种不同分类及适用范围介绍,附球磨机工作流程 及注意事项 球磨机是选矿过程中不可少的磨矿设备,任何矿物的选别都离不开磨矿,所以球磨机在生产线上的作用不言而喻。目前市面上生产球磨机的厂家有很多,各式球磨机种类繁多、功能多样,因此用户有时在面对选择时会眼花缭乱,不知道怎么选择。 一般,企业在进行球磨机选用时,必须综合考虑,磨料要求、生产环境、能耗情况、物料性质等因素,最终选出最适合其使用要求的球磨机。目前,其分类方法也有多种。 本文介绍六种不同的球磨机分类方式,以及各种球磨机适用的范围,方便您进行选择。 按筒体的形状分类(按长度与直径之比) 1、短筒球磨机:筒体长度L小于筒体直径D的2倍,即L≤2D的球磨机为短筒球磨机,其通常为单仓结构,主要用于粗磨作业或一级磨作业,其作业效率较高,可以实现2-3台球磨机同时串联使用,其使用范围较广。 2、中长筒球磨机:筒体长度L=3D时为中长球磨机。 3、长筒球磨机:筒体长度L≥4D时为长球磨机。其一般分为2-4个仓。 按磨机装入的研磨介质形状分类 1、钢球球磨机内装入的研磨介质主要为钢段或钢球,此类磨机的研磨力度较大,且结构轻便,转速平稳。 2、棒磨机主要用于钢棒介质的研磨,钢棒的直径多在50-100mm之间,研磨时间较长。棒磨机的仓数一般为两到四个不等,且各仓装入的研磨介质存在一定差异。为保证其研磨的效果,工作人员会将圆柱形的钢棒放在第一个仓内,而将钢球或钢段放在其他几个仓内。 3、砾石磨机内的研磨介质主要包括卵石、砾石、砂石、瓷球等。砾石磨机多采用瓷料或花岗岩作为衬板,被广泛应用于彩色水泥、白色水泥、陶瓷等生产领域。 按卸料方式进行分类 1、尾卸式磨机:尾卸式磨机分别以其首尾作为其磨料的入口和出口。磨机在工作时,工作人员从入口端将磨料喂入,再由另一端将其卸出。 2、中卸式磨机:中卸式磨机的入口在两端,出口在磨机中部。工作人员通常从两端喂入磨料,再由筒体中部卸出。 按排矿方式进行分类

球磨机的研磨体

球磨机的研磨体 四、研磨体 (一)研磨体的种类与材质 (1)研磨体的种类 不同形状和大小的研磨体,在粉磨过程中具有不同的研磨作用。水泥厂中球磨机使用 的研磨体按其形状分类主要有以下几种: 1. 钢球钢球是球磨机广泛使用的一种研磨体。根据粉磨工艺要求,通常选用φ20-120mm的各种规格的钢球;对于球磨机的粗磨仓一般选用φ50-100mm的各种钢球,细磨仓则选用φ20-50mm 的各种钢球。 2. 钢锻钢锻的外形为短圆柱形,其规格以直径乘长度的毫米数表示。钢锻一般用于开路球磨机的细粉磨仓,也用于闭路球磨机的细粉磨仓。 常用的钢锻的规格有φ15mm×20mm,φ18mm×22mm,φ20mm×25mm,φ25mm×30mm 等。小磨细磨仓的钢锻直径小至φ12mm 以下。 3. 钢棒钢棒是棒磨机使用的一种研磨体。钢棒规格以直径乘长度的毫米数表示。钢棒直径一般选用 φ40-90mm,棒长应比磨机棒仓长度短50-100mm 。例如:φ2.4×13mm湿法棒球磨,第一仓有效长度为2.75m,使用钢棒规格为φ60×2650mm、φ65×2650mm 和φ70×2650mm。 (2)研磨体的材质选择 研磨体应具有较高的耐磨性和耐冲击性。要求其材质坚硬、耐磨又不易破裂。研磨体表面不允许有毛刺和裂缝,钢球的不圆度不得超过其直径的2%。 在水泥工业中,磨机研磨体及衬板的消耗量相当大,研磨体材质的好坏,不仅影响到磨机的粉磨效率,而且关系到磨机的运转率。世界各国在提高研磨体的耐磨性上作出了成果,从20世纪60年代至70年代就广泛应用高铬铸铁(钢)球。日本主要有高铬钢球、低铬钢球和合金白口铸铁球;德国主要有高铬铸铁球和低合金钢球;美国、加拿大常用合金钢球。近年来,在我国水泥工业中,球磨机用的研磨体材质有如下几种: 1. 高铬铸铁高铬铸铁是一种含铬量高的合金白口铸铁,其特性是耐磨、耐热、耐腐蚀,并具有相当的韧性。马氏作基体的高铬铸铁球表面硬度HRC 可达54-66 。高铬铸铁球的耐磨性为普通碳素钢球的8-12 倍。 2. 低铬铸铁低铬铸铁含有少量的铬元素,可保持铸铁的白口获得马氏体金相。低铬铸铁韧性较高铬铸铁差,但有良好的耐磨特性,用作小球、铁锻以及细磨合中的衬板是适宜的。 3. 锻造轴承钢锻造轴承钢可以制造各种直径的钢球,含碳量为1.0%左右,含铬量为1.5%左右,其余元素为常规含量。球耗比高铬铸铁球高,但由于合金元素含量低,仍有较广阔的使用市场。 棒球磨的钢棒材质要求硬度高、耐磨、不断碎、不弯曲,常用40Mn钢或70号高碳钢轧制而成。 (二)研磨体的合理装载量 (1)填充率的计算公式 磨机研磨体填充的容积与磨机有效容积之比的百分数,称为研磨体的填充率。 式中———磨研磨体填充率,%; V s———磨研磨体填充的容积,m3; V m———磨机(仓)有效容积,m3。 (2)实测磨球面高度计算填充率

球磨机的说明书

球磨机使用说明书一、机器用途、机构及原理 球磨机被广泛的用于选矿厂、耐火材料厂、水泥厂、玻璃厂等工业部门中供细磨中等硬度物料之用。湿式是将物料渗水进行湿磨,干式则不允许渗水而进行干磨。 机器的结构和工作原理 球磨机主要是由给料部、进料部、筒体部和出料部等工作部分以及轴承部、传动部、减速机、联轴器等传动部件组成的。筒体是用钢板焊成、两端用螺栓分别与进、出料中空轴相连接,并水平的支承在两个主轴承上,在进、出料中空轴颈内部又装有可换的衬套并把它用作进出料的通路,筒体内壁装有高锰钢衬板及白口铁衬板,筒内装有一定数量的研磨介质(球或棒)及待磨物料。当筒体以选得的正确速度绕水平轴旋转时,由于离心力的作用,使混合物的质点在筒体内上升到一定的高度,然后自筒体内壁断离而沿抛物线的轨迹下落,物料的磨细,一方面是由于落到物料上沉重的介

质(球或棒)的撞击作用而破碎,另一方面物料是在介质与介质间和介质与筒体内壁间压碎及物料在筒体内滚动而磨碎。连续工作的磨机,被磨物料从磨机进料端不断的连续给入,磨细的产品借助边疆给入物料的催力,水力(湿法生产)或风力(干法生产)以及提升格子板的提取作用从磨机另一端排出机外。机器的技术参数(点击查看) 二、安装说明(一)安装基础说明1、球磨机必须安装在已经干燥的坚固的钢筋混凝土基础之上。 2、基础不许有显著的倾斜与下沉,如有少许下沉亦应是均衡的和水平的,否则不能进行安装。 3、球磨机的基础与地平面应有足够的高度,以供更换衬板及研磨介质之用。 4、基础的设计可参考本厂的地基部图进行,但不可将该图直接用作基础施工工作图。 (二)安装前的准备工作 1、在安装前必须将所有的零件和部件的加工工作表面上的防锈油防护物及

球磨机的工作原理及球磨机的研磨体的运动分析上

1.1 球磨机工作原理及研磨体运动的基本状态 1.1.1 球磨机工作原理 球磨机的主要工作部分是一个装在两个大型轴承上并水平放置的回转圆筒,筒体用隔仓板分成几个仓室,在各仓内装有一定形状和大小的研磨体。研磨体一般为钢球、钢锻、钢棒、卵石、砾石和瓷球等。为了防止筒体被磨损,在筒体内壁装有衬板。 图1 磨机粉磨物料的作用 当球磨机回转时,研磨体在离心力和与筒体内壁的衬板面产生的摩擦力的作用下,贴附在筒体内壁的衬板面上,随筒体一起回转,并被带到一定高度(如图1所示),在重力作用下自由下落,下落时研磨体像抛射体一样,冲击底部的物料把物料击碎。研磨体上升、下落的循环运动是周而复始的。此外,在磨机回转的过程中,研磨体还产生滑动和滚动,因而研磨体、衬板与物料之间发生研磨作用,使物料磨细。由于进料端不断喂入新物料,使进料与出料端物料之间存在着料面差能强制物料流动,并且研磨体下落时冲击物料产生轴向推力也迫使物料流动,另外磨内气流运动也帮助物料流动。因此,磨机筒体虽然是水平放置,但物料却可以由进料端缓慢地流向出料端,完成粉磨作业。 1.1.2研磨体运动的基本状态 球磨机筒体的回转速度和研磨体的填充率对于粉磨物料的作用影响很大。当筒体以不同转速回转时,筒体内的研磨体可能出现三种基本状态,如图7.2所示。 图7.2(a),转速太慢,研磨体和物料因摩擦力被筒体带到等于动摩擦角的高度时,研磨体和物料就下滑,称为“倾泻状态”,对物料有研磨作用,但对物料的冲击作用很小,因而使粉磨效率不佳;图7.2(c),转速太快,研磨体和物料在其惯性离心力的作用下 图7.2 筒体转速对研磨体运动的影响 (a)低转速;(b)适宜转速;(c)高转速 贴附筒体一起回转(作圆周运动),称为“周转状态”,研磨体对物料起不到冲击和研磨作用;图7.2(b),转

深度解析球磨机工作原理,详细讲解球磨机内部结构

深度解析球磨机工作原理,详细讲解球磨机内部结构 球磨机工作原理: 球磨机是物料被破碎之后,再进行粉碎必不可少的关键设备。广泛应用于生产行业,包括:水泥,硅酸盐制品,新型建筑材料、耐火材料、化肥、黑有色金属选矿以及玻璃陶瓷等等。那么球磨机工作原理是什么呢?球磨机的内部结构是怎样的?中国球磨机交易网将为您一一解答。 球磨机是由水平的筒体,进出料空心轴及磨头等部分组成,筒体为圆筒较长,筒内装有研磨体,筒体采用钢板制造,有钢制衬板与筒体固定,研磨体一般使用钢制圆球,并按不同直径和一定比例装入筒中,研磨体也可用钢段,根据研磨物料的粒度加以选择,物料由球磨机进料端空心轴装入筒体内,当球磨机筒体转动时候,研磨体由于惯性和离心力作用,摩擦力的作用,使它帖附近筒体衬板上被筒体带走,当被带到一定的高度时候,由于其本身的重力作用而被抛落,下落的研磨体像抛射体一样将筒体内的物料给击碎。 物料由进料装置经入料中空轴螺旋均匀地进入球磨机第一仓,该仓内有阶梯衬板或波纹衬板,内装不同规格钢球,筒体转动产生离心力将钢球带到一定高度后落下,对物料产生重击和研磨作用。物料在第一仓达到粗磨后,经单层隔仓板进入第二仓,该仓内镶有平衬板,内有钢球,将物料进一步研磨。粉状物通过卸料箅板排出,完成粉磨作业。 筒体在回转的过程中,研磨体也有滑落现象,在滑落过程中给物料以研磨作用,为了有效的利用研磨作用,对物料粒度教大的一般二十目磨细时候,把磨体筒体用隔仓板分隔为二段,即成为双仓,物料进入第一仓时候被钢球击碎,物料进入第二仓时候,钢端对物料进行研磨,磨细合格的物料从出料端空心轴排出,对进料颗粒小的物料(如砂二号矿渣、粗粉煤灰)进行磨细时候,球磨机筒体可不设隔板,成为一个单仓筒磨,研磨体也可只用钢段。 以格子型球磨机(卧式筒形旋转装置,外沿齿轮传动,两仓)为例:物料由进料装置经入料中空轴螺旋均匀地进入球磨机第一仓,该仓内有阶梯衬板或波纹衬板,内装不同规格钢球,筒体转动产生离心力将钢球带到一定高度后落下,对物料产生重击和研磨作用。物料在第一仓达到粗磨后,经单层隔仓板进入第二仓,该仓内镶有平衬板,内有钢球,将物料进一步研磨。粉状物通过卸料箅板排出,完成粉磨作业。 球磨机主要部分包括:给料部、出料部、回转部、传动部(减速机,电机,电控,小传动齿轮)。中空轴采用铸钢件,内衬可拆换,回转大齿轮采用铸件滚齿加工,筒体内镶有耐磨衬板,具有良好的耐磨性。球磨机整机运转平稳,工作可靠。

球磨机研磨体之我见

球磨机研磨体之我见 合理选择研磨体装载量、级配和填充率,是提高球磨机产量,降低能耗不可缺少的措施。笔者根据多年的实践经验,认为有必要从研磨体材质、消耗量、填充系统、装载量和级配等方面探讨,进行适当调整,以提高磨机生产能力。 1. 研磨体材质: 物料在粉磨过程中,要求研磨体要有一定的撞击力量,将大块物料击碎、磨细,所以研磨体应该具有较高的耐磨性和较好的耐冲击性。 研磨体一般分为铸造和锻造两种。常见的铸造研磨体材质有高锰铸铁、高铬铸铁、低铬铸铁、镍硬铸铁、马铁等等。常用的锻造研磨体材质有低碳钢、中碳钢、铬钢等。研磨体的表面不允许有毛刺和裂缝,研磨体的不圆度不得超过本身直径的2%。 2. 研磨体单位的消耗量: 我厂有Φ2.2m×6.5m和Φ2.2m×7.5m水泥磨各一台,根据多年的生产实践经验,每生产一吨水泥,研磨体一般消耗900g左右,随着新材料应用及技术水平的提高,研磨体所需的钢材消耗大幅度下降。我厂常用的研磨体材质消耗情况对比如下: 表1 3. 研磨体填充率的选择: 所谓研磨体的填充率,也称为填充系数,是指装入球磨机磨内研磨体之容积占球磨机有效容积的百分比。它是反映磨内研磨体装载量多少的一种常用方法,填充率与磨机台时产量有着密切关系。目前求填充率方法很多,我厂常用的两种理论计算方法如下: (1)

根据研磨体概念计算 式中:ф—研磨体填充率(%) Vs—研磨体填充容积(m3) Vm—球磨机有效容积(m3) 根据研磨体装载量计算: 式中:ф—研磨体填充率(%) D —球磨机有效内径(m) L —球磨机有效长度(m) r —研磨体容量(t / m3) G—研磨体装载量(t) 研磨体的填充率对球磨机粉磨效率有很大的影响,在球磨机本身条件相同、转速一定的情况下,研磨体填充率过低,会增加研磨体的滑动,球与物料冲击面减少;如填充率过高,则使研磨体失去正常的泻落轨迹,这不但导致粉磨效率低,而且还增加电耗。因此,我们应在生产实践中,通过经验积累来选择本部门球磨机最佳填充率。目前大多数厂家的二仓及二仓以上的球磨机,研磨体填充率一般采用29~34%之间。对于二仓球磨机来说,粉磨水泥时填充率通常二仓比一仓大3%左右,粉磨生料时填充率二仓通常比一仓大1%左右或基本相同。 我厂Φ2.2m×6.5m圈流水泥磨原设计平均填充率ф=32.1%(其中一仓研磨体填充率 ф=30.6%,二仓研磨体填充率ф=33.6%),为提高该磨机的粉磨能力,我们将平均填充率提高到ф=33.7%。第一仓填充率适当加大,即一仓研磨体填充率ф=32.8%,二仓研磨体填充率ф=34.5%,相对提高了一仓研磨体填充率,以形成一、二仓两个横断面位差,以加速物料的流速。 4. 研磨体装载量的选择: 所谓研磨体的装载量,是指装入球磨机仓内研磨体的重量。从公式(2)中可看出,它决定于填充率的大小。当填充率确定后,即可计算出球磨机研磨体的装载量。由于装载量与填充率成正比例关系,无论是开流粉磨还是圈流粉磨,在一定工艺条件下适当增加研磨体装载量都能使球磨机的产量提高。我厂Φ2.2m×6.5m圈流水泥磨原装研磨体33t(其中一仓钢球14t,二仓钢球19t),依据现有工艺条件(一仓有效容积9.7m3,二仓有效容积11.7m3,电机功率380Kw),将装载量适当加大,一、二仓装载量分别增加到15t和19.5t,提高研磨体填充率,以达到提高球磨机产量。

球磨机联轴器介绍

球磨机联轴器介绍 球磨机联轴器、气动离合器、主电机和慢速装置的安装 (1)将联轴器、气动离合器、主电机仔细检查,去除运输中产生的碰伤及毛刺;清洗后才能安装。主电机按照生产厂家提供的安装使用说明书进行安装. (2)小齿轮装置的传动轴和主电机轴的同轴度‘沪0.3,倾斜度1/1000,并应与球磨书L的倾斜方向一致,倾斜度和高度出现误差,可在电机底座下加垫片进行调整;平行度出现误差,可移动电机转子轴承位置进行调整,调整要仔细,力求高精度;轴向位置按图纸要求调整到位。 (3)安装慢速装置时,应保证带电动机的行星摆线针轮减速机安装好后,拉杆装置能很轻松地搬动爪形离合器,不得有卡紧、脱不开和靠不上等现象发生,从而达到离合灵活。行程开关与挡块的接触和断开可靠,轴向移动的半联轴器与衬套相对滑动的表而、拉杆装置的滑块及与其相配合槽的接触表而都应涂上润滑脂。 (4)球磨机的小齿轮轴线与球磨机筒体轴线的平行度不3超过 0.15/1000'5.1.5齿轮罩的安装 (1)检查齿轮罩在长途运输中是否有碰撞变形,耐油油漆是否脱落,变形,补刷耐油油漆。

(2)安装齿轮罩要注意检查校正,保证齿轮运转过程中不发生碰撞,圈时要保证毡圈处处紧贴大齿轮,不许有缝隙。 球磨机总体安装顺序概述 (l)基础螺栓及底板; (2)主轴承部、顶起装置就位: (3)简体部、进料部、出料部,其中简体上的人孔后安装; (4)传动部的大齿轮、小齿轮装置和齿轮罩; (5)巾间轴部、联轴器、气动离合器和主电机: (6)慢速装置; (7)给料部; (8)出料筛部; (9)高压及润滑油站: (10)液压管路、输水管路、气路系统、电气部、喷射润滑装置。球磨机齿轮装置的安装

球磨机的工作原理

球磨机的工作原理 一、球磨机的组成结构 球磨机主要由圆柱形筒体、端盖、轴承和传动大齿圈等部件组成。 筒体:其内装入直径为25mm—150mm的钢球或钢棒,称为磨矿介质,其装入量为整个筒体有效容积的25%--50%。 端盖:筒体两端有端盖,利用螺钉与筒体端部法兰相连接,端盖的中部有孔,称为中空轴颈。 轴承:中空轴径支承在轴承上,筒体可以转动。 大齿轮圈:在筒体上固定。 二、磨矿过程介绍 磨矿作业是在球磨机简体内进行的,筒体的磨介随着筒体的旋转而被带到一定的高度后,介质由于自重而下落,装在筒体内的矿石就受到介质猛烈的冲击力;另一方面由于磨介在筒体内沿筒体轴心的公转与自转,在磨介之间及其与筒体接触区又产生对矿石的挤压和磨剥力,从而将矿石磨碎。 球磨机钢球(磨矿介质)当筒体旋转时即被带起并升到一定高度,由于钢球本身的重力作用,最后沿一定的轨道下落。在区域内的钢球受到两种力的作用:一为旋转时自切线方向施于钢球的作用力;一为与钢球直径相对称一面而与上述作用力相反的力,这个作用力的产生是由于钢球本身自重而向下滑动所引起的。上述两种作用力,对于钢球会构成一对力偶,由于钢球是被挤压在筒体与相邻钢球的中间,所以力偶会使钢球之间存在大小不等的摩擦力,钢球随筒体轴心作公转运动时在区域

内自上落下抛落,就在区域里对筒体内的矿石产生强大的冲击作用,将矿石破碎。可以说,在磨机筒体内矿石主要是受磨剥力、冲击力及挤压力的作用而被磨碎的。 三、球磨机的分型 溢流型球磨机:随着筒体的旋转和磨介的运动,矿石等物料破碎后逐渐向右方扩散,最后从右方的中空轴颈溢流而出,因而得名。 格子型球磨机:此类机器在排料端安设有格子板,由若干块扇形孔板组成,其上的箅孔宽度为 7mm—20mm,矿石通过箅孔进入格子板与端盖之间的空间内,然后由举板将物料向上提升,物料延着举板滑落,再经过锥形块而向右至中空轴颈排出机外。 风力排料球磨机:物料从给料口进入球磨机,磨介对物料进行冲击与研磨后,物料从磨机的进口逐渐向出口移动,出口端与风管连接,在系统中串联着分离器、选粉机、除尘器及风机的进口,当风力排料开始运作时,球磨机机体内相对的处于低负压,破碎后被磨细的物料随着风力从出料口进入管道系统,由选粉机将较粗的颗粒分离后重新送入球磨机进口,已经磨碎的物料则由分离器分离回收。

球磨机研磨体对物料的冲击和研磨作用

球磨机研磨体对物料的冲击和研磨作用 如何保证合理地使研磨体对物料的冲击和研磨作用分开,球磨出的料浆颗粒能满足工艺要求。为满足这一要求,主要从四个方面来考虑:出磨气体温度控制,球磨机设备出磨生料水分一般要控制在小于 1.0%,出磨气体的温度控制在80—100℃范围较合适,温度太低会引起物料在磨内黏结和堵料。一般用调节进风管道风门的开启度控制出磨气体的温度。稳定运行时,风门开度保持不变。也可采用磨内喷水来控制出磨气体温度(降温)。保持物料量与磨辊压力的平衡,磨辊压力随球磨机喂料量的多少进行调节,当入料一定时,压力大,则料层薄,易引起振动;反之压力小,则料层厚,又易引起吐渣。所以,当料层增厚时,应稍增大研磨压力;反之,则应减小研磨压力。 球磨机设备入磨喂料量控制,喂料量是根据粉磨料层的上下气流压力差值变化来控制的,通过调节喂料量,使压差值稳定在正常范围内,从而稳定磨盘上的料层厚度,减小振动,实现平稳持续的运转。 球磨机的生产工艺的好坏,影响到物料的球磨效果。一般情况下我们要从转速、合理的装载量、球石的性质(大小、形状、硬度等)、装料方式、球磨机的直径几方面进行球磨机工艺改进。此外,还需注意球磨机的生产规程。球磨机设备不断将用户在各领域的成果融合进来,进行研发设计、工业化试验、投入运营大规模化等几个阶段,充分体现了适用创新、拓展效能、提高质量、降低成本的科学设计,从而减少设备的功耗消耗。

球磨机设备系统采用低温四级烘干工艺:在保证被烘干物料质量不变的情况下,一级干燥区利用顺流高温烘干,在高湿度状态下,经过入口温度430℃,瞬间和褐煤进行热传质交换,除去大部分水份,确保了物料的化学成份不发生变化,且不易被燃烧。二级干燥区室温300℃,在球磨机设备的运转过程中,通过中温强力引风,确保物料外表不发生焦化;三级干燥区为正常烘干区,室内温度120℃210℃,利用滚筒内的破碎装置,反复撕扯、撞击、撒落,打散物料,顺流烘干。 球磨机为中小企业提供新的技术动力,球磨机设备具备很纯熟的烘干工艺,在业内已经广泛受到了认可,虽然市场竞争激烈,但就目前的经济形势,球磨机设备确实给中小企业带来了巨大的经济收益,足够创新和优势的工艺技术才是吸引用户订购的关键。 控制合理的通风量,保持风量与物料量的平衡,风量直接影响磨内的压力差和生料细度。球磨机设备通风量根据球磨机喂料量确定,当喂料一定时,磨内通风要稳定。球磨机设备调节通风量的方法,一般以球磨机设备循环风机功率来控制循环风门的开启度调节磨内的通风 量。 配料成本低,自动化程度高,是国内最适用连续式陶瓷球磨机的瓷区.由于物料的难磨程度不一样,为保证料浆的均匀性,同样将球磨出来的料浆全部引入浆池。刚开始虽然进去的和出来的料不完全相同,但

球磨机气动离合器介绍

球磨机气动离合器介绍 球磨机联轴器、气动离合器、主电机和慢速装置的安装 (1)将联轴器、气动离合器、主电机仔细检查,去除运输中产生的碰伤及毛刺;清洗后才能安装。主电机按照生产厂家提供的安装使用说明书进行安装. (2)小齿轮装置的传动轴和主电机轴的同轴度‘沪0.3,倾斜度1/1000,并应与球磨书L的倾斜方向一致,倾斜度和高度出现误差,可在电机底座下加垫片进行调整;平行度出现误差,可移动电机转子轴承位置进行调整,调整要仔细,力求高精度;轴向位置按图纸要求调整到位。 (3)安装慢速装置时,应保证带电动机的行星摆线针轮减速机安装好后,拉杆装置能很轻松地搬动爪形离合器,不得有卡紧、脱不开和靠不上等现象发生,从而达到离合灵活。行程开关与挡块的接触和断开可靠,轴向移动的半联轴器与衬套相对滑动的表而、拉杆装置的滑块及与其相配合槽的接触表而都应涂上润滑脂。 (4)球磨机的小齿轮轴线与球磨机筒体轴线的平行度不3超过 0.15/1000'5.1.5齿轮罩的安装 (1)检查齿轮罩在长途运输中是否有碰撞变形,耐油油漆是否脱落,变形,补刷耐油油漆。

(2)安装齿轮罩要注意检查校正,保证齿轮运转过程中不发生碰撞,圈时要保证毡圈处处紧贴大齿轮,不许有缝隙。 球磨机总体安装顺序概述 (l)基础螺栓及底板; (2)主轴承部、顶起装置就位: (3)简体部、进料部、出料部,其中简体上的人孔后安装; (4)传动部的大齿轮、小齿轮装置和齿轮罩; (5)巾间轴部、联轴器、气动离合器和主电机: (6)慢速装置; (7)给料部; (8)出料筛部; (9)高压及润滑油站: (10)液压管路、输水管路、气路系统、电气部、喷射润滑装置。球磨机齿轮装置的安装

球磨机工作原理及技术参数

球磨机工作原理及技术参数第一节球磨机主体技术参数 工作原理 物料经过给料部、进料部进入筒体部。筒体部内装有磨矿介质(钢球),介质与物料随筒体回转产生离心力作用下,当介质提升到一定高度后抛落下来,在磨矿介质对物料的冲击磨剥作用下将物料粉碎,粉碎后的物料借助进料及冲矿水的推力经出料口排出机外,完成磨矿过程。 总技术参数及配备电机型号序 号 项目单位数值 1 设备型号MQY5064 MQY4361 2 筒体内径m 5.0 3 4.27 3 筒体工作长度m 6. 4 6.1 4 筒体工作转速r/min 14.4 15.67 5 筒体有效容积m 3121 80 6 最大充填率45% 45% 7 最大装载 量 钢球t 210 144 物料t 290 202 8 同步电机 型号 TDMK2600 -30 TDMK1750-30 功率kw 2600 1750 电压v 10000 10000 转速r/mi200 200

n 9 气动离合 器 型号 DV46VC12 00 DV38VC1200 10 慢速驱动 装置 型号N111C MJZ2 功率kw 22 15 速比1109 1482.4 输出 轴 转速 r /min 1.11 1.012 第二节主液压站主要参数 型号E658B(MQY5064球磨机液压润滑油站) 设备油 泵 数 量 工作压 力 (MPa) 公称流量 (L/min) 电机 型号功率(KW) 转速 (r/min) 高压 供油系统2 8-10 160 Y2-250M -4 55 1440

低压 供油系统 2 0.26-0. 6 200 Y2-160M- 6 7.5 960 型号E681(MQY4361球磨机液压润滑油站) 设备油泵 数量 工作压 力 (MPa) 公称流 量 (L/mi n) 电机 型号功率(KW) 转速 (r/min) 高压 供油系统2 8-10 100 Y2-180L -4 22 1440 低压 供油系统2 0.26-0. 6 125 Y2-132M2 -6 5.5 960 小齿 供油系统2 0.26-0. 6 10 Y2-90S-6 0.75 2.29

球磨机衬板金属材料介绍

球磨机衬板金属材料介绍 衬板奏响球磨机进步曲,衬板是用来保护球磨机筒体,使筒体免受研肝体和物料直接冲击和磨擦,同时也可利用不同形式的衬板来调整研球磨机磨体的运动状态,以增强研翻体对物料的粉碎作川,有助十提高麟机的粉磨效率,增加产量,降低金属消耗。由于衬板长期处十严酷的_L况条件卜,维修址和更换员相当人,不仅需要人力、物力、财力.而日.直接影响产产率。球磨机的衬板人多数是用金属材料制造的,也有少量用非金属材料制造。筒体衬板除保护筒体外,还对球磨机研磨体(J运动规律有彰响,为适应各种不同I几作状态(粉碎或细腆)的要求,衬板的形状的材丰」也不同。 据统计,我国每年消耗的金属耐肺材料约300万11屯心卜,其中仅冶金矿.消耗的球磨机衬板就达10力吨左右。目前我国各类矿山麟机等选矿山用麟机等选孙’一设备中的衬板等易损件·般都采用ZGMr、13高锰钢材质。这类球磨机易损件在使用时要承受一定的冲击和磨料磨损,因此其材质应生L良好的抗翻性能和一定的冲击韧性。 各类球磨机球脚机衬板年耗最不少于25),-吨.是腆丫介质(水泥业称研脐休,以卜简称跳介)

年耗最的25%,在处理!l屯物料成本卜所占比例仅次于磨介,实属大宗消耗件.衬板与靡介相比,衬板更多体现在影响磨机作业率所造成的经济损失是这种备件本身价仇的几倍、十儿倍。 影响球磨机衬板耗量的技术因素多达十几种,甚至更多,基本搞消的不过儿种。 纵观我「l礴冶金矿选厂湿磨粗磨机儿乎是100%的采川金属衬板,其中以高锰钢衬板为主。竹通高锰钢(Ll{JMn13)的特点是冲,}牙硬化,提高它的使用寿命,关键在十提高它的初始硬度,目前国际流行的有效措施是实行爆炸硬化,即高锰钢件出厂前t,J其施爆,一则可检查大型高锰钢件,重要部位高锰钢件的内部缺l名,作业前剔出,以免酿成事故;二则通过对高锰钢件表面施爆(特制炸药,瞬间冲击表而),提高球磨机高锰钢件农层硬度,使其初始硬度人大提高。 冶金征湿礴细脐球脐机衬板,已经向多元化材料发展,除了球磨机金属衬板之外,橡胶衬板、聚氨酷(pvC)衬板,不同材料复水泥业与冶金矿球腆机作业情况性衬板应运而产。有袄个不同点:占先,球麟机转速前者低,多为临界转速的75%~80%.其次,水泥业球磨机细一长,后者短而粗。第三,水泥业头仓最大球径与后者最大球径相比小得多。因此,水泥业球磨机衬板选川冲击硬化的高锰钢实为不当,应人力推夕涟各系多元合金衬板。经对近百家大小型水泥球磨机衬板跟踪考察证实,大型水泥球脚机直径3.5x5.0米以.靡头材质,碳低合金为宜,筒体衬板、高、低铬多元合金铸铁均可.隔仓板采川中碳

磨机的分类与工作原理

磨机的分类与工作原理 球磨机(包括棒、管磨机)选型设计第一节磨机的分类与工作原理 一、磨机的分类 第一节磨机的分类与工作原理 一、磨机的分类 物料经过破碎机械破碎(粗、中、细破碎)的物料粒度在8-20 mm 之间,为了达到生产工艺所需要的细度要求,破碎后的物料还必须经过粉磨机械磨细。粉磨是现代工业生产中的重要过程。 在选矿、建材、水泥、煤炭、化工、电力、轻工和冶金等工业部门中,都需要磨碎作业,球磨机、振动磨机、气流磨机和其他磨机是这些工业部门的重要设备之一。而球磨机的应用最为广泛,这类粉磨机的主要部件都是一个缓慢旋转的筒体,筒体内装有磨碎介质,由于球磨机结构简单坚固、操作可靠、维护管理简单、能长期连续运转、对物料适应性强、破碎比大(可达300 以上)和生产能力大,所以能满足现代化大规模工业生产的需要。但球磨机的缺点也比较明显,其工作效率低、体型笨重、研磨体和衬板的消耗量大、操作时噪声大,因而在选用粉磨机械时,应综合物料的物性、物料磨碎的要求、操作条件、生产环境、机械能耗、工作效率及基建投资等多种因素,进行比较、筛选后才能决定。由于每一种粉磨机械都有其局限性及优缺点,在选用设备时必须按上述要求进行综合比较,选取最合理的粉磨机械。 1. 按筒体的长度与直径之比分类 (1)短磨机长径比在2以下时为短磨机,或称球磨机。一般为单仓,用于粗磨或一级磨,也可将2-3台球磨机串联使用。 (2)中长磨机长径比在3左右时为中长磨机。 (3)长磨机长径比在4以上时为长磨机或称管磨机。中长磨和长磨,其内部一般分成2-4 个仓。在水泥厂中用得较多。 2. 按磨内装入的研磨介质形状分类 (1)球磨机磨内装入的研磨介质主要是钢球或钢段。这种磨机使用最普遍。 (2)棒磨机磨内装入直径为50 -100 mm 的钢棒作研磨介质。棒磨机筒体长度与直径之比一般为1.5-2。 (3)棒球磨机这种磨机通常具有2-4个仓。在第一仓内装入圆柱形钢棒作为研磨介质,以后各仓则装入钢球或钢段。 棒球磨机的长径比应在5左右为宜,棒仓长度与磨机有效直径之比应在1.2-1.5之间,棒长比棒仓短100mm左右,以利于钢棒平行排列,防止交叉和乱棒。(4)砾石磨磨内装入的研磨介质为砾石、卵石、瓷球等。用花岗岩、瓷料做衬板。用于白色或彩色水泥以及陶瓷生产。 3. 按卸料方式分类 (1)尾卸式磨机欲磨物料由磨机的一端喂入,由另一端卸出,称为尾卸式磨机。 (2)中卸式磨机欲磨物料由磨机的两端喂入,由磨机筒体中部卸出,称为中卸式磨机。该类磨机相当于两台球磨机并联使用,这样设备紧凑,简化流程。 按尾卸式磨机的排料方式有格子排料、溢流排料、周边排料和风力排料等多种类型(见图1-1、图1-2、表1-1)。

如何计算球磨机研磨体的级配

如何计算球磨机研磨体的级配 MORE 球磨机钢球级配的方法很多种,基本原则是: 1.物料的硬度大,选钢球直径大; 2.磨机直径大,冲击力就大,选钢球直径小; 3.使用双仓隔板的,球径应比同样排料断面的单层隔仓板小; 4.一般四级配球,大、小球少,中间球大, 即两头少,中间多”…… 磨粉效率很高的钢球配比 MORE 球磨机在磨粉料时,如下的钢球配比磨粉效率最高,属经济运行状态: MORE 新按装的球磨机有一个磨合过程,在磨合的过程中,钢球量第一次添加,占球磨机最大装球量的80%,钢 球添加的比例可按钢球尺寸(①120 mm、①100mm、①80 mm、①60 mm、①40 mm)大小添加。 钢球添加量:不同球磨机型号其总装球量不同。例如MQG150? 3000球磨机(处理量100— 150吨)最大 装球量9.5 —10吨。第一次添加钢球,大球(①120mm和①100mm)占30% — 40%、中球80 mm占40%— 30%、小球(①60和①40mm)占30%。 钢球添加的重量,是根据钢球的质量,钢球质量的好坏,决定了矿石吨耗添加量。最好采用新型耐磨钢球。 最好的(质量好的)钢球添加是按处理每吨矿石量来计算(即每吨矿石添加0.8 kg)—般的钢球处理一吨矿石需(1 kg —1.2 kg)。 钢球大小比例:不同球磨机型号其配比不同。球磨机直径在2500 mm以下,添加钢球尺寸为①100 mm、①80 mm、①60mm。球磨机直径在 2500 mm以上,添加钢球尺寸为①120mm、①100mm、①80mm。 研磨介质(磨球)耐磨材料的选择 MORE 我国建材行业1994年制定了 JC/T535-94建材工业用铬合金铸造磨球”标准。在此基础上又颁布了国家标准 GB/T17445-1998铸造磨球”。其中规定的品种有高铬球、中铬球,低铬球、贝氏体球墨铸铁球的化学成分、机械性能、铸球规格和检验方法等。 质量好的磨球应具有下列性能: (a)耐磨性:对切削磨损、变形磨损和疲劳剥落磨损有足够的耐磨性;对切削磨损要求有高硬度;对变形磨损和疲劳磨损要求有高的应变疲劳、接触疲劳和冲击疲劳寿命; (b)良好的冲击韧性:在反复冲击磨损条件下,有高的抗冲击性能,不破碎; (c)高的淬透性:保证? 100mm大球整体腐损均匀,不失圆; (d)优良的冶金质量:按规定的标准成分生产,不得有夹渣、夹砂等铸造缺陷。 具体的说,磨机粗磨仓应选择高铬球,细磨仓可选择低铬球。对湿法磨而言,应选择低铬球或锻造钢球, 因为在有腐蚀的情况下,高铬球的耐磨性得不到充分体现。从耐磨性考虑,应该选择用金属模具生产的铸球。 如何改善磨矿效果 MORE 3.3装球制度要合理

球磨机仿真模拟介绍

球磨机仿真模拟介绍 仿真模拟是最近几十年逐渐兴起的先进的方法。按目前的报导可以分为两类:一类是有限元仿真分析;一类是离散元仿真分析。二者的侧重点有所不同。有限元仿真分析主要是通过商业化有限元软件建立球磨机的离散化有限元模型,将球磨机的载荷和约束作为边界条件输入,求解整个球磨机结构在承受载荷时的变形以及应力水平,并进行相关的校核,从而得出球磨机结构的安全系数等等。它是随着有限元理论的成熟以及商业化有限元软件的形成而发展起来的一种先进分 析手段。生产厂家主要运用有限元仿真球磨机对球磨机进行结构设计。离散元仿真分析则多见于国外的研究。从理论上来说,离散元是一种模拟非连续体的代表性数值计算方法(这点恰好与有限元不同),对于粒子流动的不连续行为,它以离散体的力学理论,配合牛顿第二运动定律及显式时间积分法来描述离散体的运动。这种方法运用于球磨机的研究当中在国外已得到实验验证并有相关专用软件(耐llsoft),国内目前未见有用它来仿真模拟球磨机的相关报导。它主要是通过建立筒体忖板和钢球的模型对钢球在不同填充率和转率的 条件下的相互运动及于忖板的碰撞等进行模拟。这种方法配合照相实测及其他实验手段,能很好的预测所应该采取的球磨机最佳工况如转速、钢球填充率,甚至矿浆的影响洛明等等从而达到节能的目的。美国能源部(USDE)对矿山用的大型球磨机研究采用的就是这种方法。球磨机通过把实验室的球磨机一端端盖做成透明,快速拍摄球磨机转动时的每一个瞬间来研究球磨介质运动的每一个状态。戴维斯、胡基

等都采用了这一方法来研究钢球运动,井验证了钢球的层运动理论。这一方法的特点是局限于实验室,且随着摄像手段和设备的不断发展而不断完善,如国外目前采用先进的位置密度显示法《PDPs)‘川研究,这是一种数字式的、可视化的并基于统计学的方法。通过迭加大量各自独立的球磨机稳态工作时的介质运动图像,能够较好的系统的研究球磨机的载荷特性(介质动态休止角、开始抛落或泻落位置、落下底脚位置等),甚至可以直接利用扭矩公式计算出球磨机的功率。积极应对复杂形势,着力应对球磨机最新研究方法,球磨机的研究是随着研究手段的发展而进步的,有时甚至研究成果极大程度地取决于所采取的研究手段。尤其是现在随着矿产的“贫化、细化、杂化”,球磨机的设计变得越来越大型化,这对研究手段提出了更高的要求。目前采用的球磨机研究手段主要有以下几种: 照相实测是自球磨机出现以来就采用也一直到现在还在采用的重要 手段之一。球磨机实践试验之所以把实践试验作为一种手段,主要是考虑到它对于球磨机研究的重要性.可以说,自球磨机产生以来实际试验就一直存在,也可以称之为经验法。由于球磨机研究的复杂性,理论应用具有很大的局限性,很多情况经验往往比理论更能指导实践。于是,在长期的实践过程中,就积累了很多的经验,甚至有的已经上身为理论,如有关功率计算的经验公式,介质填充率的大小,甚至球磨机转速的选取等等’峰旧.直到今天,很多企业、厂矿仍在不断总结实际经验,并用于指导生产实践. 更多关于球磨机、砂石生产线、石料生产线、选矿设备、压球机、

相关文档