文档库 最新最全的文档下载
当前位置:文档库 › 超支化环氧增韧环氧复合基材的研究_郝良鹏

超支化环氧增韧环氧复合基材的研究_郝良鹏

超支化环氧增韧环氧复合基材的研究_郝良鹏
超支化环氧增韧环氧复合基材的研究_郝良鹏

覆铜板资讯2016年第2期

1.前言

环氧树脂具有优异的粘接性能、力学性能、电气绝缘性能、化学稳定性能等优点,同时其固化收缩率小、加工性能好,被广泛应用于复合材料、注射成型材料、胶粘剂、涂料、电气绝缘材料、模压材料等领域[1]。在覆铜板行业中,广泛应用环氧酚醛固化体系制备高耐热环氧复合基材,但是由于环氧树脂固化后交联密度较高,同时酚醛树脂中含有大量芳香环,刚性较大,固化物较脆,耐疲劳性、耐开裂性和耐热冲击性等性能较差,给下游PCB的加工与应用带来了许多问题。因此,如何改善环氧酚醛固化体系的复合基材韧性,已成为了覆铜板行业的研究重点[1]。

目前,环氧树脂增韧方法大致可以分成三类:(1)利用橡胶弹性体、刚性无机填料、核壳橡胶、热致性液晶聚合物、热塑性树脂等形成两相结构进行增韧;(2)利用热塑性塑料在环氧基材中形成连续的半互穿网络型聚合物来增韧;(3)通过改变基体中交联网络的化学结构组成(如在基体树脂中引入“柔性链段”),提高基体树脂的活动能力,增韧复合基材[1]。但是这些方法在增韧的同时

往往伴随着相容性差、分散困难、成本高等问题,或对基材强度、刚性等机械性能和耐热性的损害,导致复合材料性能的下降。

本文采用了一种具有一定刚性的芳香族聚酯聚醚型超支化环氧树脂去增韧改性主体环氧树脂,该超支化树脂具有较低的粘度,与环氧树脂具有较好的相容性,且分子中带有大量刚性芳香环,在增韧增强的同时,对基材耐热性能没有负面影响。

2.实验部分

2.1实验原料

溴化双酚A型环氧树脂(陶氏化学,环氧当量435,产品名DER530)、线型酚醛树脂(日本群荣,羟基当量105,产品名TD2090)、2-甲基咪唑(德国巴斯夫)、溶剂、芳香族聚酯聚醚型超支化环氧树脂(武汉超支化树脂科技有限公司,环氧当量400,产品名Hyper E102,本文中简写为HBPE)。

2.2实验仪器

TGA Q500,美国TA公司;万能材料试验机:Z005,德国Zwick;摇摆冲击试验仪:

超支化环氧增韧环氧复合基材的研究

郝良鹏柴颂刚杜翠鸣邢燕侠

(广东生益科技股份有限公司国家电子电路基材工程技术研究中心)

摘要:本文采用超支化环氧树脂(HBPE)增韧改性环氧复合基材。研究了HBPE含量对复合基材的力学性能和热性能的影响,结果显示,复合基材的机械强度和韧性随HBPE含量的增加而增加。在HBPE加入量为5%左右时,复合基材的冲击强度、弯曲强度和韧性分别提高12%、9.6%、25%。HBPE加入后,基材Td变化不大,说明HBPE对基材耐热性没有负面影响。

关键词:超支化环氧树脂;增韧;增强;环氧基材

覆铜板印制板技术

覆铜板资讯2016年第2期图2基材落锤冲击结果图片

图1

超支化环氧树脂含量对基材韧性的影响

ZBC-4A ,深圳市新三思材料检测有限公司;落锤试验机:JC-2,长春市智能仪器设备有限公司;扫描电子显微镜:S-3400N ,日本Hi-tachi 公司。2.3样品制备

将双酚A 型环氧树脂、线性酚醛树脂、超支化环氧树脂、促进剂、溶剂按照一定比例混合均匀,配制成一定固含量的胶液。用7628型E-玻纤布作为增强材料,浸以配置好的胶液,在155℃烘箱中烘烤,制成半固化片(粘结片)。按照一定尺寸切取半固化片,叠合整齐,双面覆以1oz 的电解铜箔,在真空压机中加压加热固化,制备覆铜板。热压条件:温度180~190℃,压力2.5MPa ~5.0M Pa (25kg/cm 2~50kg/cm 2),压制时间60~90min 。

2.4样品测试与表征

韧性:采用落锤冲击试验机测试,落锤高度为1m ,落锤重量为0.75Kg ,释放落锤,测量落痕面积。

Td 测试:采用TGA 分析测试仪进行测试,升温速率为10℃/min,在氮气气氛下进行。

弯曲强度:采用德国Zwick 公司Z005型万能材料试验机测试。

冲击强度:采用摇摆冲击试验仪测试,跨距为70mm 。

扫描电镜(SEM )测试,将试样置于导电胶上进行喷金处理,用扫描电子显微镜观察板材层间形态。

3.结果与讨论

3.1超支化环氧树脂含量对基材韧性的影响

落锤在规定高度落下冲击在样品上,样品受到外力冲击产生裂痕并吸收冲击能,样品的韧性越好,其吸收冲击能的能力越好,

裂痕越小,即落锤面积越小。由图1和图2可以看出,随着超支化树脂的含量增加,落锤面积迅速减少,在5%添加量后落锤面积减小不明显。在超支化树脂含量为5%时,落锤面积最小,板材韧性提高25%左右。

覆铜板基材的强度和韧性由增强材料玻纤布及树脂的结构和交联密度所决定。本文中各样品所用增强材料相同,所以其强度和韧性的变化是由基体树脂的结构和交联密度变化所引起的。超支化环氧树脂中含有纳米空穴、缺陷等自由体积,随着HBPE 含量增加,基材中纳米空穴等自由体积增加,基材韧性增加。另外,HBPE 超支化的分子结构决定其各支链之间很难发生缠结,且各支链均有一定柔韧性,当其参与固化反应时,在基体中引入了柔性链段,并影响基材树脂的交联密度,进而提升复合基材的韧性。3.2超支化环氧树脂含量对基材力学性能的

覆铜板印制板技术

影响

传统的非反应性环氧树脂增韧剂,如核壳粒子、热塑性树脂粒子、橡胶弹性体粒子等,加入到基体树脂中,不参与固化反应,在基体中容易产生两相结构,会导致基材的其他力学性能,如弯曲强度和冲击强度等的下降。但由图3和图4可以看出,随着超支化环氧树脂的增加,板材的冲击强度和弯曲强度明显增加,在5%添加量后板材强度增加不明显。在5%添加量下,基材的冲击强度、弯曲强度分别提高12%、9.6%。这可能是因为芳香族聚酯聚醚型超支化环氧树脂分子中含有大量芳香环,随着HBPE 含量的增加,基材中刚性苯环的含量增加,基材刚性、强度增加。

3.3超支化环氧树脂含量对基材热性能的影响

图5所示为超支化环氧树脂对复合基材

热分解温度的影响曲线。从图5中可以看出,基材中引入不同含量超支化环氧HBPE 后,基材的热分解温度变化不大,说明HBPE 的引入对复合基材的耐热性影响不大。3.4基材层间形貌分析

图6所示为改性复合基材的扫描电镜图片,从图中可以看出,纯DER530固化物的断裂面相对比较平滑,呈现脆性断裂特点,而

改性基材的层间断裂面变得粗糙,同时,在裂纹处出现纤维状抽丝,呈现韧性断裂特点。

超支化聚合物分子中含有大量空穴、缺陷等自由体积,将HBPE 引入环氧酚醛固化体系中后,也同时引入了大量分子内和分子外自由体积。在基材受外力作用时,这些自由体积会发生形变,吸收能量,从而形成图6中的抽丝现象。在图6中,没有发现明显的相分离现象,说明HBPE 和双酚A 型环氧树脂DER530形成了均相结构,

这可能是因为HBPE 和DER530都含有苯环和环氧基团,分子结构具有一定相似性。因此HBPE 对环氧基材的增韧机理

(下转第29页)

图3

超支化环氧树脂对基材弯曲强度的影响

图4

超支化环氧树脂对基材摆锤冲击强度的影响

图5超支化环氧树脂对基材Td

的影响

图6HBPE 改性环氧树脂复合基材

层间断裂面扫描电镜图

(上接第41页)可以解释为原位增韧机理。4.结论

芳香族聚酯聚醚型超支化环氧树脂能够有效地增强增韧环氧树脂,基材的冲击强度、弯曲强度和韧性随超支化环氧树脂含量的增加而增大。超支化环氧树脂HBPE的引入对复合基材的耐热性影响不大。芳香族聚酯聚醚型超支化环氧树脂的增韧机理为原位增韧机理。

参考文献

[1]尹术帮,杨杰,刘新东,赵凯.环氧树脂增韧改性方法及机理研究进展[J].热固性树脂,2013,28(4):46-52 [2]陈玉坤,张道洪,贾德民.超支化环氧树脂增韧增强双酚A型环氧树脂[J].湖南大学学报,2008,35(11):57-60.

[3]吕玉萍,于秋,韩树江.增韧环氧树脂研究进展[J].科技创新与应用,2013,25~54

[4]张道红,贾德民,黄险波.超支化环氧树脂增韧增强双酚A型环氧树脂[J].华南理工大学学报, 2006,34(9):90-94.

[5]吕健勇.双酚A环氧树脂体系的增韧和低介电改性研究[D].北京:北京化工大学,2012.

[6]张楠,刘瑞,黄京辉.芳香族聚醚型超支化环氧对双酚A型环氧的增韧研究[J].化工新型材料, 2014,42(2):116~118.

[7]Louis Boogha,Bo Petterssonb,Jan-Anders E.Ma°nsona.Dendritic hyperbranched polymers as tougheners for epoxy resins[J].Polymer,1999,40:2249-2261.

[8]H.WU,J.XU,Y.LIU.et al.Investigation of R eadily Processable Thermoplastic-Toughened Thermosets.V. Epoxy R esin Toughened with Hyperbranched Polyester [J].Journal of Applied Polymer Science,1999,72:

151~163.

参考文献:

[1]祝大同.从专利看台湾企业高速覆铜板的技术开展——

—高速覆铜板专利战的新观察之一.覆铜板资讯.2015年第6期.

[2]祝大同.高速基板材料技术发展现况与分析.第十六届中国覆铜板技术·市场研讨会论文集(2015年),覆铜板资讯.2015年第5期.

[3]陈广兵,曾宪平.聚苯醚树脂在高频PCB用基材CCL中的应用.第十三届覆铜板技术-市场研讨会论文集(2012年).

[4]周园,徐庆玉,李翔.聚苯醚的改性及应用.第十二届中国覆铜板技术·市场研讨会论文集(2011年).

[5]程倩,梁基照.聚丁二烯液体橡胶及其研究进展.特种橡胶制品.2013年第4期.

[6]刘金刚,沈登雄,杨士勇.国外耐高温聚合物基复合材料基体树脂研究与应用进展.宇航材料工艺. 2013年第4期.

[7]王岳群陈晓东.高频覆铜板及半固化片研制开发.覆铜板资讯.2014年第4期.[8]祝大同.新型环氧树脂发展及在高性能覆铜板开发中的应用(连载1).覆铜板资讯.2015年第2期[9]刘生鹏王启瑶.双环戊二烯苯酚型环氧树脂的合成及其在覆铜板中应用.覆铜板资讯.2015年第2期

[10]松下电工日本专利:特开2015-172144;特开2015-108154;特开2015-86329;特开2015-86326;特开2014-152283;特开2013-199650.日立化成日本专利:特开2015-000941;特开2013-256663.味の素日本专利:特开2014-159512.住友电木日本专利:特开2013-108068.

[11]彭康,郭金雷,胡娇,徐庆玉,王洛礼.近几年国内外关于苯并噁嗪树脂的研究进展.第十五届中国覆铜板技术·市场研讨会论文集(2014年).

[12]曾鸣,许清强,李然然,刘建新.主链型苯并噁嗪树脂的研究进展.第十五届中国覆铜板技术·市场研讨会论文集(2014年).

[13]王旭.含烯丙基的苯并噁嗪中间体的合成及其固化性能的研究.北京化工大学硕士学位论文(2003年).

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

环氧树脂增韧研究进展_史孝群

收稿日期:2001-12-25 作者简介:史孝群(1949-),男,高工,主要从事材料力学性能、结构及压力容器的安全测试;材料的残余应力测试与研究;材料组织与力学损伤及高分子纳米材料合成与力学性能等领域的研究。(Tel :010-********) 环氧树脂增韧研究进展 史孝群,肖久梅,龚春秀,马文江,刘建林 (北京科技大学应用科学学院,北京100083) 摘要:增韧环氧树脂是环氧树脂领域的研究热点,本文就环氧树脂增韧研究进行了概述,介绍了近年来环氧树脂增韧方法及相应的增韧机理研究进展,力求为环氧树脂在增韧领域的进一步研究提供新的思路和方法,以进一步扩展环氧树脂的应用领域。 关键词:环氧树脂;增韧;增韧机理 中图分类号:T M 216.3;T Q323.5 文献标识码:A 文章编号:1009-9239(2002)06-0031-04 Development of Research on Toughening Epoxy Resin Shi Xiao -Qun ,Xiao J iu -M ei ,Go ng Chun -Xiu ,Ma Wen -J ang ,Liu Jian -Lin (Department of Applied Science ,University of Science and Technology Beijing ,Beijing ,100083)Abstract :To ug hening epo xy is v ery important in the field of epox y .Study o n toughening epox y resin a re rev iew ed,methods o f to ughening epox y recently a nd to ughening mechanism a re indroduced in this paper,which provides new ideas a nd rules fo r further study on toug hening epox y resin,in o rder to ex panding th e use of epo xy . Keywords :epox y resin;toughening;to ughening mechanism 1 前 言 环氧树脂具有良好的介电性能、化学稳定性、粘接性、加工性,使其在胶粘剂、涂料、电子、电器和航空航天等领域发挥重要的作用。环氧树脂为交联度很高的热固性材料,裂纹扩展属于典型的脆性扩展,固化后存在韧性不足、耐冲击性较差和容易开裂等缺点,所以增韧环氧树脂是环氧树脂领域的研究热点。最初,用加入增塑剂、柔韧剂(增柔剂)的方法来提高韧性,但却降低了材料的耐热性、硬度、模量、介电性能。从六十年代中期开始,国内外相继开展了用反应性液态聚合物增韧环氧树脂的研究工作,在热性能、模量、介电性能等降低不太大的情况下提高了环氧树脂的韧性,改善了材料的综合性能,使得增韧环氧树脂的应用有了较大的进展。近年来,由于弹性体合金化技术、互穿网络材料、液晶及纳米材料等制备技术的成熟,在橡胶类弹性体,热塑性树脂,热致性液晶,纳米 材料增韧方面也获得了长足的进展。本文就环氧树脂的增韧及增韧机理进行了探讨。 2 弹性体增韧环氧树脂 用于增韧环氧树脂的橡胶需具备两个基本条件,其一为橡胶与环氧树脂在固化前具有相容性,并且分散性好;其二为环氧树脂固化时,橡胶能够顺利析出,呈两相结构。丁腈橡胶、丙烯酸酯橡胶、聚氨酯橡胶、聚硅氧烷等是增韧环氧树脂的首选弹性体材料,并且这些弹性体通常具有可以与环氧树脂中的环氧基反应形成嵌段的活性端基(如羟基、烃基、氨基等)。在环氧树脂固化过程中,这些橡胶类弹性体嵌段一般能从基体中析出,以分散相的形式分散于连续的环氧树脂体系中,形成“海岛”结构。在橡胶增韧环氧体系中,橡胶的第二种作用在于诱发基体的耗能过程,而其本身在被拉伸断裂过程中的耗能一般占次要地位。材料的断裂过程发生在基体树脂中,因此增韧的最根本潜力在于提高基体的屈服变形能力[1]。 有关弹性体增韧环氧树脂的研究很多 [2,3] 。常用 的增韧剂是液体端羟基丁腈橡胶(C TBN ),环氧树脂

环氧树脂增韧改性新技术

Vol 134No 18 ?14?化工新型材料 N EW CH EMICAL MA TERIAL S 第34卷第8期2006年8月 作者简介:宣兆龙,男,博士,从事兵器防护材料与技术的教学与科研工作,已发表论文40余篇。 环氧树脂增韧改性新技术 宣兆龙 易建政 (军械工程学院三系,石家庄050003) 摘 要 综述了环氧树脂的增韧改性研究,着重讨论了热塑性树脂、热致液晶聚合物和互穿网络结构等环氧树脂增韧改性新技术。 关键词 环氧树脂,增韧,改性 N e w technology of modif ication toughening epoxy resin Xuan Zhaolong Yi Jianzheng (Depart ment 3of Ordnance Engineering College ,Shijiazhuang 050003) Abstract Study of modification methods and mechanism for epoxy toughened is reviewed with 46references. More effective technologies ,such as toughening modification with thermoplastics ,thermotropic liquid crystalline poly 2mer (TL CP )and interpenetrating polymer network (IPN )are also discussed in briefly. K ey w ords epoxy resin ,toughening ,modification 环氧树脂(EP )具有高强度和优良的粘接性能。但因其固化物质脆,易产生裂纹等缺陷,在材料的耐 疲劳性能和抗横向开裂性能方面难以满足工程技术的要求,使其应用受到了一定的限制。为此国内外学者对EP 进行了大量的改性研究工作,以改善其韧性。 目前EP 的增韧途径主要有3种:①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于EP 网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。本文主要综述了热塑性树脂、液晶聚合物、互穿聚合物网络改性EP 的研究进展。 1 热塑性树脂增韧EP 在EP 基体中加入一定量的高性能热塑性树脂,不仅能改进EP 的韧性,而且不降低其刚度和耐热性。热塑性树脂增韧EP 一般采用剪切屈服理论或颗粒撕裂吸收能量及分散相颗粒引发裂纹钉铆机 理来解释[1,2]。用于增韧EP 的热塑性树脂主要有聚酰亚胺(PI )、聚醚酰亚胺(PEI )、聚醚砜(PES )、聚砜(PSF )等。 1.1 聚酰亚胺(PI)增韧EP EP 与PI 共混是通过PI 与环氧预聚体混合然 后反应而得到的。这类树脂最初制备时是均相的,在一定转化率时树脂发生液2液相分离,从而在最终固化的材料内部产生一系列形态结构,这些主要依赖于热塑性塑料的原始质量和临界组成的对比关系[3,4]。 Biolley 等[5]用具有相当高T g 的二苯酮四酸二 酐(B TDA )和4,4’2(9氢292亚芴基)二苯胺(FBPA )合成的可溶性PI 改性四缩水甘油基二苯甲烷2二氨基二苯砜EP 体系(T GDDM /DDS/PEI )。固化后的树脂用扫描电镜观察没有发现相分离,并且动态力学分析表明共混组分间能完全相容。Li 等[6]通过用4种不同的二氢化物和2种不同二元胺[1,32二(32氨基苯氧基)苯,即A PB ;2,2’2(42(42氨基苯氧基)苯基)丙烷,即BA PP ]合成一系列有机溶性的芳香族聚亚胺酯来增韧EP (Epon828),DSC 发现

聚氨酯 硅橡胶

绪论 硅橡胶性质 硅橡胶构件其实指的是不同种类不同硅橡胶制品的统称,它包括硅橡胶耳塞、硅橡胶脚垫、硅橡胶餐具、硅橡胶密封圈、硅橡胶按键、硅橡胶O型圈、硅橡胶表带,硅橡胶手环等等各类产品,在我们的日常生活、工业制造、医学中都广泛的使用 耐热性折叠 硅橡胶在空气中的耐热性比有机橡胶好得多,在150℃下其物理机械性能基本不变,可半永久性使用,在200℃下可连续使用10000h以上;380℃下可段时间使用。因而硅橡胶广泛用作高温场合中使用的橡胶部件。 硅橡胶在高温下空气中(有氧气)氧化时,由于甲基被氧化继而引起胶联,使制品逐渐变硬,乃至发生开裂。而在密闭体系中受热时,主要发生解聚反应,使制品变软,以至丧失机械强度。 硅橡胶的耐热性既与生胶的种类、乙烯基含量(交联密度)、耐热添加剂、填料的种类及用量等有关,还与混炼胶的pH值及含水量等有关。因而对生胶聚合催化剂的选择,反应后残余催化剂的中和,白炭黑等填料及结构控制剂的选择都十分注意。耐热品级的硅橡胶,在高温(>250℃)条件下,硬度增加缓慢,拉伸强度及断裂伸长率等下降也缓慢。 耐寒性折叠 由于硅生胶分子结构呈非结晶性,故温度对其性能影响较小,且具有良好的耐寒性。一般有机橡胶的脆化温度为-20℃至-30℃,而通用硅橡胶的脆化温度为-60℃至-70℃。当生胶中引入7.5(mol)%苯基时,硅橡胶的脆化温度可降至-115℃,在-90℃下保持弹性并可使用。 耐候性折叠 硅橡胶主链中无不饱和键,加之Si-O-Si键对氧、臭氧及紫外线等十分稳定,因而无需任何添加剂,即具有优良的耐候性。在臭氧中发生电晕放电时,有机橡胶很快老化,因而对硅橡胶则影响不严重。长时间暴露在紫外线及风雨中,其物理机械性能变化不大,经户外曝晒试验数十年,未发现裂纹或降解发黏等老化现象。耐水蒸气性折叠

国外环氧树脂应用研究技术进展_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国外环氧树脂应用研究技术进展 国外环氧树脂应用研究技术进展吴良义陈德萍近年来,环氧树脂新产品开发和应用技术进展迅速,特别是复合材料、涂料、粘合剂、固化剂、韧性环氧树脂、液体环氧树脂以及催化剂、促进剂等产品,这是新型材料发展的需要,我们应予以重视。 一、复合材料 1、玻璃微珠环氧树脂复合材料用硅烷偶联剂(SA) 处理玻璃微珠(GB) 表面,以双酚 A 型环氧树脂(E828) 和乙烯二胺(EDA)固化剂作为复合材料基体,胺丙基三甲氧基硅烷(APS) 、胺丙基三乙氧基硅烷(AES)和 2氢基乙基苯硅烷(AAPS) 用作处理剂,对其处理条件与机械性能关系进行了研究。 结果表明: ①复合材料的玻璃化温度(Tg) 、弯曲模量和弯曲强度达到最大值的 SA 水溶液的最佳浓度序列是 AASAESAAPS。 ②复合材料机械性能达到最大值时, SA 水溶液的水解时间依赖于 SA的无机基团,乙氧基比甲氧基需要更长的时间。 ③在基体固化程度确立的工艺条件下,对 SA和 E828 的反应性进行研究。 表面处理后的 LB 在80150℃下与 E828 混合后,再加 EDA 固化剂,以增加 SA 和 E828 反应程度。 结果为150℃比80℃混料的复合材料 Tg 高。 2、硅充填环氧树脂复合材料使用环氧树脂作为基 1 / 12

体树脂的复合材料,具有优良的机械性能,但在高温下长时间使用就会出现时间和温度的特性。 用静态抗弯和疲劳试验检验时间、温度对抗弯强度的影响。 结果表明,时间温度叠加原理适用于静态弯曲强度。 与纯基体树脂和复合材料相比,纯树脂是影响复合材料静态强度和温度特性的主要因素。 疲劳测试表明,时间、温度叠加原理适用于最初的基体树脂的弹性强度,当温度、应力 LLt 助 D 时,塑性形变影响存在,抗弯强度和模量也有所增加。 3、镶嵌减振材料的石墨环氧树脂复合层压板复合材料中共固化弹性减震材料的减振性能有效的提高了材料的减振性能,然而,当减振材料没有达到层压固化的周期时,减振性能常常不如二次粘接的复合材料高。 共固化和二次粘接样品之间,减振性不同的原因是树脂渗入到减振材料所至。 在减振材料和环氧树脂之间有隔层的样品的比没有隔层共固化FasTapell25 有效的损失系数(视频率而定) 要高 15. 7%92. 3%,而比没有隔层的共固化 ISDll2 样品至少要高 168%。 这样的减振值,接近于二次粘接所达到的值。 研究结果表明,对减振材料粘弹性大多数都受固化期温度的影响。 4、炭纤维环氧树脂复合材料研究表明,杂质对碳

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.wendangku.net/doc/ba16721949.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

HSQB-JB56.16-2011 聚醚多元醇技术要求

合肥荣事达三洋电器股份有限公司 企业标准 HSQB-JBXX.XX-2011 聚醚多元醇技术要求 2011-07-11发布 2011-07-15实施合肥荣事达三洋电器股份有限公司

修订页

合肥荣事达三洋电器股份有限公司企业标准 HSQB-JBXX.XX-2011 聚醚多元醇技术要求 1 范围 本标准规定了聚醚多元醇、组合聚醚多元醇的技术要求、试验方法、检验规则和标志、包装、运输、贮存等要求。 本标准适用于冰箱项目部产品中以组合聚醚多元醇和多异氰酸酯为主要原料浇注生产的硬质聚氨酯泡沫塑料。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 601 化学试剂标准滴定溶液的制备 GB/T 622 化学试剂盐酸 GB/T 629 化学试剂氢氧化钠 GB/T 689 化学试剂吡啶 GB/T 6678 化工产品采样总则 GB/T 6680 液体化工产品采样通则 GB/T 12008.4 聚醚多元醇中钠和钾测定方法 GB/T 12008.6 聚醚多元醇中水分含量测定方法 GB 12463 危险货物运输包装通用技术条件 3 术语和定义 以下术语和定义适用于本标准。 组合聚醚多元醇 在聚醚多元醇中添加各种催化剂、添加剂以及其它助剂搅拌而成的混合物。可用于生产冰箱、冷柜等产品的聚氨酯泡沫绝热层,是硬质聚氨酯发泡反应中的主原料之一。 4 技术要求 4.1 性状 聚醚多元醇在常温下应为无色到棕黄色透明或微呈浑浊的无机械杂质粘稠液体,无沉淀物,不挥发、毒性有限。 聚醚多元醇中主要成分的含量和参数指标由于各原料供应商的配方存在一定的差异,按本标准规定的测试方法的试验结果必须与原料供应商对应牌号的聚醚多元醇的指标相同。 4.2 组合聚醚多元醇各项性能指标应符合表1要求。 合肥荣事达三洋电器股份有限公司 2011-07-11发布 2011-07-15 实施 1/6

环氧树脂的改性研究发展

环氧树脂的改性研究发展 付东升 1 朱光明 1 韩娟妮2 (1西北工业大学化工系,2西北核技术研究所) 1、前言 近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。2、丙烯酸增韧改性环氧树脂 利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。 韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。 李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。 3、聚氨酯增韧环氧树脂 利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。 目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。 Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法 摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。 关键词:环氧树脂增韧改性 1环氧树脂的增韧改性 1.1橡胶弹性体改性 利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。 近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔化的方式,或者以溶液的方式掺混入环氧树脂[6]。 韩静等[7]制备了以丙烯酸丁酯、丙烯酸乙酯、丙烯酸缩水甘油酯为主链的带环氧基团的液体橡胶,用来增韧EP/间苯二甲胺体系。结果表明,随着丙烯酸酯液体橡胶用量的增加,改性EP体系的弯曲强度和冲击强度呈先升高后降低趋势,并在10%和15%出现峰值,与纯EP体系相比,强度可分别提高10.5%和151.8%。 范宏等对比了就地聚合PBA2P(BA2IG)0.2~1μm的橡胶粒子分散体以及用种子乳液

超支化聚合物涂料

超支化聚合物涂料 苏慈生(天津理工大学,300191) 摘要:介绍了超支化聚合物的发展、特性,合成的简捷性及在涂料中的应用前景。 关键词:超支化聚合物;超支化聚酯;超支化聚酯酰胺;涂料;发展 超支化聚合物是树状大分子同系物,是从一个中心核分子出发,由支化单体(ABx) 逐级扩散伸展开来的结构,或者是由中心核、数层支化单元和外围基团通过化学键连接而成的。早在1952 年Flary 就首先在理论上提出由ABx 型单体(x ≥2 ,A 、B 为反应基团) 分子间缩聚,制备高度支化聚合物的可能,同时还就其特性作了一些预测。直到20 世纪80 年代才相继合成出此类聚合物,并深入地对其合成、性质及应用进行了研究。至今主要品种有超支化聚酯、酰胺、醚、芳烃、有机硅等,有些已经商品化,如超支化聚酯Boltron20 , Boltron 30 ,Boltron 40 , Perstorp Speciality Chemicals AB 。超支化聚合物的特性是其分子结构规整,分子体积、形状和末端官能可在分子水平上设计与控制,因此成为高分子科学中的热门课题之一,也引起了涂料界的关注。树状大分子、超支化聚合物和传统的线型聚合物的分子结构模型如图1 所示。 图1 树枝状大分子、超支化聚合物、线型聚合物的分子结构模型 1 超支化聚合物的特性概述 树枝状大分子和超支化聚合物均可由ABx 单体合成,二者既有相同之处,也有区别。前者分子具有高度规整的分支结构,分子中无缺陷,呈园球形,后者的分子规整性较前者差,呈椭球形。二者分子的表面均密布着大量有反应活性的末端官能团。其次,前者是分步合成的,在进行下一步合成之前需分离提纯, 其所合成的高度规整分子结构,可作为模型分子供理论研究,后者是由一釜法合成的,制备较简便、经济、易于工业化。再有一点是超支化聚合物的相对分子质量分布较树状大分子宽,具有多分散性。该不足之处可以采用多官能度的核分子,在降低核分子浓度, 以及采取缓慢滴加单体的条件下,是可以改进的。试验证明这是减少分散性和增加分支度的有效方法。经研究发现超支化聚合物与树状大分子在结构和性能上的相似性,加之其在工业上的易合成性,使得超支化聚合物可以满足实际应用的需要。由AB2 单体合成的超支化聚合物分子结构见图2 。

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

环氧树脂增韧改性技术研究进展和新方法及其机理_刘野

综术与专论 S UMMAR I Z ATION AND SPEC IAL COMMENT 收稿日期:2007-01-03 作者简介:刘野(1979-),男,黑龙江巴彦人,研实员,研究方向胶黏剂测试。 环氧树脂增韧改性技术研究进展和新方法 及其机理 刘 野, 杜 明 (黑龙江省石油化学研究院,黑龙江哈尔滨150040) 摘要:简单介绍了环氧树脂技术的研究进展和近期的主要应用,并概述了环氧树脂的改性技术。主要介绍了增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络增韧、热致性液晶增韧、原位聚合增韧、核壳结构聚合物增韧等,主要介绍了用橡胶弹性体、热塑性树脂、刚性粒子、核壳型结构聚合物来增韧环氧树脂,以及环氧树脂绝缘性、耐湿热性和阻燃性等的改进方法,并对其中的增韧机理作了总结分析。最后本文综述了环氧树脂增韧改性技术发展及其未来展望。 关键词:环氧树脂;增韧;改性 中图分类号:T Q 433.437 文献标识码:A 文章编号:1001-0017(2007)03-0197-05 Research Pr ogress in Modificati on Techniques,Ne w Methods and Mechanis m of T oughening Epoxy Resins L I U Ye and DU M ing (Heilongjiang Institute of Petroche m istry,Harbin 150040,China ) Abstract:Research p r ogress and recent app licati on of epoxy resin are summarized aswell as the modificati on techniques .The ne w methods of t ough 2ening epoxy resins,such as ther mop lastic resin,for m ing inter penetrating net w orks poly mer,in -situ poly merizati on,ther motr op ic liquid crystalline poly 2mer and core -shell latex poly mer are intr oduced .Novel methods of t oughening epoxy resin with rubbers,elast omers,ther mop lastic resins,rigid particles and core -shell structure poly mers are detailed .And the methods of i m p r oving insulati on,resistance t o wet heat and fla me retardati on of epoxy resin are als o intr oduced as well as their mechanis m s .The devel opment and p r os pect of modificati on techniques of epoxy resin are p resented at the end of this pa 2per . Key words:Epoxy resin;t oughening;modificati on 前 言 环氧树脂是一类重要的热固性树脂,是聚合物 复合材料中应用最广泛的基体树脂。环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶黏剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料 及先进复合材料等领域得到广泛应用[1] 。常见的环氧树脂主要有2种类型,一种是双酚A 缩水甘油醚型环氧树脂。通常被称为双酚A 环氧树脂,占环氧树脂总产量的90%,可由2,2’-双对羟基苯基丙烷(双酚A )与环氧氯丙烷在碱存在下聚合而得;另一种是高官能度环氧树脂(分子中具有2个以上环氧基)。它可由线型酚醛树脂和环氧氯丙烷聚合得 到,也可由4,4′-二氨基二苯甲烷或4,4′-二胺基二苯醚与环氧氯丙烷缩合得到。由于纯环氧树脂具有高的交联结构,因而存在质脆,耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制,因此对环氧树脂的改性工作一直是中外研究的热门课题。 传统的增韧方法,如用端羧基丁腈橡胶等橡胶弹性体来改性环氧树脂,在基础研究和应用开发方面都取得了较大成果,但是,这种改性的结果常常是冲击强度得到显著提高,而相应固化物的耐热性和模量随之下降,因而往往不尽人意。近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I P N )体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I PN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(P ES)、聚砜(P S F)、聚醚酰亚胺(P EI)、聚醚醚酮(PE EK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PE S对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的P ES 对环氧树脂改性效果显著。如苯酚、羟基封端的P E S可使韧性提高100%;双氨基封端、双羟基封端的P E S也是有效的改性剂;环氧基封端的PE S由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,P E S增韧的环氧树脂

环 氧 树 脂 应 用 转载

[应用技术] 环氧树脂在模具上的应用 一、概况 环氧树脂模具又称树脂模具,它具有制造周期短、成本低、特别适合形状复杂的制品和产品更新换代快速的工业领域;因此,在国外先进国家已得到广泛的应用,特别在汽车制造业、玩具制造业、家电制造业、五金行业和塑料制品等工业系统使用得更为普及。环氧树脂模具按不同的结构和用途,采用各种性能的环氧树脂、固化剂、增韧剂和填料(铁粉、铝粉、硅微粉、重晶石粉等)等配制成模具树脂,同时以玻璃纤维布和碳纤维布作增强材料而制成的。 环氧树脂模具按不同用途和技术要求,能设计出不同的环氧模具树脂配方组份。从国内、外环氧树脂模具实际应用统计,环氧树脂适合于制作以下几种类型的模具,在冷压模具方面有:弯曲模、拉延模、落锤模、铸造模等;在热压模具方面有:塑料注射模、注腊模、吹塑模、吸塑模、泡沫成型模、皮塑制品成型模等。环氧树脂模具的制造特点,是制造简易,快速,成本低;例如一些外形复杂、难成形的金属模具,用环氧树脂制造,采用浇注法或低压成形法,就能一次成形,无需大型精密切削机床,也可不用高级钳工。有些金属模具制造的周期要几个月至半年,采用环氧树脂模具一般只要3~5天就可完成,其成本仅仅是钢模的15~20%左右,而且树脂模具使用寿命很长,磨损了还可以很快修补好,继续使用。因此,环氧树脂模具的制造是一项打破传统机械加工工艺的新技术、新材料和新工艺。环氧树脂模具,在国外都是大型工厂设立的专门研制中心制造的,而在国内仅在于国防工业单位研制了一些,一般工厂企业都缺乏这方面的制造工艺技术和配方,所以在我国环树脂模具的应用、普及和发展的速度很缓慢。今后随着新材料、新技术的发展,环氧树脂应用技术的推广,环氧树脂模具的综合性能和制造技术被广泛了介和认识,环氧树脂复合材料性能的提高,树脂模具的制作工艺和应用工艺的简化,环氧树脂模具必然会得到飞跃的发展,成为新的高效率的低成本的先进模具。 二、环氧树脂模具的种类 1、环氧树脂冷压类型的模具 (1)弯曲模、成形模、拉延模、切口模等。 环氧树脂的复合材科主要用来制造凹凸模,可以浇注成形,也可以低压模压法成形,它可以冲压或拉延0.8毫米钢板2毫米以下的铝板,寿命在万次以上不磨损。对于大型拉延模具,如汽车驾驶室顶盖件,用环氧树脂制造模具显示出更大的优越性,无需大型切削机床。切口模用来制造结构复杂的大型零件,在凹凸模刃口部嵌以钢带。用环氧树脂制造的弯曲成形模具,冲压的另件有吊扇的风叶等,风叶型面尺寸要求很高,因关系到风量和使用效果等,环氧树脂模具固定在l O O吨冲床上冲压成形,冲压次数巳达三十余万次,树脂模具还在使用。 (2)落锤模

聚醚多元醇分类及下游发展

聚醚多元醇是分子中含有醚键(-R-O-R-),端基为OH基团的齐聚物。它是由含活泼氢的低分子化合物如(醇类鲁廷)作起始剂,在催化剂作用下与含有环氧结构的化合物进行开环聚合反应而成的。聚醚多元醇是一种重要的化工原料,它的最大用途是合成聚氨酯(PU)树脂类产品,如聚氨酯泡沫塑料、聚氨酯黏合剂、聚氨酯胶牯剂、聚氨酯弹性体等。此外,还可以作为非离子表面活性剂、润滑剂、液流体、热交换流体等。 聚醚多元醇是生产聚氨醋户制品的主要原料。聚醚多元醇可归纳为两种类型一种是以多元醇或有机胺为起始剂与环氧丙烷(PO)(或环氧丙烷和环氧乙烷)的聚合物, 通称为PPG (聚醚多元醇),这种产品在PU中用量最大另一种是聚合物多元醇, 它以PPG为基础, 然后用乙烯基单体, 如丙烯睛(AN)或和苯乙烯(SN)等在多元醇中经本体聚合反应而制得, 称为POP(聚合物聚醚多元醇), POP不单独使用, 而与PPG配合使用, 可明显改善软质聚氨酯泡沫的硬度,提高其承载性,主要用于制造高承载聚氨酯泡沫。 按照用途分,聚醚多元醇可分为硬泡,软泡,CASE,POP和特征聚醚。 1.聚氨酯硬泡:由聚合MDI和硬泡PPG合成。 硬质聚氨酯泡沫塑料,简称聚氨酯硬泡,它在聚氨酯制品中的用量仅次于聚氨酯软泡。聚氨酯硬泡多为闭孔结构,具有绝热效果好、重量轻、比强度大、施工方便等优良特性,同时还具有隔音、防震、电绝缘、耐热、耐寒、耐溶剂等特点,广泛用于冰箱、冰柜的箱体绝热层、冷库、冷藏车等绝热材料,建筑物、储罐及管道保温材料,少量用于非绝热场合,如仿木材、包装材料等。一般而言,较低密度的聚氨酯硬泡主要用作隔热(保温)材料,较高密度的聚氨酯硬泡可用作结构材料(仿木材)。

相关文档