文档库 最新最全的文档下载
当前位置:文档库 › 压汞资料在莫北地区储层分类的应用研究

压汞资料在莫北地区储层分类的应用研究

压汞资料在莫北地区储层分类的应用研究
压汞资料在莫北地区储层分类的应用研究

压汞资料在莫北地区储层分类的应用研究

摘要:储层孔隙结构是影响孔隙连通性的主要因素,根据毛管压力曲线形态可以定性认识储层孔喉结构的好坏。以莫北地区油田三工河组为例,应用压汞资料定性与定量地研究储层结构特征,给储层类别分级。根据储层物性和孔喉结构参数为分类标准可将储层分为四类,总体上好的储层孔隙吼道粗、分选好、连通性好。

关键词:压汞资料孔隙结构储层分类

1 孔喉结构特征分析

能够表征储层孔隙结构特征的毛管压力曲线的定量特征参数主要有饱和度中值压力、排驱压力、最大汞饱和度、饱和中值半径和退汞效率等,它们都是反映储层微观非均质性的重要依据。其中能够表征孔喉大小的参数有:最大孔喉半径、孔喉平均半径;能够表征孔喉渗流能力的参数有:排驱压力、中值压力退汞效率;能够表征孔喉分选性的有:分选系数、变异系数、歪度等。排驱压力p是指非湿相汞开始进入岩样的最大喉道的最低压力。该压力越低岩石渗透性越好,同时最大喉道半径越大,储层储集性能越好;反之,该压力越高,储层储集性能越差。饱和度中值压力pc50是指汞饱和度为50%时的压力。pc50越小r50越大,表明储层的孔渗性越好产油能力越高;反之pc50越大r50越小,表明储层的孔渗性越差,产油能力越低。最大汞饱和度SHgb 是指最高压力下进汞的饱和度。此值越高反映储集性能越好。退汞效

压汞曲线_双峰态_性质的分析

石油学报  1999年7月ACT A PET ROLEI SINICA第20卷 第4期 文章编号:0253-2697(1999)04-0061-68 压汞曲线“双峰态”性质的分析 原海涵 赵玉萍(长庆石油学校)  原 野 (西安石油学院) 摘要:毛管参数的积分计算法是理论导出的,按级数法的测点选取方法计算时,产生的误差很大。舍去部分高压测点就符 合得好。所有岩石样品中都存在这种误差。压汞曲线的双峰态发生在高压部分,其特征是毛管孔径曲线的斜率多变,完全 不同于铸体薄片、离心法的单调斜率状态。单调的压力上升与非随机特征说明其属于非孔隙结构因素。双峰态的初始点与 渗透率的关系属于力学特征。当前压汞曲线高压极值部分压力变化饱和度不变是人为作用的结果。原始的压汞曲线与岩 石应力曲线十分相似。压汞测量时岩样处于围压状态。原始的压汞曲线不仅有双峰态,压力极大处还表现为“鹰嘴现象”。 这是岩石孔隙内部填充流体分别为注汞和无汞两种介质不同的结果。积分法可以减少测量点数,提高工作效率,缩短工 时,有利健康,延长仪器寿命。 主题词:压汞曲线;积分法理论;双峰态;非随机特征;力学特征;围压状态 1 引 言 压汞测量技术表达岩石孔隙结构的方法,除了图示的毛管压力曲线外,更主要的是各种矩法及其衍生的计算参数。由于测点的不连续性,当前所有的计算方法都是离散级数法。笔者为了研究毛管理论在测井解释中的应用,曾提出了积分法计算孔隙结构参数的理论,《毛管理论在测井解释中的应用》一书对此有较为详尽的阐述[1~2]。 积分法因为仅是计算方法的改进,最初的选样方法与级数法完全相同,要舍弃“麻面效应”等非孔隙结构因素。理论上,如果仅是计算方法改进,二者的计算结果应该没有多大变化。但当进行实际操作时,却发现了另一些非孔隙结构影响因素。这就是高压部分测量结果所产生的影响,与其有关的就是压汞曲线上双峰态形状的性质问题。 2 积分法与级数法计算的差别与性质 2.1 积分法计算的理论与方法 积分法的计算理论是在分析压汞测量过程和其几何图示结果的物理意义基础上得出的。基本依据是,只有汞注入压力趋向于无限大时,汞才可能进入毛管孔径趋于零的孔隙空间。但是,这在技术上是无法实现的,所以常见的压汞曲线的汞饱和度都不可能为100%,只能测量出仪器最大压力时的注汞饱和度,此后的一部分资料都是空白。这一部分资料的处理和应用,只有借助于物理和数学分析手段才可能。 孔隙结构的直接参数是孔径尺寸等参数,压汞曲线只是一个中间资料,应用起来既不直观,也不方便,所以在毛管法理论中都是以毛管孔径曲线为主的,如图1和图2所示。这时,原来高压测点所存在的问题就很容易处理,因为不管仪器条件如何,注汞压力为无穷大时,毛管孔径必定是零。相应的累计孔隙空间体积也是零,物理意义十分明确。在数学上,毛管孔径与含水饱和度的关系必然是通过原点的函数表达式。 另外,从双对数坐标图的图3-b可知,压汞曲线在主要孔隙空间的分布规律为一直线。依据上述边界条件和曲线形态,最终导出毛管曲线应当是幂指类函数: 原海涵,男,1935年6月生。1962年毕业于北京石油学院。现任长庆石油学校高级讲师。通讯处:陕西省西安市长庆基地兴隆园一区25幢一单元201室。邮政编码:710021。

储层识别方法

储层识别方法 研究区储层物性可以反映在地球物理测井参数上,对于研究区的储层识别可以充分应该常规测井并结合测井新技术。储层的划分主要是依据自然电位曲线结合自然伽马曲线,并通过中子、密度、声波、电阻率曲线等特征判别储层好坏,若结合地质特征、钻井、录井显示、试油资料以及岩心分析等,更能综合准确分析储层的好坏。储层的测井划分标准: (1)好储层 岩性较纯,泥质含量较低。在井眼正常的情况下,常规测井自然电位负异常,并异常幅度大,一般大于20mV,自然伽马一般集中在40-70API;电成像图上呈棕黄色显示,排除暗色泥质条带和高亮度致密岩性。 孔隙度较大:常规测井上声波时差大于230μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般小于2.5g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的右边,T2分布谱越靠右分布越好。 渗透性较好:常规测井上,储层井径正常或略有缩径,深浅双侧向(深中感应)电阻率有或无差异;在排除泥质影响情况下,斯通利波能量有衰减。 (2)中等储层 岩性较纯,泥质含量较低:井眼正常的情况下,常规测井自然电位负异常幅度中等-大,一般在10-20mV,自然伽马一般集中在60-95API; 孔隙度较大:常规测井上声波时差大于220μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般小于2.6g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的中-右边,孔隙以中孔为主。 渗透性较好:常规测井上,储层井径正常或略有缩径,深浅双侧向(深中感应)电阻率有或无差异;在排除泥质影响情况下,斯通利波能量有衰减。 (3)差储层识别方法 岩性较纯,泥质含量较低:井眼正常的情况下,常规测井自然电位负异常幅度中等-大,一般在小于10mV,自然伽马一般集中在70-95API; 孔隙度较小:常规测井上声波时差小于220μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般大于2.6g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的中-左边,孔隙以小孔为主。

储层微观特征及分类评价

4.储层微观特征及分类评价 4.1孔隙类型 本次孔隙分类采用以孔隙产状为主,并考虑溶蚀作用,结合本区实际,将孔隙分类如下: 1. 粒间孔隙 粒间孔隙是指位于碎屑颗粒之间的孔隙。它可以是原生粒间孔隙或残余原生粒间孔隙,即原生粒间孔隙在遭受机械压实作用、胶结作用等一系列成岩作用破坏后而保留下来的那一部分孔隙。多呈三角形,无溶蚀标志。另一方面它也可以是粒间溶蚀孔隙,即原生粒间孔隙经溶蚀作用强烈改造而成,或者是颗粒间由于强烈溶蚀作用的结果。粒间空隙一般个体较大,连通性较好。粒间孔隙是本区主要的孔隙类型。 2. 粒内(晶内)孔隙 这类孔隙主要是砂岩中的长石、岩屑等非稳定组分的深部溶蚀形成的,在研究区深层砂岩中普遍存在。长石等非稳定组分的溶蚀空隙可以进一步分为粒内溶孔和晶溶孔。晶内溶孔是指长石颗粒内的溶孔,而粒内溶孔是指岩屑等碎屑内部的易溶组分在深部酸性流体作用下形成。常常沿长石的解理缝、双晶纹和岩屑内矿物之间的接触部位等薄弱带进行溶蚀并逐渐扩展,因而常见沿解理缝和双晶结合面溶蚀形成的栅状溶孔。长石、岩屑等非稳定组分的溶蚀孔的发育常常使彼此孤立的、或很少有喉管项链的次生加大晶间孔的连通性大为改进,而且,这类孔隙的孔径相对较大,从而优化了深部储层的储集性能。 3. 填隙物孔隙 填隙物孔隙包括杂基内孔隙、自生矿物晶间孔和晶内溶孔。 杂基内孔隙多发育与杂基含量较高的(>10%)砂岩中,孔隙数量多,个体细小,连通性差。自生矿物晶间孔隙发育在深埋条件下自生矿物,如石英、方解石、沸石、碳酸岩小晶体以及石盐晶体之间,个体小,数量多随埋深有增加之趋势。但由于常生长于粒间孔隙中,连通性较好,又由于其晶体小,比表面积大,孔隙结构复杂,影响流体渗流。因此在埋深3500米以下,孔隙度降低较慢,而渗透率降低很快。这类晶间孔隙在徐东-唐庄地区相对发育。另外,杜桥白地区深层还可见到丰富的碳酸盐晶内溶孔和石盐晶内溶孔。 4. 裂隙 裂缝在黄河南地区较不发育,在桥24井沙三段3547.5米砂岩中见一构造裂缝,此外多见泥质粉砂岩或细砂岩中泥质细条带收缩缝。一般绕裂缝在构造活动强烈部位发育,对储层物性改善很有作用。 4.2孔隙结构特征 1.孔隙结构分析 岩石的储集空间不是由单一的孔隙类型组成,而是由多种孔隙类型构成的变化多样的复杂的孔喉系统。

浅谈恒速压汞法与常规压汞法优缺点

浅谈恒速压汞法与常规压汞法优缺点 作者:王新江于少君 【摘要】油藏勘探开发过程中,储集层岩石的孔隙结构是非常复杂的,岩石的孔隙结构特征对储层的渗流特性有直接的影响,一直是油层物理学的一个重要研究内容。目前对孔隙结构认识的资料都是建立在理论模型上的,岩石孔隙结构参数的测定方法主要是常规压汞法、半渗透隔板法、扫描电镜、铸体薄片分析等,都受到检测方法和技术手段的局限性限制,都做了相当的假设性处理,这种假设增加了预测结果的随意性,很难精确地描述储层岩石真实的孔隙结构特征。恒速压汞法是一种测试储层岩石孔隙结构的新技术,对孔隙结构复杂性的认识方面,比以往的研究方法和手段更先进一步,对储层岩石的孔隙结构特征有了更精细的描述和刻画。本文以美国ASPE-730压汞仪为例,浅谈该检测技术的优缺点。 【关键词】常规压汞法;恒速压汞法;孔隙结构;孔喉比 汞对绝大多数造岩矿物来说都是非润湿的。如果对汞施加压力,当注入汞的压力达到孔隙喉道的毛管压力时,汞就会克服毛管阻力进入孔隙内,根据不断注入汞的孔隙体积百分数和对应压力,便能绘制出压汞毛管压力曲线。由于汞的表面张力和润湿接触角比较恒定,常用注入型的压汞法(恒压法和恒速法)毛管压力曲线换算孔隙大小及分布。 式中:PC—毛管压力,单位为(MPa);σ—表面张力,单位为(N/m),取σ= 0.48 N/m;θ—润湿接触角,单位为(°),取θ=140°; rc—毛管半径,单位为(?m)。 1.常规压汞法 常规压汞法是在一定的压力下记录进汞量测定岩石的孔隙结构的方法,进汞过程可以看成是从一个静止的状态到另外一个静止的状态过程,在两个压力差的作用下,就会有一定量体积汞被注入进被检测的岩石孔隙中,根据压力的涨落变化和相对应进入岩石汞体积的涨落变化情况,就可以测得岩石的孔隙大小和分布曲线,绘制出岩石的进入-退出毛管压力曲线,经过进一步计算就可以得出该样品的其它孔隙结构特征参数。 1.1优点: 该方法测试样品速度快、准确,仪器设备测试原理相对简单、操作比较容易,是大多数油田测试储集岩孔隙结构最普遍、采用最多的方法,也是油田开发初期的勘探开发、储量计算、开发方案的设计等最重要的基础资料。 1.2缺点: 1)常规压汞法的测试过程是发生在两个静止状态之间,这就丢失了很多孔隙结构的信息,比如无法得到孔喉比的信息。 2)虽然常规压汞法测试技术接近事实,确实对发生在孔隙空间中的渗流运动进行了测试。但是测试过程本身包含了太多人工干预的因素,使得许多与自然渗流过程联系在一起的孔隙结构特征无法得到更具体的体现。

储层

储层:凡是能够储集和渗滤流体的地层的岩石构成的地层叫储层。 储层地质学:是一门从地质学角度对油气储层的主要特征进行描述、评价及预测的综合性学科。 研究内容:储层层位、成因类型、岩石学特征、沉积环境、构造作用、物性、孔隙结构特征、含油性、储集岩性几何特征储集体分布规律、对有利储层分布区的预测。有效孔隙度:指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积与岩石总体积的比值。 绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,在这种条件下所测得的渗透率为岩石的绝对渗透率。 剩余油饱和度:地层岩石孔隙中剩余油的体积与孔隙体积的比值 残余油饱和度:地层岩石孔隙中残余油的体积与孔隙体积的比值 储层发育的控制因素:沉积作用、成岩作用、构造作用低渗透储层的基本地质特征:孔隙度和渗透率低、毛细管压力高、束缚水饱和度高 低渗透储层的成因:沉积作用、成岩作用 论述碎屑岩储层对比的方法和步骤: 1、依据 2、对比单元划分 3、划分的步骤 1、依据:①岩性特征:指岩石的颜色、成分、结构、构造、地层变化、规律及特殊标志层等。在地层的岩性、厚度横向变化不大的较小区域,依据单一岩性标准层法,特殊标志层进行对比;在地层横向变化较大情况下依据岩性组合②沉积旋回:地壳的升降运动不均衡,表现在升降的规模大小不同。在总体上升或下降的背景上存在次一级规模的升降运动,地层剖面上,旋回表现出次一旋回对比分级控制③地球物理特征:主要取决于岩性特征及所含流体性质,电测曲线可清楚反映岩性及岩性组合特征,有自己的特征对比标志可用于储层对比;测井曲线给出了全井的连续记录,且深度比较准确,常用的对比曲线:视电阻率曲线、自然电位曲线、感应测井曲线 2、对比单元划分:储层层组划分与沉积旋回相对应,由大到小划分为四级:含油层系、油层、砂层组和单油层。储层单元级次越小,储层特性取性越高,垂向连通性较好 3、划分的步骤:沉积相的研究方法主要包括岩心沉积相标志研究、单井剖面相分析、连续剖面相对比和平面相分析四种方法 岩心沉积相标志的研究方法是以岩石学研究为基础,可分为三类:岩性标志,古生物标志和地球化学标;单井剖面分析是根据所研究地层的露头和岩化剖面,以单井为对象,利用相模式与分析剖面的垂向层序进行对比分析,确是沉积相类型,最后绘出单井剖面相分析图;连井剖面相对比分析主要表示同一时期不同井之间沉积相的变化,平面相分析是综合应用剖面相分析结果进行区域岩相古地理研究的方法。 碳酸盐岩与碎屑岩储层相比,具有哪些特征? ①岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂,岩石性质活泼,脆性大②以海相沉积为主,沉积微相控制储层发育③成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。 扇三角洲储层特征? ①碎屑流沉积。由于沉积物和水混合在一起的一种高 密度、高粘度流体,由于物质的密度很大,沿着物质聚集体内的剪切面而运动。②片汜沉积。是一种从冲积扇河流末端漫出河床而形成的宽阔浅水中沉积下来的产物,沉积物为呈板片状的砂、粉砂和砾石质。 。③河道沉积。指暂时切入冲积扇内的河道充填沉积物。④筛积物。当洪水携带的沉积物缺少细粒物质时,便形成由砾石组成的沉积体。 碎屑岩才沉积作用:垂向加积、前积、侧向加积、漫积、筛积、选积、填积、浊积 喉道:在扩大孔隙容积中所起作用不大,但在沟通孔隙形成通道中起着关键作用的相对狭窄部分,称为喉道。孔隙结构:岩石所具有的孔隙和喉道的几何形状、大小、分布、相互连通情况以及孔隙与喉道间的配置关系。 碎屑岩的喉道类型:孔隙缩小型喉道、缩颈型喉道、片状喉道、弯片状喉道、官束状喉道 孔隙类型:原生孔隙、次生孔隙、混合孔隙 排驱压力:非润湿相开始进入岩样所需要的最低压力,它是泵开始进入岩样最大连通孔喉而形成连续流所需的启动压力,也称阀压。 成岩作用:指碎屑沉积物在沉积之后到变质之前所发生的各种物理、化学及生物的变化。 同生成岩作用:沉积物沉积后尚未完全脱离上覆水体时发生的变化与作用的时期。 表成岩作用:指处于某一成岩阶段弱固结或固结的碎屑岩,因构造抬升而暴露或接近地表,受到大气淡水的溶蚀,发生变化与作用的阶段。 成岩作用的基本要素:岩石、流体、温度、压力 孔隙水的流动方式和动力:压实驱动流、重力驱动流、滞流 碎屑岩主要的成岩作用有哪些?分别对孔隙有什么影响? 根据成岩作用对储层孔隙演化的影响,可将碎屑岩的残岩作用分为两大类:一是降低储层孔渗性的成岩作用,主要有机械压实作用和胶结作用,其次压溶作用和重结晶作用;其中机械压实作用是沉积物在上覆重力及静水压力作用下,发生水分排出,碎屑颗粒紧密排列而使孔隙体积缩小,孔隙度降低,渗透性变差的成岩作用;胶结作用是指孔隙溶液中过饱和成分发生沉淀,将松散的

原油物性、碎屑岩储层分类简表

气藏采收率大致范围表单位:f 注:来源于《天然气储量规范》 气藏采收率大致范围表单位:f 注:来源于加拿大学者G.J狄索尔斯(Desorcy)归纳的世界不同类型气藏的采收率

1. 石油 (1) 按产能大小划分单井工业油流高产—特低产标准 千米井深的稳定日产量[t/(km.d)] 高产中产低产特低产 >15 >5-15 1-5 <1 (2)按地质储量丰度划分作为油田评价的标准: 地质储量丰度(1x104t/km2) 高丰度中丰度低丰度特低丰度 >300 >100-300 50-100 <50 (3)按油田地质储量大小划分等级标准: 石油地质储量(1x108t) 特大油田大型油田中型油田小型油田 >10 >1-10 0.1-1 <0.1 (4)按油气藏埋藏深度划分标准: 油气藏埋藏深度(m) 浅层油气世故(田) 中深层深层超深层<2000 2000-3000 >3200-4000 4000 此外,还有几种特殊石油储层的划分标准: 稠油储量指地下粘度大于50mPa·S的石油储量。 高凝油储量指原油凝固点在40℃以上的石油储量。

低经济储量指达到工业油流标准,但在目前技术条件下,开发难度大,经济效益低的石油储量。又有称为边界经济储量。 超深层储量指井深大于4 000m,开采工艺要求高的石油储量。 2.天然气 (1)按千米井深的单井稳定天然气产量划分标准: 千米井深稳定产量[104m3/(km·d)]高产中产低产 >10 3-10 <3 (2)天然气田储量丰度划分标准: 天然气储量丰度(108 m3/km2) 高丰度中丰度低丰度 >10 2-10 <2 (3)天然气田总储量划分大小标准: 田天然气田总储量(108m3) 大气田中气田小气田 >300 50-300 <50 (4)按气藏埋藏深度划分标准: 天然气藏埋深(m) 浅层气藏(田) 中深层深层超深层

压汞公式表(新)

附录:参数意义、公式 1. P d 排驱压力(MPa): 指非润湿相开始进入岩样最大喉道的压力,也就是非润湿相刚开始进入岩样的压力。 2. r max 最大孔喉半径(μm): 压力为排驱压力时非润湿相进入岩石的孔喉半径为最大孔喉半径,与P d 一起是表示岩石渗透 性好坏的重要参数。 3. P 50 饱和度中值压力(MPa): 非润湿相饱和度50%时相应的毛管压力为P 50,它越小反映岩石渗滤性越好,产能越高。 4. r 50 孔喉半径中值(μm): 非润湿相饱和度为50%时相应的孔喉半径为r 50,它可近似地代表样品的平均孔喉半径。 5. r 孔喉半径平均值(μm): 它是表示岩石平均孔喉半径大小的参数。采用半径对汞饱和度的权衡求出。 6. α 均质系数: 均质系数表征储油岩石孔隙介质中每一个孔喉(ri)与最大孔喉半径的偏离程度,α在0~1 之间变化,α愈大,孔喉分布愈均匀。 7. F 岩性系数: 它是岩样实测渗透率与计算渗透率之比,反映喉道的迂曲情况。 8. Smax 最大汞饱和度(%): 实验最高压力时的累计汞饱和度%。 9. We 退汞效率(%): 在限定的压力范围内,从最大注入压力降到起始压力时,从岩样内退出的水银体积与降压前 注入的水银总体积的百分数。它反映了非湿相毛细管效应采收率。 10. φp 结构系数: 它表征了真实岩石孔隙特征与假想的长度相等、粗细不同的圆柱形平行毛管束模型之间的差 别,它的数值是影响这种差别的各种综合因素的度量。 11. 1/Dr φp 特征结构系数: 它是相对分选系数Dr 与结构系数φp 乘积的倒数,既反映孔喉分选程度,又反映孔喉连通程 度,此值愈小,岩样孔隙结构愈差。 12. S KP 偏态(又称歪度): 表示孔喉大小分布对称性的参数,当S KP =0时为对称分布;S KP >0时为正偏(粗歪度);S KP <0 时为负偏(细歪度)。 13. K P 峰态: 表示孔喉分布频率曲线陡峭程度的参数,当S KP =1时为正态分布曲线;S KP >1时为高尖峰曲线; S KP <1时为缓峰或双峰曲线。 14. D r 变异系数: 又称相对分选系数,能更好反映孔喉大小分布均匀程度的参数。数值越小,孔喉分布越均匀。 15. K j 渗透率贡献值(%): 以某孔喉半径所能提供的渗透率百分数。 16. J(sw)函数: 又称为毛管力函数,是基于因次分析推论出的一个半经验关系的无因次函数,它是毛管力曲 线的一个很好的综合处理方法,并可用来鉴别岩石的物性特征。 (1) d P r 7354.0max = (2) 50 507354.0P r = (3) ∑∑-----+= ) (2) )((111 i i i i i i s s s s r r r (4) %100max min max ?-=S S S We (5) ? ∑∑??= ???= ==max )(max max 1 1 max 1S s n i i n i i i dS r S r S S r r α(6) ? = m ax 2)(0000111333.0S S ds r K F φ (7) 5 .0)(???? ??=φσk p s J c w (8) ∑∑???-?= -i i i p kp S S r S S 33 )( (9) ∑∑???-?= -i i i p p S S r r S K 44 )( (10) 2 ) (8r K p φ φ= (11) ? ?+= m ax 1 2 ) (2)(S S S S j dS r dS r K j j (12) ∑∑???-= =i i i p r S S r r r r S D 2 )(1 式中: r —平均孔喉半径μm ; S i —某点的汞饱和度%; r i —某点的孔喉半径μm а—均质系数(无因次量); ΔS i —对应于r i 的某一区间的汞饱和度%; r max —最大孔喉半径,μm F —岩性系数(无因次量); K —空气渗透率μm 2; φ —孔隙度%; r (s)—孔喉半径分布函数中某一孔喉半径μm ; ds —对应于的某一区间汞饱和度%; Smax —实验最高压力时的累计汞饱和度%; Smin —退汞到起始压力时残留在孔隙中汞饱和度%; We —退汞效率%; φp —结构系数,无因次量; S KP —偏态,无因次量; S p —分选系数; K j —渗透率贡献值%; S —汞饱和度%; P c —毛管压力MPc ; σ—界面张力dyn/cm ; D r —变异系数(无因次量); K P —峰态(无因次量); 1/Dr φp —特征结构系数(无因次量);

恒速压汞、核磁、启动压力

1、微观孔隙结构特征对比 利用恒速压汞仪,分别测试了东16扶杨油层的一块岩样和树322区块的一块岩样。 (1)恒速压汞试验原理 恒速压汞的实验原理简述如下:恒速压汞以非常低的速度进汞,其进汞速度为0.000001mL/s,如此低的进汞速度保证了准静态进汞过程的发生。在此过程中,界面张力与接触角保持不变;进汞前缘所经历的每一个孔隙形状的变化,都会引起弯月面形状的改变,从而引起系统毛管压力的改变。其过程如下图所示,左图为孔隙群落以及汞前缘突破每个结构的示意图,右图为相应的压力变化。当进汞前缘进入到主孔喉1时,压力逐渐上升,突破后,压力突然下降,如右图第一个压力降落O(1),之后汞将逐渐将这第一个孔室填满并进入下一个次级孔喉,产生第二个次级压力降落O(2),以下渐次将主孔喉所控制的所有次级孔室填满。直至压力上升到主孔喉处的压力值,为一个完整的孔隙单元。主孔喉半径由突破点的压力确定,孔隙的大小由进汞体积确定。这样孔喉的大小以及数量在进汞压力曲线上得到明确的反映。 图1-4 恒速压汞测试原理图 实验采用美国Coretest公司制造的ASPE730恒速压汞仪。进汞压力0-1000psi (约7MPa)。进汞速度0.000001ml/s。接触角140o,界面张力485达因/厘米。

样品外观体积约1.5cm3。 (2)恒速压汞测试与分析 表1-3、图1-5~图1-12给出了榆树林两个特低渗透岩样的数据测试结果。 图1-5 样品孔道半径分布情况图 图1-6 样品喉道半径分布情况图

图1-7 样品喉道半径累积分布图 图1-8 样品单一喉道对渗透率的贡献率图 02004006008001000 120050 200 350 500 650 800950 1100 1250 孔喉半径比 频率(个数) 图1-9 树322区块一样品孔喉半径比分布

(柴智)人造岩芯孔喉结构的恒速压汞法评价

北京大学学报(自然科学版), 第48卷, 第5期, 2012年9月 Acta Scientiarum Naturalium Universitatis Pekinensis, Vol. 48, No. 5 (Sept. 2012) 人造岩芯孔喉结构的恒速压汞法评价柴智1师永民1,?徐常胜2张玉广3李宏2吴文娟1徐洪波3王磊1 1.北京大学地球与空间科学学院, 北京大学石油与天然气研究中心, 北京 100871; 2.中国石油天然气股份有限公司 新疆油田分公司采油一厂, 克拉玛依 834000; 3.大庆油田有限责任公司采油工程研究院, 大庆 163458; ?通信作者, E-mail: sym@https://www.wendangku.net/doc/b916426962.html, 摘要利用恒速压汞实验, 对3种不同工艺制作的人造岩芯孔喉特征进行研究, 并与天然岩芯实验结果进行对比。3种方法制作的人造岩芯孔隙尺度分布均十分接近, 且与天然岩芯数据吻合良好。人造岩芯喉道尺度分布集中, 相比之下天然岩芯喉道尺度分布范围较宽, 在极小的区间内也有可渗流喉道分布, 同时平均喉道半径大于人造岩芯。天然岩芯可能呈现出大孔细喉的配置关系, 存在更大的孔喉比, 因而驱油效率更低, 剩余油饱和度较人造岩芯更大。 关键词人造岩芯; 恒速压汞; 孔喉结构; 驱油效率 中图分类号TD315 Pore-Throat Structure Evaluation of Artificial Cores with Rate-Controlled Porosimetry CHAI Zhi1, SHI Yongmin1,?, XU Changsheng2, ZHANG Yuguang3, LI Hong2, WU Wenjuan1, XU Hongbo3, WANG Lei1 1. School of Earth and Space Science, Institute of Oil and Gas, Peking University, Beijing 100871; 2. No.1 Oil Production Plant, Xinjiang Oilifeld Company, PetroChina, Karamay 834000; 3. Institute of Oil Production Engineering, Daqing Oilfield Company, Daqing 163458; ? Corresponding author, E-mail: sym@https://www.wendangku.net/doc/b916426962.html, Abstract The pore-throat structure properties of artificial cores made with three different methods are compared with the approach of rate-controlled porosimetry. The feasibility of the artificial cores to replace real cores in micro-structure experiments of reservoirs is evaluated. Pore size distribution of the artificial cores exhibits similar trait as the real core sample, while the throat size is slightly smaller, and the range is narrower compared to the real core. Meanwhile, larger pore-throat ratio may exist in real cores rather than in artificial cores, therefore the displ- acement efficiency of artificial cores is slightly higher and the residual oil saturation is lower than that of real cores. Key words artificial core; rate-controlled porosimetry; pore and throat structure; displacement efficiency 由于取芯难度和费用方面的限制, 油田区块内取芯井所占比例少, 所钻取的岩芯大部分用于油藏描述以及储层岩性、物理性质、含油性等参数的测定, 能够用于采油工程实验的岩芯较少。为了弥补天然岩芯对后期实验的供应不足, 本文对人造岩芯替代天然岩芯的可行性进行评价。对3种不同工艺下制作的人造岩芯进行恒速压汞实验, 比较不同工艺对岩芯孔喉结构的影响, 并将实验结果与天然岩芯进行对比, 优选人造岩芯制作工艺。 1 恒速压汞原理 恒速压汞是由Yuan等[1]提出并发展应用的一种储层微观孔喉特征的研究方法, 即在极低并且恒定的压汞速率下, 使用高敏感度压力测量仪器记录 国家重点基础研究发展计划(2009CB219300)资助 收稿日期: 2011-12-23; 修回日期: 2012-04-06; 网络出版日期: 2012-07-12网络出版地址: https://www.wendangku.net/doc/b916426962.html,/kcms/detail/11.2442.N.20120712.1621.001.html 770

压汞毛管力曲线测定

中国石油大学(油层物理)实验报告 实验日期:2010.12.6 成绩: 班级:石工学号:08054213 姓名: 同组者: 实验六压汞毛管力曲线测定 一.实验目的 1.了解压汞仪的工作原理及仪器结构; 2.掌握毛管力曲线的测定方法及实验数据处理方法。 二.实验原理 岩石的孔隙结构极其复杂,可以看作一系列相互连通的毛细管网络。汞不润湿岩石孔隙,在外加压力作用下,汞克服毛管力可进入岩石孔隙。随压力增加,汞依次由大到小进入岩石孔隙,岩心中的汞饱和度不断增加。注入压力与岩心中汞饱和度的关系曲线即为毛管力曲线,如图4-1所示。 图1 典型毛管压力曲线 三.实验设备

图2 压汞仪流程图 (岩心尺寸:φ25×20--25mm,系统最高压力50MPa) 全套仪器由高压岩心室,汞体积计量系统,压力计量系统,补汞装置,高压动力系统,真空系统六大部分组成。 1、高压岩心室:该仪器设有一个岩心室,岩心室采用不锈钢材质,对称半螺纹密封,密封可靠,使用便捷;样品参数:φ25×20--25mm岩样;可测孔隙直径范围:0.03~750μm。 2、汞体积计量系统:采用高精度差压传感器配合特制汞体积计量管进行计量,精度高、稳定性好;汞体积分辨率:≤30μl;最低退出压力:≤0.3Psi(0.002MPa)。 3、压力计量系统:采用串联阶梯式计量的方法,主要由四个不同量程的压力表串联连接,由压力控制阀自动选择不同量程的压力表计量不同压力段的压力值,提高了测量的准确性;压力表量程:0.1、1、6、60MPa各一支;可测定压力点数目:≥100个。 4、补汞装置:主要由调节系统,汞面探测系统及汞杯组成,并由指示灯显示汞面位置。

沙埝油田沙7断块阜三段低渗储层孔隙结构研究

石油地质与工程 2011年3月PETROLEUM GEOLOGY AND ENGINEERING第25卷第2期文章编号:1673-8217(2011)02-0019-04 沙埝油田沙7断块阜三段低渗储层孔隙结构研究 张奉1,孙卫1,韩宗元2 (1.大陆动力学国家重点实验室/地质学系西北大学,陕西西安710069;2.中国石化胜利油田分公司石油开发中心) 摘要:在铸体薄片、扫描电镜研究的基础上,采用高压压汞和恒速压汞方法对沙7断块E1f3储层的孔隙结构进行了研究。研究区储层的孔隙类型主要为粒间孔、长石溶孔和岩屑溶孔,喉道类型以点状喉道为主,次为片状、弯片状喉道。高压压汞研究发现,研究区储层的孔隙结构非均质性较强,不同部位岩心的孔隙结构特征差异较大:由于胶结作用而使孔隙连通性变差的岩心其储集和渗流性能较差,而溶蚀作用较为发育的岩心,其孔隙极为发育且连通性好,因此其储集和渗流性能较好。恒速压汞实验表明,研究区储层岩石孔隙半径分布范围为100~200m;不同孔渗的样品之间孔隙分布特征相差不大,但其喉道分布特征却迥然不同。喉道对渗透率起主要控制作用,砂岩储层的微观非均质性主要由喉道的非均质性引起。 关键词:孔隙结构;低渗储层;阜三段;沙7断块 中图分类号:TE112.23文献标识码:A 储集层岩石的孔隙结构特征是影响储层流体(油、气、水)的储集能力和开采油、气资源的主要因素,尤其对于低渗透储层而言,明确岩石的孔隙结构特征是发挥油气层的产能和提高油气采收率的关键[1-3]。 沙埝油田位于江苏省高邮市境内,区域构造位置处于高邮凹陷北斜坡带中部宽缓的破碎断鼻构造带上,是由多个分散的含油断块组成的复杂断块群油藏,具有含油断块多,含油层系多,各含油断块面积小且破碎,储层非均质性严重等诸多的复杂地质情况[4-6]。沙7断块位于沙埝油田中部,是江苏油田典型的低渗透窄条状油藏,其含油层系为古近系阜宁组阜三段。近年来随着中低渗透储量投入的逐年增加,低渗透窄条状油藏的开发现状成为影响江苏油田标定采收率的关键,因此,沙7断块提高采收率的研究具有重要的战略意义。在储层孔隙结构镜下分析研究的基础上,采用常规高压压汞和恒速压汞实验方法,对沙7断块E1f3储层的孔隙结构进行了研究。 1储层微观孔隙结构镜下特征 据岩心分析资料统计显示,沙7断块E1f3储层孔隙度为6%~%,平均%,渗透率为~33,平均63,属中孔、低渗储层[]。储层主要岩石类型为岩屑长石砂岩及长石砂岩,碎屑颗粒分选程度好,粒级分布为细砂及极细砂,磨圆程度以次棱状为主,胶结类型主要为孔隙式胶结。 通过铸体薄片和扫描电镜分析,沙7断块E1f3储层岩石平均面孔率为15.1%,孔隙类型主要以粒间孔为主,占孔隙总含量的75.8%左右,长石溶孔、岩屑溶孔次之,分别占总孔隙含量的15.5%和6. 7%,此外还可见少量晶间孔和微裂缝。图象孔隙显示,平均孔隙直径10.04~79.32m,平均46.88 m;均质系数为0.34~0.52,平均0.42。粒间孔:包括原生粒间孔和粒间溶孔。原生粒间孔呈边缘较平直的三角形状、多边形状、片状或不规则状;粒间溶孔形态多样,有港湾状溶蚀、长条状溶蚀、特大溶蚀和蜂窝状溶蚀。长石溶孔:长石颗粒部分或全部受溶形成的溶蚀孔隙,溶孔具长石颗粒的短柱状晶体轮廓,其中既有颗粒内部呈孤立状的粒内溶孔,又有沿颗粒边缘或解理缝溶蚀的溶孔。岩屑溶孔:由岩屑颗粒部分溶蚀或全部溶蚀而成,当颗粒完全被溶时,多有残余物质显示出颗粒轮廓,与周围粒间孔一起构成明显超过邻近颗粒尺寸的大孔。 收稿日期:2010-10-25;改回日期:2010-11-30 作者简介:张奉,1985年生,2008年毕业于西北大学地质学系地质学专业,现为该校矿产普查与勘探专业在读硕士研究生,研究方向为油气储层评价。 基金项目国家科技支撑计划低渗超低渗油田高效增产改造和提高采收率技术与产业化示范(B B B)资助。 .228.220.19 0.122.010-m242.210-m2 7:- 2007A1700

煤的多尺度孔隙结构特征及其对渗透率的影响

· 64 ·2019年 1 月 天 然 气 工 业 煤的多尺度孔隙结构特征及其对渗透率的影响 潘结南1,2 张召召1,2 李猛1,2 毋亚文1,2 王凯1,2 1. 河南理工大学资源环境学院 2. 中原经济区煤层(页岩)气河南省协同创新中心 摘 要 煤中孔隙大小分布不均且分布范围较广,因而利用单一的方法难以对煤的多尺度孔隙结构进行有效地表征。为此,综合运用扫描电镜、低温液氮吸附、高压压汞、恒速压汞等实验方法,对煤的多尺度孔隙结构特征进行综合分析,并揭示变质作用对煤孔体积、孔比表面积的影响,以及煤岩渗透率与孔隙结构特征参数的关系。研究结果表明:①随煤变质程度增强,煤中纳米孔体积及孔比表面积均呈现先减小后增大的趋势,并且在R o,max为1.8%左右时达到最小值;②煤样孔隙半径、喉道半径整体均呈现正态分布,并且随着煤变质程度的增加,最大分布频率对应的孔隙半径增大;③低煤阶烟煤煤样的喉道半径分布范围最宽,最大连通喉道半径及喉道半径平均值均最大;④无烟煤煤样的喉道半径分布范围最窄且最大连通喉道半径最小;⑤低、中煤阶烟煤煤样的孔喉比分布存在着单一主峰,并且主峰对应孔喉比相对较小;⑥煤岩渗透率与孔隙度、喉道半径平均值表现出了较好的正相关关系,其与孔喉比平均值呈负相关关系,而与孔隙半径平均值的关系则不明显。 关键词 煤 多尺度孔隙结构 扫描电镜 液氮—压汞联合实验 恒速压汞 渗透率 变质程度 DOI: 10.3787/j.issn.1000-0976.2019.01.007 Characteristics of multi-scale pore structure of coal and its influence on permeability Pan Jienan1,2, Zhang Zhaozhao1,2, Li Meng1,2, Wu Yawen1,2 & Wang Kai1,2 (1. Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. Henan Col-laborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, Henan 454000, China) NATUR. GAS IND. VOLUME 39, ISSUE 1, pp.64-73, 1/25/2019. (ISSN 1000-0976; In Chinese) Abstract: Due to the uneven distribution of pore size in coal and its wide distribution range, it is difficult to effectively characterize the multi-scale pore structure of coal by a single method. In this paper, the multi-scale pore structure characteristics of coal were analyzed comprehensively by using scanning electron microscope, low-temperature liquid nitrogen adsorption, high-pressure mercury intrusion and constant-rate mercury intrusion. In addition, the effects of metamorphism on the volume and specific surface area of pores in coal were revealed, and the relationships between coal rock permeability and pore structure characteristic parameters were described. And the fol-lowing research results were obtained. First, with the increase of coal metamorphism, the volume and specific surface area of nanopores in coal decrease first and then increase, and they reach the minimum value when Ro,max is about 1.8%. Second, the pore and throat radii of coal samples are overall in the form of normal distribution. And with the increase of coal metamorphism, the pore radius correspond-ing to the maximum distribution frequency increases. Third, the samples of low-rank bituminous coal are the highest in throat radius distribution range, connected throat radius and average throat radius. Fourth, the samples of anthracite coal are the lowest in throat radius distribution range and connected throat radius. Fifth, there is a single main peak in the distribution of pore throat ratios of low- and me-dium-rank bituminous coal samples, and the pore throat ratios corresponding to the main peak is relatively low. Sixth, the permeability of coal is in a positive correlation with porosity and an average throat radius, and in a negative correlation with an average pore throat ratio, but in no obvious correlation with an average pore radius. Keywords:Coal; Multi-scale pore structure; Scanning electron microscope; Combined liquid nitrogen adsorption and high-pressure mer-cury intrusion; Constant-rate mercury intrusion; Permeability; Degree of metamorphism 基金项目:国家自然科学基金项目“构造煤微裂隙结构演化特征及对煤储层渗透性控制”(编号:41772162)、河南省高校科技创新团队支持计划项目“煤层气储层物性及其地质控制”(编号:17IRTSTHN025)。 作者简介:潘结南,1972年生,教授,博士生导师;主要从事煤与煤层气地质方面的研究工作。地址:(454003)河南省焦作市高新区世纪大道2001号。ORCID: 0000-0001-7995-0129。E-mail: panjienan@https://www.wendangku.net/doc/b916426962.html, 通信作者:张召召,1991年生,硕士;主要从事煤与煤层气地质方面的研究工作。地址:(454003)河南省焦作市高新区世纪大道2001号。E-mail: zhangzhao_2017@https://www.wendangku.net/doc/b916426962.html,

原油物性、碎屑岩储层分类简表

原油物性分类简表 碎屑岩储层分类表(石油天然气储量计算规范,DZ/T 0217-2005 ) f

1.石油 (1)按产能大小划分单井工业油流高产—特低产标准千米井深的稳定日产量[t/(km.d)] 高产中产低产特低产 >15 >5-15 1-5 <1 (2)按地质储量丰度划分作为油田评价的标准: 地质储量丰度(1x104t/km2) 高丰度中丰度低丰度特低丰度 >300 >100-300 50-100 <50 (3)按油田地质储量大小划分等级标准: 石油地质储量(1x108t) 特大油田大型油田中型油田小型油田 >10 >1-10 0.1-1 <0.1 (4)按油气藏埋藏深度划分标准: 油气藏埋藏深度(m) 浅层油气世故(田) 中深层深层超深层 <2000 2000-3000 >3200-4000 4000 此外,还有几种特殊石油储层的划分标准: 稠油储量指地下粘度大于50mPa ? S的石油储量。 高凝油储量指原油凝固点在40C以上的石油储量

低经济储量指达到工业油流标准,但在目前技术条件下,开发难度大, 经济效益低的石油储量。又有称为边界经济储量。 超深层储量指井深大于4 000m,开采工艺要求高的石油储量。 2.天然气 (1)按千米井深的单井稳定天然气产量划分标准: 千米井深稳定产量]104m3/(km ? d)] 高产中产低产 >10 3-10 <3 (2)天然气田储量丰度划分标准: 天然气储量丰度(108 m3/km2) 高丰度中丰度低丰度 >10 2-10 <2 (3)天然气田总储量划分大小标准: 田天然气田总储量(108m3) 大气田中气田小气田 >300 50-300 <50 (4)按气藏埋藏深度划分标准: 天然气藏埋深(m) 浅层气藏(田) 中深层深层超深层

相关文档
相关文档 最新文档