文档库 最新最全的文档下载
当前位置:文档库 › Proe想学习装配运动分析

Proe想学习装配运动分析

Proe想学习装配运动分析
Proe想学习装配运动分析

主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。

连接(Connections) - 定义并约束相对运动的主体之间的关系。

自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。

拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。

动态(Dynamics) - 研究机构在受力后的运动。

执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。

齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。

基础(Ground) - 不移动的主体。其它主体相对于基础运动。

机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。

运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。

环连接(Loop Connection) - 添加到运动环中的最后一个连接。

运动(Motion) - 主体受电动机或负荷作用时的移动方式。

放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。

回放(Playback) - 记录并重放分析运行的结果。

伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。

UCS - 用户坐标系。

WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。

运动分析的定义

在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。

使用运动分析可获得以下信息:

几何图元和连接的位置、速度以及加速度

元件间的干涉

机构运动的轨迹曲线

作为Pro/ENGINEER 零件捕获机构运动的运动包络

运动分析工作流程

创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接

检查模型:拖动组件,检验所定义的连接是否能产生预期的运动

加入运动分析图元:设定伺服电机

准备分析:定义初始位置及其快照,创建测量

分析模型:定义运动分析,运行

结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络装入元件时的两种方式:机构连接与约束连接

向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外)。另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、常规除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。传统装配法可称为“约束连接”,后一种装配法可称为“机构连接”。

约束连接与机构连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同。

约束连接与机构连接的不同点:约束连接使用一个或多个单约束来完全消除元件的自由度,机构连接使用一个或多个组合约束来约束元件的位置。约束连接装配的目的是消除所有自由度,元件被完整定位,机构连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度。

“元件放置”窗口:

机构连接的类型

机构连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接、槽,共11种。

销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成。元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量。

圆柱:由一个轴对齐约束组成。比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。轴对齐约束可选择直边或轴线或圆柱面,可反向。

滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。元件可滑轴平移,具有1个平移自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向。旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向。

轴承:由一个点对齐约束组成。它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4。

平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合)。元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3。可指定偏移量,可反向。

球:由一个点对齐约束组成。元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。

6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6。

刚性:使用一个或多个基本约束,将元件与组件连接到一起。连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置被“粘”在组件上。如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用。总自由度为0。

焊接:两个坐标系对齐,元件自由度被完全消除。连接后,元件与组件成为一个主体,相互之间不再有自由度。如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用。总自由度为0。

槽:是两个主体之间的一个点----曲线连接。从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。

机构连接类型:

约束连接:

常规:也就是自定义组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。可用的基本约束有:匹配、对齐、插入、坐标系、线上点、曲面上的点、曲面上的边,共7种。在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型。

常规—匹配/对齐:对齐)。单一的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为机构约束后变为“平面”连接。 这两个约束用来确定两个平面的相对位置,可设定偏

距值,也可反向。定义完后,在不修改对象的情况下可更改类型(匹配

常规—插入:选取对象为两个柱面。单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为机构约束后变为“圆柱”连接。

常规—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为只有一个“坐标系”约束的完整约束,再转换为机构约束后变为“焊接”连接。

常规—线上点:选取对象为一个点和一条直线或轴线。与“轴承”等效。单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再转换为机构约束后变为“轴承”连接。

常规—曲面上的点:选取对象为一个平面和一个点。单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为机构约束后仍为单一的“曲面上的点”构成的自定义组合约束。

常规—曲面上的边:选取对象为一个平面/柱面和一条直边。单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。

自由度与冗余约束

自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自由度),即沿XYZ三个轴的独立移动和绕XYZ三个轴的独立转动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。

主体受到约束后,某些独立运动参数不再存在,相对应的,这些自由度也就被消除。当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。

冗余约束指过多的约束。在空间里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束。

合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、

补偿误差,延长设备使用寿命。冗余约束对主体的力状态产生影响,对主体的对运动没有影响。因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。系统在每次运行分析时,都会对自由度进行计算。并可创建一个测量来计算机构有多少自由度、多少冗余。

PROE的帮助里有一个门铰链的例子来讲冗余与自由度的计算,但其分析实丰有欠妥当,各位想准确计算模型的自由度的话,请找机构设计方面的书来仔细研究一番。这也不是几句话能说明白的,我这里只提一下就是了,不再详述。

约束转换

机构连接与约束连接可相互转换。在“元件放置”窗口的“放置”页面和“连接”页面里,在约束列表下方,都有一个“约束转换”按钮。使用此按钮可在任何时候根据需要将机构连接转换为约束连接,或将约束连接转换为机构连接。

在转换时,系统根据现有约束及其对象的性质自动选取最相配的新类型。如对系统自动选取的结果不满意,可再进行编辑。转换的规则,可参考PROE的自带帮助。不过,没有很好的空间想像力和耐性的兄弟就不用看了。

需要记住的一个:曲线上的点、曲面上的点、相切约束,在转换时是不会转换成常规连接的。

下图显示“约束转换”按钮:

基础与重定义主体

基础是在运动分析中被设定为不参与运动的主体。

创建新组件时,装配(或创建)的第一个元件自动成为基础。

元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。

如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。

进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”机构所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。“重定义主体”窗口:

特殊连接:凸轮连接

凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。

凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。

如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。

凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。

关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。

因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。

需要注意:

A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。

B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。

C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,

应在定义凸轮前适当处理。

凸轮可定义“升离”、“恢复系数”与“磨擦”。凸轮定义窗口:

恢复系数与磨擦

即碰撞系数,其物理定义为两物体碰撞后的相对速度(V2-V1)与碰撞前的相对速度(V10-V20)的比值,即e=(V2-V1)/(V10-V20),它的值介于0到1之间。典型的恢复系数可从工程书籍或实际经验中得到。恢复系数取决于材料属性、主体几何以及碰撞速度等因素。在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法。完全弹性碰撞的恢复系数为1。完全非弹性碰撞的恢复系数为0。橡皮球的恢复系数相对较高。而湿泥土块的恢复系数值非常接近0。

摩擦阻碍凸轮或槽的运动。摩擦系数取决于接触材料的类型以及实验条件。可在物理或工程书籍中查找各种典型的摩擦系数表。需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数应大于动磨擦系数。要在力平衡分析中计算凸轮滑动测量,必须指定凸轮连接的磨擦系数。

恢复系数与磨擦可用于凸轮连接和槽连接,也可用于连接轴设置。

特殊连接:齿轮连接

齿轮连接用来控制两个旋转轴之间的速度关系。在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型。标准齿轮需定义两个齿轮,齿轮齿条需定义一个小齿轮和一个齿条。一个齿轮(或齿条)由两个主体和这两个主体之间的一个旋转轴构成。因此,在定义齿轮前,需先定义含有旋转轴的机构连接(如销钉)。

定义齿轮时,只需选定由机构连接定义出来的与齿轮本体相关的那个旋转轴即可,系统自动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般就是用来安装齿轮的主体,它一般是静止的,如果系统选反了,可用“反向”按钮将齿轮与托架主体交换。“齿轮2”或“齿条”所用轴的旋转方向是可以变更的,点定义窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会出现一个很粗的箭头指示此轴旋转的正向。

速比定义:在“齿轮副定义”窗口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的地方,可以在定义齿轮时将齿轮的实际节圆直径输入到这里。在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户定义的”。选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计

算出来,不可改动。选择“用户定义的”时,D1、D2需要输入,此情况下,齿轮速度比由此处输入的D1、D2确定,前两个页面里输入的节圆直径不起作用。速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1。齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由系统根据小齿轮的节圆数值计算出来,不可改动,选择“用户定义的”时,其数值需要输入,此情况下,小齿轮定义页面里输入的节圆直径不起作用。

图标位置:定义齿轮后,每一个齿轮都有一个图标,以显示这里定义了一个齿轮,一条虚线把两个图标的中心连起来。默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自定义,点选一个点,图标将平移到那个点所在平面上。图标的位置只是一视觉效果,不会对分析产生影响。

要注意的事项:

A.PROE里的齿轮连接,只需要指定一个旋转轴和节圆参数就可以了。因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间定义一个齿轮连接。

B.两个齿轮应使用公共的托架主体,如果没有公共的托架主体,分析时系统将创建一个不可见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一。并且在运行与力相关的分析(动态、力平衡、静态)时,会提示指出没有公共托架主体。

齿轮定义窗口:

拖动与快照

拖动,是在允许的范围内移动机械。快照,对机械的某一特殊状态的记录。可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保存为快照,快照可用于后续的分析定义中,也可用于绘制工程图。

“机构”----“拖动”,进入“拖动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保存快照”,即将当前屏幕上的状态保存为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以改变元件的位置,左第三个按钮为“主体拖动”,选取一个主体,移动鼠标以改变元件的位置。右侧两个按钮为“撤消”和“恢复”,每一次拖动,系统都会记录入内存,使用此两按钮,可查看已做的各次拖动的结果。“快照”页和“约束”页,分别有一个列表,显示当前已经定义的快照和为当前拖动定义的临时约束。

快照列表左侧有一列工具按钮,第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状态;第四个为绘图可用,使选定快照可被当做分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定快照。

约束列表显示已为当前拖动所定义的临时约束,这些临时约束只用于当前拖动操作,以进一步限制拖动时各主体之间的相对运动。

“高级拖动选项”提供了一组工具,用于精确限定拖动时被拖动点或主体的运动。

拖动窗口:

伺服电动机

伺服电动机可规定机构以特定方式运动。伺服电动机引起在两个主体之间、单个自由度内的特定类型的运动。伺服电动机将位置、速度或加速度指定为时间的函数,并可控制平移或旋转运动。通过指定伺服电动机函数,如常数或线性函数,可以定义运动的轮廓。可从多个预定义的函数中选取,也可输入自己的函数。可在一个图元上定义任意多个伺服电动机。

如果为非连续的伺服电动机轮廓选取或定义了位置或速度函数,在进行运动或动态分析时这个伺服电动机将被忽略。但是,可在重复组件分析中使用非连续伺服电动机轮廓。当用图形表示非连续伺服电动机时,系统将显示信息指示非连续的点。

伺服电动机分为两种,一种是连接轴伺服电机,用于定义某一旋转轴的旋转运动,一种是几何伺服电机,用于创建复杂的运动,如螺旋运动。连接轴伺服电机只需要选定一个事先由机构连接(如销钉)所定义的旋转轴,并设定方向即可,连接轴伺服电机可用于运动分析。几何伺服电机需要选取从动件上的一个点/平面,并选取另一个主体上的一个点/平面作为运动的参照,并需确定运动的方向及种类,几何伺服电机不能用于运动分析。

连接轴伺服电机选取一根旋转轴,并指定方向。

几何伺服电机根据选取的对象分以下几种:

从动“点”,参照“点”,平移;从动“点”,参照“平面”,旋转;从动“平面”,参照“平面”,旋转;从动“点”,参照“平面”,平移;从动“平面”,参照“平面”,平移。其

中,前三种需要再选取一条直边来定义运动方向,后两种不需要。

电机轮廓也即是从动件的运动规律,对于平移运动,它是长度(单位:mm)对时间的函数,对于旋转,它是角度(单位:度)对时间的函数。点最下方的“图形”按钮,将会以图形的方式显示出电机的轮廓,其横轴就是时间,其纵轴,就是位置或速度或加速度。“模”定义的就是图形的形状,“规范”里定义的就是“模”所定义的图形的纵轴所代表的意义。模有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。规范有三种:位置、速度、加速度。其中模里的SCCA这一种,只能用于描述加速度(即对应的“规范”只能是加速度)。“规范”为位置时,无需自己定义初始位置,为速度时,需定义“初始角”,为加速度时,需定义“初始角”和“初始角速度”,默认位置为当前屏幕上的位置。

点“规范”下的那个按钮,可进入“连接轴设置”窗口,对当前电机所用的连接轴进行设置。

伺服电动机定义窗口:

电动机的轮廓(模)

电动机的模用来描述电动机的轮廓,定义模时,需选定模函数并输入函数的系数值。对于伺机服电动机,函数中的X为时间,对于执行电动机,函数中的X为时间或选取的测量参数。

模函数一共有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。

下面先说说常数、斜坡、余弦、摆线、抛物线、多项式这六种。

常数,函数为q=A,A为一常数。此用于需要恒定轮廓时。

斜坡,即线性,函数为q=A+B*X,A为一常数,B为斜率。用于轮廓随时间做线性变化时。

余弦,函数为q=A*cos(360*X/T+B)+C,A为幅值,B为相位,C为偏移量。用于轮廓呈余弦规律变化时。

摆线,函数为q=L*X/T-L*sin(2*pi*X/T)/2*pi,L为总高度,T为周期。用于模拟凸轮轮廓输出。

抛物线,函数为q=A*X+(1/2)*B*X^2,A为线性系数,B为二次项系数。用于模拟电动机的轨迹。

多项式,函数为q=A+B*X+C*X^2+D*X^3,A为常数,B为线性系数,C为二次项系数,D为三次项系数。用于模拟一般的电动机轨迹。

电动机的模:SCCA

此函数只能用于加速度伺服电机,不能用于执行电机。它用来模拟凸轮轮廓输出。它称做“正弦-常数-余弦-加速度”运动,缩写为SCCA。它一共有五个参数:

A = 渐增加速度归一化时间部分

B = 恒定加速度归一化时间部分

C = 递减加速度的归一化时间部分

H = 幅值

T = 周期

其中A + B + C = 1,用户必须提供 A 和 B 的值、幅值和周期。

SCCA 设置的值按下表计算:

y = H * sin [(t*pi)/(2*A)] 0 <= t < A 时

y = H A <= t < (A + B) 时

y = H * cos [(t - A - B)*pi/(2*C)] (A+B) <= t < (A + B + 2C) 时

y = - H (A+B+2C) <= t < (A + 2B + 2C) 时

y = - H * cos [(t - A - 2B - 2C)*pi/(2*A)] (A+2B+2C) <= t <= 2*(A + B + C) 时

上式中的t 是归一化时间,按下式进行计算:t=ta*2/T (ta:实际时间;T:SCCA轮廓周期)

如果ta大于T,轮廓将重复自身。

电动机的模:七种函数图例

下图给出了七种函数的模所代表的电机轮廓。各函数的参数值:

常数:A=8。

斜坡(线性):A=18,B=-1.2。

余弦:A=6,B=40,C=3,T=5。

摆线:L=12,T=8

抛物线:A=4,B=-0.6

多项式:A=7,B=-1.5,C=1,D=-0.1

SCCA:A=0.4,B=0.3,H=5,T=10

图例:

电动机的模:表

电动机的模类型选择为“表”,也就是指定N个点,以这些点为节点,按线性或样条插值的方式构建一条通过所有点的曲线,这条曲线就是电动机的轮廓。如电动机的模是指定给“位置”或“速度”的(即“规范”为位置或速度),插值方式可选“线性拟合”或“样条拟合”之一,如是指定给“加速度”并用于伺服电机(即“规范”为加速度),则插值方式只能是“线性拟合”。样条拟合构建的曲线比线性拟合构建的曲线平滑一点。

类型选为“表”后,在“模”类型的下方会出现一个列表框,可用框右侧的“增加行”/“删除行”来向列表中加增加或删除行。这个表由N行两列构成,第一列是时间(即电机轮廓的横轴,如是执行电机或力,也可能是别的测量变量而不是时间),第二列是模(即电机轮廓的纵轴)。每一行有一个时间值和一个模值,这两个数代表电机轮廓上的一个点。输入时要注意的时,时间列只能是递增或递减的。创建并执行运动分析

“机构”----“分析”----“新建”。

类型里选择“运动学”或“重复的组件”。然后设置“优先选项”页和“电动机”页。对于运动分析和重复组件分析,“外部负荷”页是不可用的。

“优先选项”页里设置运动的起止时间及定义动画时域,并可设定主体锁定、连接锁定及初始位置。主体锁定使两个主体在运动分析(或重复组件分析)期间不做相对运动,由机构连接设定的自由度在分析期间不起作用。连接锁定使选定的连

接在分析期间保持当前配置。设置主体锁定需选择一个先导主体,如果选择先导主体时用了中键,则用基体作为先导主体。连接锁定可以用于机构连接、凸轮连接、槽连接,不能用于齿轮连接,对于齿轮副,只能锁定产生齿轮轴的机构连接。初始位置选取当前位置作为分析起点,或用一先前保存的快照作分析起点。“电动机”页里设置用于分析的电动机。对于运动分析和重复组件分析,只能用连接轴伺服电动机,几何伺服电动机及执行电动机都不可用。可以设定各个电动机的作用时间,以实现多个电动机分时段起作用。

定义结束后点“运行”,将执行分析,并产生一个结果集。

分析定义窗口:

回放:干涉与动画

“回放”用来查看机构中零件的干涉情况、将分析的不同部分组合成一段影片、显示力和扭矩对机构的影响,以及在分析期间跟踪测量的值。可以将运动分析结果捕捉为MPEG动画文件或一系列的JPG、TIF或BMP文件。可以创建运动包络。“机构”----“回放”,启动“回放”窗口。在“结果集”里,选择将用于回放的运动分析(或重复组件分析)结果集。

“干涉”页面设置干涉检查选项。检查模式有四种:无干涉、快速检查、两个零件、全局干涉。“无干涉”即不检查干涉;“快速检查”是进行较低层次的检查,选用此模式将自动选中“停止回放”选项;“两个零件”是只检查所选定的两个零件之间的干涉情况;“全局干涉”是检查所有零件的所有类型的干涉。检查选项有两个:包括面组、停止回放。“包括面组”是曲面也将参与干涉检查;“停止回放”是一旦检查到干涉,回放就停止。

“影片进度表”页设置回放的结果片段。“显示时间”,如选中,则在回放时会在屏幕左上角显示回放已进行的时间。“缺省进度表”选中则回放整个结果集,如取消此项,则在其下方的时间段列表启动,可自已输入要播放的时间段,如果输入多个时间段,则按从上到下的次序依次播放,同一时间段可多次输入,以实现此小段的重复播放,如某时间段的“开始”时间大于“结束”时间,则此小段将反向播放。要修改某一时间段的起止时间,先在列表中选中此时间段,再输入新的开始、结束时间,点“更新”按钮确认修改。默认情况下,“显示时间”和“缺省进度表”都是选中的。

回放分析结果时,可显示代表与分析相关的测量、力、扭矩、重力和执行电动机的大小和方向的三维箭头。使用显示箭头可查看负荷对机构的相对影响。对于力、线性速度和线性加速度矢量,显示单头箭头,对于力矩、角速度和角加速度矢量显示双头箭头。箭头的颜色取决于测量或负荷的类型。回放分析结果时,箭头的大小将改变,以反映测量值、力或扭矩的计算值。箭头方向随计算矢量方向而改变。“显示箭头”页里的“测量”列表中,列出所选结果集中所有可用箭头显示的测

量,“输入负荷”列表中,列出所选结果集中所有可用箭头显示的负荷。

设置好以上各参数后,点“回放”窗口左上角的“播放”按钮,则进入“动画”窗口。在此窗口可按前面的设置对回放结果进行动画演示。“捕捉”按钮,可将动画结果保存为MPEG动画文件或一系列的JPG、TIF或BMP文件。选中“照片级渲染帧”,输出结果的图片质量较高。

回放窗口:

动画捕捉:

回放:可用箭头显示的测量与负荷

不是所有的测量与负荷都可以用箭头显示。

可用箭头显示的测量有:

连接反作用(机构):青色箭头。顶端位于指定连接轴、指向机构的DOF 方向。连接反作用(凸轮):青色箭头。法向反作用力,顶端位于两个凸轮的接触点处,指向凸轮的法线方向。切向反作用力,顶端位于两个凸轮的接触点处,并指向凸轮的切线方向。

连接反作用(槽):青色箭头。顶端指向从动点和槽之间的接触点处。

PROE装配中替换组件元件的六种方法

PROE装配中替换组件元件的六种方法 大家对于替换元件的运用,大多都还是停留在最最初级的阶段,对于此命令的运用,并没有将他最大的效率发挥出来! 替换元件远远不是大家想像的那么简单,其功能的强大,只要你能恰当的运用,一定能够让你在设计变更和参考中,更加的游刃有余,得心应手! 替换元件,一共有六种方法: 不相关的元件 通过复制 参考模型 互换 族表 布局 接下来,我们将分别对这六种方法进行叙述和运用!在运用各个方法的同时,我们对其元件替换的自动处理程度和装配参照父子关系的影响作出评定. 命令位置:装配菜单,编辑-----替换 第一种方法:替换为不相关的元件 此种方法,大多数朋友都会,也好理解.相当于将该零件删除,再重新装配一个,只不过不须点击加入元件命令而已(我自己的理解,不一定正确),因此效率很低!因为我们替换元件后,须得为其重新指定约束,如果该元件在装配中没有子特征,重新

指定即可,如果有下属子特征,其替换后的结果将会不堪设想,非常麻烦! 下面我们将演示如何将下图中的screw_1(红色螺丝)替换为screw_2(淡绿色螺丝) 按住CTRL键选择两个screw_1零件,右击,在快捷菜单中,选择替换! 出现替换对话框选择并screw_2(screw_2得存在于当前目录中,这个好像是废话, ,如果不在,则可将其复制到当前目录),打开,确定oK,出现了讨厌的元件定位对话框, 不要怕, ,我们一步步定好约束条件!第二种方法:替换为通过复制 通过复制的意思,就是说把要被替换的元件,复制成一个新的元件,约束条件不变! 通俗一点说:事实上就是产生了一个新的元件,此新元件和被替换的元件是一模一样的,定位约束条件也是一样的!你在这个新元件上增删特征,改变改寸,就变成与被替换元件不一样了,否则就是一模一样的! 有没有必要这样的阐述? 其实自己理解,自己会做,并不是很难,如果你也让别人理解,别人会做,是不是会难一点呢?呵呵!人其实在大多数时候,应该学会换位思考!如此,你会发现更多,当然你也会学习更多! 让你在喧闹的都市,蒙着眼睛生活一天,你是否会发现,盲人的世界会和你以前想的有些许不同?如果你能想想当初挑灯

proe运动仿真

proe5.0装配体运动仿真 基础与重定义主体 基础是在运动分析中被设定为不参与运动的主体。 创建新组件时,装配(或创建)的第一个元件自动成为基础。 元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。 如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。 进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。、、 特殊连接:凸轮连接 凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。 凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。 如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。 如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。 凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。 关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。 因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。 需要注意: A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。 B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。 C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

PROE装配中替换组件元件的六种方法

PROE装配中替换组件元件的六种方法[复制链接] 大家对于替换元件的运用,大多都还是停留在最最初级的阶段,对于此命令的运用,并没有将他最大的效率发挥出来! 替换元件远远不是大家想像的那么简单,其功能的强大,只要你能恰当的运用,一定能够让你在设计变更和参考中,更加的游刃有余,得心应手! 替换元件,一共有六种方法: 不相关的元件 通过复制 参考模型 互换 族表 布局 接下来,我们将分别对这六种方法进行叙述和运用!在运用各个方法的同时,我们对其元件替换的自动处理程度和装配参照父子关系的影响作出评定. 命令位置:装配菜单,编辑-----替换 第一种方法:替换为不相关的元件 此种方法,大多数朋友都会,也好理解.相当于将该零件删除,再重新装配一个,只不过不须点击加入元件命令而已(我自己的理解,不一定正确),因此效率很低!因为我们替换元件后,须得为其重新指定约束,如果该元件在装配中没有子特征,重新指定即可,如果有下属子特征,其替换后的结果将会不堪设想,非常麻烦! 下面我们将演示如何将下图中的screw_1(红色螺丝)替换为screw_2(淡绿色螺丝) 按住CTRL键选择两个screw_1零件,右击,在快捷菜单中,选择替换! 出现替换对话框选择并screw_2(screw_2得存在于当前目录中,这个好像是废话, ,如果不在,则可将其复制到当前目录),打开,确定oK,出现了讨厌的元件定位对话框, 不要怕, ,我们一步步定好约束条件!第二种方法:替换为通过复制 通过复制的意思,就是说把要被替换的元件,复制成一个新的元件,约束条件不变! 通俗一点说:事实上就是产生了一个新的元件,此新元件和被替换的元件是一模一样的,定位约束条件也是一样的!你在这个新元件上增删特征,改变改寸,就变成与被替换元件不一样了,否则就是一模一样的! 有没有必要这样的阐述? 其实自己理解,自己会做,并不是很难,如果你也让别人理解,别人会做,是不是会难一点呢?呵呵!人其实在大多数时候,应该学会换位思考!如此,你会发现更多,当然你也会学习更多! 让你在喧闹的都市,蒙着眼睛生活一天,你是否会发现,盲人的世界会和你以前想的有些许不同?如果你能想想当初挑灯钻破衣的种种遭遇,再看看论坛上有些朋友有求助帖,你会不会想帮一把? 呵呵,扯远了! 看下图演示我们发现元件没除了名称不同,没有任何变化 当然,这个时候,你可修改screw_1_2.PRT,他已经与screw_1.PRT没有了任何关系!我相信你将screw_1_2.PRT改成screw_2.PRT的模样,没有任何问题 ,你同意吗? 第三种方法:替换为参考模型 准确的说,应该说成:用收缩包络模型替换元件 利用这种替换方法,可用收缩包络模型替换主模型(反之亦然),同时维持所有的有效参照。可用另一收缩包络模型来替换某一收缩包络模型,并保持参照

proe小球运动教程

1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计

的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

proe装配图全解

第12章模型装配 ?完成零件设计后,将设计的零件按设计要求的约束条件或连接方式装配在一起才能形成一个完整的产品或机构装置。 利用Pro/E提供的“组件”模块可实现模型的组装。在 Pro/E系统中,模型装配的过程就是按照一定的约束条件或连接方式,将各零件组装成一个整体并能满足设计功能的过程。 ?本章主要讲解如下内容: ? 各种装配约束类型 ? 装配连接类型的概念 ? 零件装配与连接的基本方法 ? 组件分解图的建立方法图12-1 〖新建〗对话框 ? 组件的装配间隙与干涉分析

12.1 元件放置操控板?模型的装配操作是通过元件放置操控板来 实现的。单击菜单 【文件】→【新建】 命令,在打开的〖新 建〗对话框中选择 “组件”,如图12-1 所示。单击【确定】 按钮,进入“组件” 模块工作环境。

在组件模块工作环境中,单击按钮或单击菜单【插入】→【元件】→【装配】命令,在弹出的〖打开〗对话框中选择要装配的零件后,单击【打开】按钮,系统显示如图12-2所示的元件放置操控板。 ?图12-2中的图(a)为【放置】按钮对应的面板,图(b)为【移动】按钮对应的面板。下面对面板中各项功能及意义说明如下: 图(a)

(b) 图12-2 元件放置操控板

? 移动:使用〖移动〗面板可移动正在装配的元件,使元件的取放更加方便。当〖移动〗面板处于活动状态时,将暂停所有其他元件的放置操作。要移动参与组装的元件,必须封装或用预定义约束集配置该元件。在〖移动〗面板中,可使用下列选项: ? 运动类型:选择运动类型。默认值是“平移”。 ??定向模式:重定向视图。 ??平移:在平面范围内移动元件。 ??旋转:旋转元件。 ??调整:调整元件的位置。 ? 在视图平面中相对:相对于视图平面移动元件,这是系统默认的移动方式。 ? 运动参照:选择移动元件的移动参照。 ? 平移/旋转/调整参照:选择相应的运动类型出现对应的选项。 ? 相对:显示元件相对于移动操作前位置的当前位置。 ? 挠性:此面板仅对于具有预定义挠性的元件是可用的。 ? 属性:显示元件名称和元件信息。

ProE装配技巧集锦

版权所有,huhusun,您可以在其它论坛转载,但请注明出处,并保持其完整性!
三维网技术论坛, https://www.wendangku.net/doc/bc17390544.html,/discuz/index.php winxosCAD、CAM、CAE 软件交流,国内外标准交流等综合性论坛,资料丰富,会员众多,为中国机 winxos11-01-28 11-01-28 械制造行业提供全方面的信息资讯!
PROE装配中关于替换组件元件的探讨
前几天,看到论坛里,有位会员提到了这个问题!很明显,大家对于替换 元件的运用,大多都还是停留在最最初级的阶段,对于此命令的运用,并 没有将他最大的效率发挥出来! 替换元件远远不是大家想像的那么简单,其功能的强大,只要你能恰当 的运用,一定能够让你在设计变更和参考中,更加的游刃有余,得心应 手! 替换元件,一共有六种方法: 不相关的元件 通过复制 参考模型 互换 族表 布局 接下来,我们将分别对这六种方法进行叙述和运用!在运用各个方法的 同时,我们对其元件替换的自动处理程度和装配参照父子关系的影响作 出评定 命令位置:装配菜单,编辑-----替换

版权所有,huhusun,您可以在其它论坛转载,但请注明出处,并保持其完整性!
winxos 11-01-28 winxos 11-01-28
如果是先选择零件后执行该命令,则选择项目处会出现零件的名称 第一种方法:替换为不相关的元件 此种方法,大多数朋友都会,也好理解.相当于将该零件删除,再重新装 配一个,只不过不须点击加入元件命令而已(我自己的理解,不一定正 确),因此效率很低!因为我们替换元件后,须得为其重新指定约束,如果 该元件在装配中没有子特征,重新指定即可,如果有下属子特征,其替换 后的结果将会不堪设想,非常麻烦!

proe机构运动仿真教程

proe机构运动仿真教程 典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

PROE机构仿真分析基础知识

机构仿真分析基础知识 机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外

ProE装配技巧零件组合

Pro/E装配技巧---零件之组合 在机件设计中的各个零件模型档,可以进行相互的组合,也可以爆炸开来,在产生组合的过程中只须定义出相关零件之间的配合关系,而不须另外再产生一个包含所有零件资料之总档 案。 步骤为: 1.进入" Assembly"模式。 2.选" Creat",同时命名此一组合关系档。 3.选" Component",进行组合。 4.选" Assembly"叫出一零件,主零件出现在主窗格中。 5.再选" Assembly"叫出另一零件,零件出现在上方之次窗格中。 6.选" Single",进行一对一的组合。 7.接着出现一配合关系之目录,项目如下: (1)Mate:两平面相密合,如图7.1 Figure 7.1: Mate组合模式 (2)Mate Off:两相对平面间间隔一段距离,如图7.2

Figure 7.2: Mate Off组合模式 (3)Align:两平面互相对齐或使两圆弧(或圆)之中心线成一直线,如图7.3。 Figure 7.3: Align组合模式 (4)Align Off:两平面互相对齐後隔开一段距离。 (5)Insert:孔与洞之配合。

Figure 7.4: Align and Insert 组合模式(6)Orient:两平面互相平行且同向如图7.5。 Figure 7.5: Insert and Orient 组合模式(7)Coord sys:利用座标组合,如图7.6。

Figure 7.6: Coord sys组合模式 (8)Tangent,Pnt On srf,Edge On srf: 利用相切,接触点,或接触边来控制两曲面接触的方式。 Figure 7.7: Tangent, Orient and Align组合模式 使用者可任选上述之一种配合方式,确定两零件之相对关系(除了利用座标组合者以外,其馀的配合通常须设定两种以上的相对关系)。 8.选" Done",此时糸统会将次视窗之零件自动组合到主视窗之零件上,同时关闭次视窗。 9.若要再进行其他零件之组合,可重复步骤5-8。 当组合完成後,使用者若要以爆炸图显示,则可使用Main Menu 下之" View"-" Cosmetic" -" Explode"糸列指令将组合件爆炸开来若要重新恢复组合,则使用"

ProE机构分析之运动分析基础教程

机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体 (Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接 (Connections) - 定义并约束相对运动的主体之间的关系。 自由度 (Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动 (Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态 (Dynamics) - 研究机构在受力后的运动。 执行电动机 (Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接 (Gear Pair Connection) - 应用到两连接轴的速度约束。 基础 (Ground) - 不移动的主体。其它主体相对于基础运动。 机构 (Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动 (Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接 (Loop Connection) - 添加到运动环中的最后一个连接。 运动 (Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束 (Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放 (Playback) - 记录并重放分析运行的结果。 伺服电动机 (Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为 Pro/ENGINEER 零件捕获机构运动的运动包络

基于PROE模具设计(附PROE零件图,操作录像)

前言 模具,是以特定的结构形式通过一定方式使材料成型的一种工业产品,同时也是能成批生产出具有一定形状和尺寸要求的工业产品零部件的一种生产工具。用模具生产制件所具备的高精度、高一致性、高生产率是任何其它加工方法所不能比拟的。模具在很大程度上决定着产品的质量、效益和新产品开发能力。所以模具又有“工业之母”的荣誉称号。 随着科学技术的发展,模具行业已经成为国家工业的重要组成部分,没有高水平的模具也就没有高水平的工业产品,因此其技术水平的高低是衡量一个国家制作业水平及产品开发能力高低的重要标志,是一个国家科技实力的体现和国民经济的基础,在经济社会中占有非常重要的地位。 在西方先进工业国家,模具界已深刻认识到应用CAE技术是缩短模具生产周期的重要途径之一,材料成形过程模拟技术已逐渐成为模具工业设计过程的规范,国外模具界广泛使用的一批商品化CAE软件,如塑料注射成形的模拟软件MOLDFLOW(美国和澳大利亚)、用于铸造过程的模拟软件MAGMA(德国)和PROCAST(美国)、用于汽车覆盖件成形的模拟软件LS-DYNA3D(美国)和AUTOFORM(德国)发挥着越来越重要的作用[1]。 在我国,工业生产的特点是产品品种多、更新快和市场竞争激烈。在这种情况下,用户对模具制造的要求是交货期短、精度高、质理好、价格低。因此,模具工业的发展的趋势是非常明显的。模具CAD/CAM/CAE技术是模具技术发展的一个重要里程碑。实践证明,模具CAD/CAM/CAE技术是模具设计制造的发展方向。 因此模具CAD/CAE/CAM是改造传统模具生产方式的关键技术,是一项高科技、高效益的系统工程,能显著缩短模具设计与制造周期,降低生产成本和提高产品质量已成为模具界的共识。 本次设计就是通过利用Pro/ENGEER软件进行电话的模具设计,通过电脑软件缩短模具设计与制造周期的灵活运用。

Proe想学习装配运动分析

主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机 准备分析:定义初始位置及其快照,创建测量 分析模型:定义运动分析,运行 结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络装入元件时的两种方式:机构连接与约束连接

Proe活塞机构运动仿真分析毕设

摘要 使用Pro/E 软件构建活塞机构的三维模型,对模型进行装配,并用Mechanism 模块对活塞机构进行运动仿真,得到活塞的位移、速度、加速度的运动仿真曲线图;并从理论角度运用数理方法建立运动方程,借助Matlab simulink仿真模块对活塞机构进行仿真得到活塞的位移、速度、加速度的理论曲线。 根据Pro/E运动仿真结果分析表明设计的活塞机构满足要求,活塞运动正常;对比Matlab simulink仿真结果表明Pro/E进行模拟比数值理论方法更具优越性。 关键词:Pro/E Simulink 活塞机构运动仿真

ABSTRACT The paper constructs the three-dimensional model of piston mechanism by using Pro/E software ,gets the assembly model , makes the piston mechanism motion simulation by using Mechanism module and obtains the displacement, velocity , acceleration of slider and the motion simulation curve. From a theoretical point of view by means of mathematical methods to establish the motion equation ,and making simulation by means of Matlab Simulink simulation module and obtaining the displacement ,velocity, acceleration curve. According to the Pro/E simulation results show that the piston mechanism design to meet the requirements, the piston motion is normal; Compared with the Matlab Simulink simulation results show that the Pro/E simulation than numerical theory method is more superiority. Key words: Pro/E Simulink Piston mechanism Motion simulation

公差分析软件CETOL-6-sigma实例

使用公差分析软件CETOL 6 σ进行公差分析的实例 ----汽车锁具公差分析案例 针对汽车锁具Pro/E模型,采用Pro/E完全集成环境下的公差分析软件CETOL 6 σ,来做公差模型的创建,基于CETOL提供的系统矩(SOTA法)算法,做统计和极限二种情况下的公差分析。 一.锁具质量关心焦点 作为汽车座椅锁具,其质量的好坏,关系到汽车驾乘人员乘坐的舒适性和安全性。锁具在开锁时,希望能够充分打开,不要与其他零部件之间产生干涉,即顺利打开。锁具在闭锁时,能够经受得住外力的冲击,不至于产生突然脱开现象。在锁具的任何状态,都要求锁具动作部件能够与电器设备很好地连接,在电控装配的驱动下,锁具能够准确地运转到指定的位置。根据设计功能要求,把项目细分到具体的状态上,在运动部件的具体指定位置,做功能要求的详细设定。 1)一个关键质量要求就是爪轮在打开时要远离侧板的开口槽,这是为了确保爪轮不会与锺棒产生干涉。如图1所示。 test

2)锁轮上的孔,在完成机械装配后,需要从这个孔里穿电缆线,来接通电源。根据座椅的设计要求,为了保证电缆线能与

机械设备能可靠地连接,电缆线过孔必须在位于基准孔名义值的正负2个mm之间。如果尺寸超过了上极限,锁具就会出现卡死现象,如果超过了下极限,电缆线就不能很好地与电器设置连接,导致零件废弃和成本增加。 图 2 闭锁时的测量尺寸 另外一个关键尺寸就接触力位置,这个接触力与作用方向一致,是在爪轮和中轮之间,接触力矢量的位置决定了是否有足

够的闭锁运动来保持锁具在冲压载荷的情况仍能正常闭锁,加工和装配偏差都有可能这些关键质量要求产生失效,过紧的公差会增加成本也有可能导致产品无法加工。为了生产高质量低成本的产品,有必要在设计阶段就能理解所有这些问题。 二. 创建公差分析目标 公差分析的前提首先要确定装配性能尺寸,对于锁具装配体,需要确定具体的装配状态。实施步骤如下: 1) 启动CETOL软件的分析器。 a.启动Pro/E。 b.启动CETOL,路径:开始/程序/sigmetrix/CETOL 6 sigma v8.2 for Pro ENGINEER/CETOL v8.2 Modeler。 c.打开锁具装配体。 d. 配置CETOL与Pro/E同步 2) 打开CETOL选项菜单。 a.从工具-选项栏目选择,在偏差标签栏设置 ,如图3 b. 在图表和高亮显示设置栏,设置如下:如图4

比较全面的ProE机构仿真分析

比较全面的ProE机构仿真分析 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。运动分析的定义 在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 使用重复组件分析可获得以下信息: 几何图元和连接的位置 元件间的干涉 机构运动的轨迹曲线 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机 准备分析:定义初始位置及其快照,创建测量

proe装配

·277· 12-零件装配 Pro/Engineer 中具有专门的装配模块,提供了基本的装配工具,用户可以指定零件之间的装配关系和装配约束来完成装配。 12.1 创建装配体的基本步骤 创建装配体的基本步骤如下。 (1)启动Pro/E ,单击,打开“New (新建)”对话框,如图12-1(a )所示,选择Assembly (装配)文件类型和Design (设计)子类型,输入文件名称,去掉Use default template (使用默认模板)前的√,单击“OK ”确认。 (2)在弹出的“New File Options (新文件选项)”对话框中选择mmns_asm_design (毫米制单位装配设计),如图12-1(b )所示,单击“OK ”确认,进入Pro/Engineer 装配模式。 图12-1 新建装配文件 (3)装配界面如图12-2所示,单击窗口右侧的“添加零件”按钮,或进入“Insert (插入)”→“Component (零件)”→“Assemble (装配)”,弹出“Open (打开)”对话框,选择需要装配的零件打开。 (4)系统弹出“Component Placement (零件放置)”对话框,用于定义零件放置位置和装配约束,如图12-3所示。 (5)约束类型共9种,采用适当的约束类型,并在窗口中选择零件及装配件的约束参考,若约束状态显示“Fully Constrained (完全约束)”,则表明零件已经确定放置位置,并已约束

·278· 好,单击“OK ”确认。 图12-2 装配界面 图12-3 “Component Placement (零件放置)”对话框 提示:若所添加的零件是第1个零件,则可以使用按钮 ,让零件在当前位置放置;或使用按钮,让零件按照系统默认的约束方式进行放置(通常使零件坐标系与装配坐标系重合)。 (6)若需要再添加新零件,则继续单击,重复操作以上步骤。

Creo 2.0动态机构仿真操作手册

Creo2.0动态机构仿真操作手册 1 范围 本标准规定了Creo2.0动态机构仿真建模方法及思路。 本标准适用于公司产品结构设计选用。 2 Creo2.0机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。 design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 1

图1-2 机构模块下的主界面图 图1-3 机构菜单 如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下: 设置。

凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。 3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。 齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现 有的齿轮副。 伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。 执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。 弹簧:打开“弹簧” 对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。 阻尼器:打开“阻尼器”对话框,使用此对话框可定义阻尼器,也可编辑、移除或复制现有的阻尼器。 力/扭矩:打开“力/扭矩”(对话框,使用此对话框可定义力或扭矩。也可编辑、移除或复制现有的力/扭矩负荷。 重力:打开“重力” 对话框,可在其中定义重力。 初始条件:打开“初始条件”对话框,使用此对话框可指定初始位置快照,并可为点、连接轴、主体或槽定义速度初始条件。 质量属性:打开“质量属性”对话框,使用此对话框可指定零件的质量属性,也可指定组件的密度。 拖动:打开“拖动”对话框,使用此对话框可将机构拖动至所需的配置并拍取快照。 连接:打开“连接组件”对话框,使用此对话框可根据需要锁定或解锁任意主体或连接,并运行组 件分析。 分析:打开“分析”对话框,使用此对话框可添加、编辑、移除、复制或运行分析。 回放:打开“回放” 对话框,使用此对话框可回放分析运行的结果。也可将结果保存到一个文件中、恢复先前保存的结果或输出结果。 测量:打开“测量结果”对话框,使用此对话框可创建测量,并可选取要显示的测量和结果集。也可以对结果出图或将其保存到一个表中。 轨迹曲线:打开“轨迹曲线”对话框,使用此对话框生成轨迹曲线或凸轮合成曲线 除了这些主要的菜单和工具外。还有几个零散的菜单需要注意。 2.1 【编辑】菜单 重定义主体:打开“重定义主体” 对话框,使用此对话框可移除组件中主体的组件约束。通过单击箭头选择零件后,对话框显示已经定义好的约束,元件和组建参照,设计者可以移除约束,重新指定元件或组件参照,如图1-6所示。 设置:打开“设置” 对话框,使用此对话框可指定"机械设计"用来装配机构的公差,也可指定在分析运行失败时“机械设计”将采取的操作。如是否发出警告声,操作失败时是否暂停运行或是继续运行等等,该配置有利于设计者高效率的完成工作。 3

PROE运动仿真教程

PROE机构仿真之运动分析 关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐

相关文档