文档库 最新最全的文档下载
当前位置:文档库 › 2015届高考物理 考前三个月 名师考点点拨专题讲练6 电场与磁场(含14真题及原创解析)新人教版

2015届高考物理 考前三个月 名师考点点拨专题讲练6 电场与磁场(含14真题及原创解析)新人教版

2015届高考物理 考前三个月 名师考点点拨专题讲练6 电场与磁场(含14真题及原创解析)新人教版
2015届高考物理 考前三个月 名师考点点拨专题讲练6 电场与磁场(含14真题及原创解析)新人教版

2015届高考物理 考前三个月 名师考点点拨专题讲练6 电场与磁场

(含14真题及原创解析)新人教版

高考定位

本专题知识是高考的重点和难点,常考知识内容:①电场强度、磁感应强度;②电场的基本性质;③磁场的基本性质;④带电粒子在电磁场中的运动.高考命题趋势:对电场强度、电势、电场力做功与电势能变化的关系、磁场的基本概念、安培力的应用等知识多以选择题的形式考查;带电粒子在电场、磁场中的运动与控制,与牛顿运动定律、功能关系相结合,多以计算题的形式考查.

考题1 对电场性质的理解

例1 (2014·山东·19)如图1所示,均匀带正电薄球壳,其上有一小孔A .已知壳内的场强处处为零;壳外空间的电场与将球壳上的全部电荷集中于球心O 时在壳外产生的电场一样.一带正电的试探电荷(不计重力)从球心以初动能E k0沿OA 方向射出.下列关于试探电荷的动能

E k 与离开球心的距离r 的关系图象,可能正确的是( )

图1

审题突破 试探电荷的动能E k 与离开球心的距离r 的关系根据动能定理列式,分析图象斜率的意义.

解析 壳内场强处处为零,试探电荷在壳内运动时动能不变,排除选项C 、D ;假设试探电荷在匀强电场中由静止开始运动,由动能定理可得,Fr =E k ,则E k

r

=F ,E k 图象的斜率数值上等于电场力的大小,距离球壳越远试探电荷所受电场力越小,图象的斜率越小,正确选项为A. 答案 A

1.(2014·重庆·3)如图2所示为某示波管的聚焦电场,实线和虚线分别表示电场线和等势线.两电子分别从a 、b 两点运动到c 点,设电场力对两电子做的功分别为W a 和W b ,a 、b 点的

电场强度大小分别为E a 和E b ,则( )

图2

A .W a =W b ,E a >E b

B .W a ≠W b ,E a >E b

C .W a =W b ,E a

D .W a ≠W b ,

E a

解析 因a 、b 两点在同一等势线上,故U ac =U bc ,W a =eU ac ,W b =eU bc ,故W a =W b .由题图可知a 点处电场线比b 点处电场线密,故E a >E b .选项A 正确.

2.真空中存在一点电荷产生的电场,其中a 、b 两点的电场强度方向如图3所示,a 点的电场方向与ab 连线成60°,b 点的电场方向与ab 连线成30°.另一带正电粒子以某初速度只在电场力作用下由a 运动到b .以下说法正确的是( )

图3

A .a 、b 两点的电场强度E a =3E b

B .a 、b 两点的电势φa <φb

C .带正电粒子在a 、b 两点的动能E k a >E k b

D .带正电粒子在a 、b 两点的电势能

E p a >E p b 答案 AD

解析 a 点到O 点的距离R a =L ab cos 60°=12L ab ,b 点到O 点距离R b =L b cos 30°=3

2L ab ,根

据点电荷的场强公式E =kQ

r

2,可得:E a =3E b ,故A 正确;在正点电荷的周围越靠近场源电势越高,故有φa >φb ,故B 错误;带正电粒子在a 、b 两点的电势能E p a >E p b ,故D 正确;由能量守恒,带正电粒子在a 、b 两点的动能E k a

3.(2014·江苏·4)如图4所示,一圆环上均匀分布着正电荷,x 轴垂直于环面且过圆心O .下列关于x 轴上的电场强度和电势的说法中正确的是( )

图4

A .O 点的电场强度为零,电势最低

B .O 点的电场强度为零,电势最高

C .从O 点沿x 轴正方向,电场强度减小,电势升高

D .从O 点沿x 轴正方向,电场强度增大,电势降低 答案 B

解析 根据电场的对称性和电场的叠加原理知,O 点的电场强度为零.在x 轴上,电场强度的方向自O 点分别指向x 轴正方向和x 轴负方向,且沿电场线方向电势越来越低,所以O 点电势最高.在x 轴上离O 点无限远处的电场强度为零,故沿x 轴正方向和x 轴负方向的电场强度先增大后减小.选项B 正确.

场强、电势、电势能的比较方法

1.电场强度:(1)根据电场线的疏密程度判断,电场线越密,场强越大; (2)根据等差等势面的疏密程度判断,等差等势面越密,场强越大; (3)根据a =qE m

判断,a 越大,场强越大.

2.电势:(1)沿电场线方向电势降低,电场线由电势高的等势面指向电势低的等势面,且电场线垂直于等势面;

(2)根据U AB =φA -φB 比较正负,判断φA 、φB 的大小. 3.电势能:(1)根据E p =q φ,判断E p 的大小;

(2)根据电场力做功与电势能的关系判断:无论正电荷还是负电荷,电场力做正功,电势能减小;电场力做负功,电势能增加.

考题2 电场矢量合成问题

例2 如图5所示,在正方形区域的四个顶点固定放置四个点电荷,它们的电量的绝对值相等,电性如图中所示.K 、L 、M 、N 分别为正方形四条边的中点,O 为正方形的中心.下列关于各点的电场强度与电势的判断正确的是( )

图5

A .K 点与M 点的电场强度大小相等、方向相反

B .O 点的电场强度为零

C .N 点电场强度的大小大于L 点电场强度的大小

D .K 、O 、M 三点的电势相等

审题突破 该题实质上考查常见电场的电场分布与特点,可以结合等量同种点电荷的电场特点,把两个相互垂直的等量同种点电荷的电场叠加在一起,进行分析可以得出结论. 解析 根据点电荷的电场即电场的叠加可得:K 点与M 点的电场强度大小相等、方向相同,所

以A 错误; O 点的电场强度方向水平向右,不为零,所以B 错误;由对称性知,N 点的电场强度大小等于L 点的电场强度大小,所以C 错误;K 、O 、M 三点的电势都等于零,所以D 正确. 答案 D

4.如图6所示,在真空中的A 、B 两点分别放置等量异种点电荷,在AB 两点间取一正五角星形路径abcdefghija ,五角星的中心与AB 连线的中点重合,其中af 连线与AB 连线垂直.现将一电子沿该路径逆时针方向移动一周,下列判断正确的是( )

图6

A .e 点和g 点的电场强度相同

B .h 点和d 点的电势相等

C .电子在e 点的电势能比g 点电势能大

D .电子从f 点到e 点再到d 点过程中,电场力先做正功后做负功 答案 C

解析 由对称性可知,e 点和g 点的电场强度大小相同,但方向不同,选项A 错误;h 点电势高于d 点的电势,选项B 错误;因为g 点的电势高于e 点,故电子在e 点的电势能比g 点电势能大,选项C 正确;电子从f 点到e 点再到d 点过程中,电势先降低再升高,电势能先增大后减小,电场力先做负功后做正功,选项D 错误.

5.(2014·福建·20)如图7所示,真空中xOy 平面直角坐标系上的ABC 三点构成等边三角形,边长L =2.0 m .若将电荷量均为q =+2.0×10-6

C 的两点电荷分别固定在A 、B 点,已知静电力常量k =9.0×109

N·m 2

/C 2

,求:

图7

(1)两点电荷间的库仑力大小;

(2)C 点的电场强度的大小和方向.(计算结果保留两位有效数字) 答案 (1)9.0×10-3

N (2)7.8×103

N/C 方向沿y 轴正方向 解析 (1)根据库仑定律,A 、B 两点电荷间的库仑力大小为

F =k q 2

L

2

代入数据得F =9.0×10-3

N

(2)A、B两点电荷在C点产生的场强大小相等,均为

E1=k q

L2

③A、B两点电荷形成的电场在C点的合场强大小为

E=2E1cos 30°④

联立③④式并代入数据得E≈7.8×103 N/C

场强E的方向沿y轴正方向.

1熟练掌握常见电场的电场线和等势面的画法.

2.对于复杂的电场场强、电场力合成时要用平行四边形定则.

3.电势的高低可以根据“沿电场线方向电势降低”或者由离正、负场源电荷的关系来确定.考题3 带电粒子在有界磁场中的临界、极值问题

例3(2014·江苏·14)某装置用磁场控制带电粒子的运动,工作原理如图8所示.装置的长为L,上、下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,两磁场的间距为d.装置右端有一收集板,M、N、P为板上的三点,M位于轴线OO′上,N、P分别位于下方磁场的上、下边界上.在纸面内,质量为m、电荷量为-q的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P点.改变粒子入射速度的大小,可以控制粒子到达收集板的位置.不计粒子的重力.

图8

(1)求磁场区域的宽度h;

(2)欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量Δv;

(3)欲使粒子到达M点,求粒子入射速度大小的可能值.

审题突破(1)粒子在磁场中做圆周运动,根据圆的性质可明确粒子如何才能到达P点,由几何关系可求得磁场区域的宽度;(2)带电粒子在磁场中运动时,洛伦兹力充当向心力,由(1)中方法确定后来的轨道半径,则可求得两次速度大小;即可求出速度的差值;(3)假设粒子会经过上方磁场n次,由洛伦兹力充当向心力可求得粒子入射速度的可能值.

解析(1)设粒子在磁场中的轨迹半径为r,粒子的运动轨迹如图所示.

根据题意知L =3r sin 30°+3

2d cot 30°,且磁场区域的宽度h =r (1-cos 30°)

解得:h =(23L -3d )(1-3

2

).

(2)设改变入射速度后粒子在磁场中的轨迹半径为r ′,洛伦兹力提供向心力,则有m v 2

r

=qvB ,

m v ′2r ′

=qv ′B , 由题意知3r sin 30°=4r ′sin 30°,

解得粒子速度的最小变化量Δv =v -v ′=qB m (L 6-3

4

d ).

(3)设粒子经过上方磁场n 次

由题意知L =(2n +2)d

2

cot 30°+(2n +2)r n sin 30°

且m v 2n

r n =qv n B ,解得v n =qB m (L n +1-3d )(1≤n <3L 3d

-1,n 取整数).

答案 (1)(23L -3d )(1-32) (2)qB m (L 6-3

4

d )

(3)qB m (L n +1-3d )(1≤n <3L 3d

-1,n 取整数)

6.图9为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B =2.0×10-3

T ,在x 轴上距坐标原点L =0.50 m 的P 处为离子的入射口,在y 轴上安放接收器,现将一带正电荷的粒子以v =3.5×104

m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50 m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不计其重力.则上述粒子的比荷q

m

(C/kg)是( )

图9

A .3.5×107

B .4.9×107

C .5.3×107

D .7×107

答案 B

解析 设粒子在磁场中的运动半径为r ,画出粒子的轨迹图如图所示

依题意MP 连线即为该粒子在磁场中做匀速圆周运动的直径,由几何关系得r =

2

2

L ,由洛伦兹力提供粒子在磁场中做匀速圆周运动的向心力,可得qvB =mv 2r ,联立解得q m

≈4.9×107

C/kg ,

故选项B 正确.

7.如图10所示,在边长为L 的正方形区域内存在垂直纸面向里的匀强磁场,其磁感应强度大小为B .在正方形对角线CE 上有一点P ,其到CF 、CD 距离均为L

4,且在P 点处有一个发射正离子的装置,能连续不断地向纸面内的各方向发射出速率不同的正离子.已知离子的质量为m ,电荷量为q ,不计离子重力及离子间相互作用力.

图10

(1)速率在什么范围内的所有离子均不可能射出正方形区域?

(2)求速率为v =13qBL

32m 的离子在DE 边的射出点距离D 点的范围.

答案 (1)v ≤

qBL 8m (2)L 4≤d <+3L

8

解析 因离子以垂直于磁场的速度射入磁场,故其在洛伦兹力作用下必做圆周运动. (1)依题意可知离子在正方形区域内做圆周运动不射出该区域,做圆周运动的半径为r ≤L

8

.

对离子,由牛顿第二定律有qvB =m v 2r ?v =qBr m ≤qBL

8m

.

(2)当v =13qBL 32m 时,设离子在磁场中做圆周运动的半径为R ,则由qvB =m v 2R 可得R =mv

qB

m qB ·13qBL 32m =13L 32

. 要使离子从DE 射出,则其必不能从CD 射出,其临界状态是离子轨迹与CD 边相切,设切点与

C 点距离为x ,其轨迹如图甲所示,

由几何关系得:

R 2=(x -L 4

)2+(R -L

4

)2,

计算可得x =5

8

L ,

设此时DE 边出射点与D 点的距离为d 1,则由几何关系有:(L -x )2

+(R -d 1)2

=R 2

, 解得d 1=L

4

.

而当离子轨迹与DE 边相切时,离子必将从EF 边射出,设此时切点与D 点距离为d 2,其轨迹如图乙所示,由几何关系有:

R 2=(34

L -R )2+(d 2-L

4

)2,

解得d 2=

+3L

8

.

故速率为v =13qBL 32m 的离子在DE 边的射出点距离D 点的范围为L

4

≤d <

+3L

8

.

1.解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.

2.粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.

例4 (20分)如图11所示,在xOy 平面内,以O ′(0,R )为圆心、R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P 、Q 两点在坐标轴上,且O 、P 两点间的距离大于2R ,在圆形磁场的左侧0

考题4 带电粒子在匀强磁场中的多过程问题

图11

(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;

(3)挡板上被粒子打中的区域长度.

解析 (1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线,长度为r ,C 为该轨迹圆的圆心.

连接AO ′、CO ,可证得ACOO ′为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,(3分)

由qvB =m v 2

r (3分)

得B =mv

qR

.(2分)

(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 作挡板的垂线交于E 点,(1分)

DP =2R ,OP =(2+1)R (2分) P 点的坐标为[(2+1)R,0](1分)

(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R (1分)

过O 点作挡板的垂线交于G 点,

OG =(2+1)R ·22=(1+2

2

)R (2分)

FG =OF 2-OG 2= 5-22

2

R (2分) EG =

2

2

R (1分) 挡板上被粒子打中的区域长度

l =FE =

2

2R + 5-222R =2+10-42

2

R (2分) 答案 (1)mv

qR

(2)[(2+1)R,0] (3)

2+10-422

R

(2014·重庆·9)(18分)如图12所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .

图12

(1)求电场强度的大小和方向.

(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.

(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.

答案 (1)mg q

,方向竖直向上 (2)(9-62)

qBh

m

(3)0.68qBh m 0.545qBh m 0.52qBh m

解析 (1)设电场强度大小为E . 由题意有mg =qE , 得E =mg q

,方向竖直向上.

(2)如图所示,设粒子不从NS 边飞出的入射速度最小值为v min ,对应的粒子在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ.

由r =mv qB ,

有r 1=mv min qB ,r 2=mv min 2qB =12

r 1,

由(r 1+r 2)sin φ=r 2,

r 1+r 1cos φ=h ,

得v min =(9-62)qBh

m

.

(3)如图所示,

设粒子入射速度为v ,粒子在上、下方区域的运动半径分别为r 1和r 2,粒子第一次通过KL 时距离K 点为x .

由题意有3nx =1.8h ,(n =1,2,3,…),

由(2)知32x ≥r 2=-62h

2

x =r 21-h -r 12

得r 1=(1+0.36n 2)h

2

,n ≤0.6(3+22)≈3.5,

即n =1时,v =0.68qBh

m ;

n =2时,v =0.545qBh

m ;

n =3时,v =0.52qBh

m

.

知识专题练 训练6

题组1 对电场性质的理解

1.在竖直平面内有水平向右、场强为E 的匀强电场,在匀强电场中有一根长为L 的绝缘细线,一端固定在O 点,另一端系一质量为m 的带电小球,它静止时位于A 点,此时细线与竖直方向成37°角,如图1所示.现对在A 点的该小球施加一沿与细线垂直方向的瞬时冲量,小球能绕O 点在竖直平面内做完整的圆周运动.下列对小球运动的分析,正确的是(不考虑空气阻力,细线不会缠绕在O 点上)( )

图1

A .小球运动到C 点时动能最小

B .小球运动到

C 点时绳子拉力最小 C .小球运动到Q 点时动能最大

D .小球运动到B 点时机械能最大 答案 D

解析由题意可知,电场力与重力的合力应沿着OA方向,因此小球在竖直平面内运动时,运动到A点时动能最大,C错误;运动到与A点关于圆心对称的点时动能最小,在该点时绳子拉力也恰好最小,A、B错误;而在运动过程中,运动到B点时电场力做功最多,因此机械能最大,D正确.

2.某区域的电场线分布如图2所示,其中间一根电场线是直线,一带正电的粒子从直线上的O点由静止开始在电场力作用下运动到A点.取O点为坐标原点,沿直线向右为x轴正方向,粒子的重力忽略不计.在O到A运动过程中,下列关于粒子运动速度v和加速度a随时间t的变化、粒子的动能E k和运动径迹上电势φ随位移x的变化图线可能正确的是( )

图2

答案 B

解析由题图可知,从O到A点,电场线由密到疏再到密,电场强度先减小后增大,因此粒子受到的电场力先减小后增大,则加速度先减小后增大,故A错误,B正确;沿着电场线方向电势降低,而电势与位移的图象的斜率表示电场强度,所以斜率应先减小后增大,因此C错误;电场力对粒子做正功,导致电势能减小,则动能增加,且图线斜率先减小后增大,故D 错误.

3.如图3所示,在两个等量异种电荷形成的电场中,D、E、F是两电荷连线上间距相等的三个点,三点的电势关系是φD>φE>φF,K、M、L是过这三个点的等势线,其中等势线L与两电荷连线垂直.带电粒子从a点射入电场后运动轨迹与三条等势线的交点是a、b、c,粒子在a、b、c三点的电势能分别是E p a、E p b、E p c,以下判断正确的是( )

图3

A.带电粒子带正电

B.E p a

C .E p c -E p b =E p b -E p a

D .

E p c -E p b

解析 因φD >φE >φF ,则左边是正点电荷,由运动轨迹可知,带电粒子带负电荷,则电场力做负功,导致负电荷的电势能增加,故A 错误,B 正确;D 、E 、F 是两电荷连线上间距相等的三个点,结合点电荷电场矢量叠加原理,ab 电势差大于bc 电势差,根据W =qU ,则E p c -E p b

4.如图4所示是一个正方体ABCDEFGH ,m 点是ABCD 面的中点、n 点是EFGH 面的中点.当在正方体的八个角上各固定一个带电量相同的正点电荷,比较m 、n 两点的电场强度和电势,下列判断正确的是( )

图4

A .电场强度相同,电势相等

B .电场强度不相同,电势不相等

C .电场强度相同,电势不相等

D .电场强度不相同,电势相等 答案 D

解析 由对称性可知,m 、n 点电场强度大小相等,m 点电场强度方向垂直ABCD 面向上,n 点电场强度方向垂直EFGH 面向下,两点电场强度的方向相反.由叠加可知m 、n 点连线中点的电场强度为0.当电荷沿m 、n 连线从m 点移动到n 点的过程中电场力做功一定为0,表明m 、n 两点电势相等,故D 正确.

5.如图5所示,在一个真空环境里,有一个空心导体球,半径为a ,另有一个半径为b 的细圆环,环心与球心连线长为L (L >a ),连线与环面垂直,已知环上均匀带电,总电荷量为Q .当导体球接地时(取无穷远处电势为零,与带电量为q 的点电荷相距r 处电势为φ=k q

r

,k 为静电力恒量),下列说法正确的是( )

图5

A .球面上感应电荷量为q 感=-

aQ

b 2+L 2

B .球面上感应电荷量为q 感=-aQ L

C .感应电荷在O 点的场强为E 感=k Q L 2

D .感应电荷在O 点的场强为

E 感=k Q

a

2

答案 A

解析 据题意,由于静电感应,球上所带电荷与圆环电性相反,球与大地相连,球的电势为0,即球上的电荷在球中心产生的电势与环上电荷在球中心产生的电势之和为0,故有:k q

a

k

Q L 2

+b

2

=0,则选项A 正确,而选项B 错误;由于静电平衡,导体内场强处处为0,球上的

电荷在O 点产生场强等于环在O 点产生的场强,方向相反,现将环看成无数个电荷的集合体,

每个电荷在O 点产生的场强为:E 1=k

Q 1

L 2+b 2

,而所有电荷在O 点产生的场强是每个电荷在该点产生场强的矢量和,则为:E 感=-E 环=-k Q

L

2,故选项C 、D 均错误.

6.如图6所示,真空中同一平面内MN 直线上固定电荷量分别为-9Q 和+Q 的两个点电荷,两者相距为L ,以+Q 电荷为圆心,半径为L

2

画圆,a 、b 、c 、d 是圆周上四点,其中a 、b 在

MN 直线上,c 、d 两点连线垂直于MN ,一电荷量为+q 的试探电荷在圆周上运动,则下列判断

错误的是( )

图6

A .电荷+q 在a 处所受到的电场力最大

B .电荷+q 在a 处的电势能最大

C .电荷+q 在b 处的电势能最大

D .电荷+q 在c 、d 两处的电势能相等 答案 B

解析 电场强度叠加后,a 点处场强最大,A 正确;将正电荷从a 点沿圆弧移动到c 、b 、d 点,+Q 对正电荷不做功,-9Q 对正电荷均做负功,电势能均增加,且移动到b 点克服电场力做功最多,移动到c 、d 两点克服电场力做功相同,因此正电荷在a 处电势能最小,在b 处电势能最大,在c 、d 两处电势能相等,B 错误,C 、D 正确. 题组3 带电粒子在有界磁场中的临界、极值问题

7.如图7所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B ,∠A =60°,

AO =L ,在O 点放置一个粒子源,可以向各个方向发射某种带负电粒子(不计重力作用),粒子

的比荷为q m ,发射速度大小都为v 0,且满足v 0=qBL

m

.粒子发射方向与OC 边的夹角为θ,对于

粒子进入磁场后的运动,下列说法正确的是( )

图7

A .粒子有可能打到A 点

B .以θ=60°飞入的粒子在磁场中运动时间最短

C .以θ<30°飞入的粒子在磁场中运动的时间都相等

D .在AC 边界上只有一半区域有粒子射出 答案 AD

解析 根据Bqv 0=m v 20

r ,又v 0=qBL m ,可得r =mv 0Bq

=L ,又OA =L ,所以当θ=60°时,粒子经

过A 点,所以A 正确;根据粒子运动的时间t =α

2πT ,圆心角越大,时间越长,粒子以θ=

60°飞入磁场中时,粒子从A 点飞出,轨迹圆心角等于60°,圆心角最大,运动的时间最长,所以B 错误;当粒子沿θ=0°飞入磁场中,粒子恰好从AC 中点飞出,在磁场中运动时间也恰好是T

6,θ从0°到60°在磁场中运动时间先减小后增大,在AC 边上有一半区域有粒子飞

出,所以C 错误,D 正确.

8.如图8所示,在匀强电场中建立直角坐标系xOy ,y 轴竖直向上,一质量为m 、电荷量为+

q 的微粒从x 轴上的M 点射出,方向与x 轴夹角为θ,微粒恰能以速度v 做匀速直线运动,

重力加速度为g .

图8

(1)求匀强电场场强E ;

(2)若再叠加一圆形边界的匀强磁场,使微粒能到达x 轴上的N 点,M 、N 两点关于原点O 对称,距离为L ,微粒运动轨迹也关于y 轴对称.已知磁场的磁感应强度大小为B ,方向垂直xOy 平面向外,求磁场区域的最小面积S 及微粒从M 运动到N 的时间t .

答案 (1)mg q ,方向竖直向上 (2)πm 2v 2sin 2

θq 2B 2 qBL -2mv sin θqBv cos θ+2θm

qB

解析 (1)对微粒有qE -mg =0,得E =mg

q

方向竖直向上.

(2)微粒在磁场中有qvB =m v 2R ,解得R =mv

qB

.

如图所示,当PQ 为圆形磁场的直径时,圆形磁场面积最小.有r =R sin θ

其面积S =πr 2

=πm 2v 2sin 2

θq 2B

2

又T =2πR v (或T =2πm qB

)

根据几何关系可知偏转角为2θ

则在磁场中运动的时间t 2=2θ2πT =2θm

qB

又MP =QN =L -2R sin θ2cos θ,且有t 1=t 3=MP

v

故运动的时间t =t 1+t 2+t 3=L -2R sin θv cos θ+2θm qB =L -2mv

qB sin θ

v cos θ+2θm qB =qBL -2mv sin θ

qBv cos θ

2θm

qB .

题组4 带电粒子在匀强磁场中的多过程问题

9.如图9所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-2L,0)、Q (0,-2L )为坐标轴上的两个点.现有一电子从P 点沿PQ 方向射出,不计电子的重力( )

图9

A .若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则电子运动的路程一定为πL

2

B .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为πL

C .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为2πL

D .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程可能为πL ,也可能为2πL 答案 AD

解析 粒子在匀强磁场中做匀速圆周运动,设圆周运动半径为R ,若电子从P 点出发恰好经原点O 第一次射出磁场分界线,如图甲所示,则有2R cos 45°=2L ,半径R =L ,运动轨迹为

四分之一圆周,所以运动的路程s =2πR 4=πL

2,选项A 正确.若电子从P 点出发经原点O 到

达Q 点,若粒子恰好经原点O 第一次射出磁场分界线,则轨迹如图甲,运动路程为一个圆周,即s =2πR =2πL ,若粒子第N 次离开磁场边界经过原点O ,则要回到Q 点,经过O 点的速度

必然斜向下45°,则运动轨迹如图乙,根据几何关系有2R cos 45°=2L

N

,圆周运动半径R

=L N ,运动通过的路程为s =

2πR 4×2N =2πL

4N

×2N =πL ,选项B 、C 错误,D 正确.

10.如图10所示,在坐标系xOy 的第二象限内有沿y 轴负方向的匀强电场,电场强度大小为

E ,第三象限内存在匀强磁场Ⅰ,y 轴右侧区域内存在匀强磁场Ⅱ,Ⅰ、Ⅱ磁场的方向均垂直

于纸面向里.一质量为m 、电荷量为+q 的粒子自P (-l ,l )点由静止释放,沿垂直于x 轴的方向进入磁场Ⅰ,接着以垂直于y 轴的方向进入磁场Ⅱ,不计粒子重力.

图10

(1)求磁场Ⅰ的磁感应强度B 1;

(2)若磁场Ⅱ的磁感应强度B 2=B 1,粒子从磁场Ⅱ再次进入电场,求粒子第二次离开电场时的横坐标;

(3)若磁场Ⅱ的磁感应强度B 2=3B 1,求粒子在第一次经过y 轴到第六次经过y 轴的时间内,粒子的平均速度.

答案 (1) 2mE

ql (2)-2l (3)23π

2qEl

m

,方向沿y 轴负方向 解析 (1)设粒子垂直于x 轴进入磁场Ⅰ时的速度为v , 由运动学公式2al =v 2

由牛顿第二定律Eq =ma

由题意知,粒子在磁场Ⅰ中做圆周运动的半径为l ,

由牛顿第二定律qvB 1=mv 2

l

解得B 1= 2mE

ql

.

(2)粒子运动的轨迹如图甲所示,粒子再次进入电场,在电场中做类平抛运动,有

x =vt l =12

at 2

解得x =2l ,

则粒子第二次离开电场时的横坐标x ′=-x =-2l . (3)粒子运动的轨迹如图乙所示.

设粒子在磁场Ⅰ中运动的半径为r 1,周期为T 1,在磁场Ⅱ中运动的半径为r 2,周期为T 2.

r 1=l

3qvB 1=mv 2

r 2

T 1=2πr 1v =2πm qB 1

T 2=2πr 2v =2πm 3qB 1

得r 2=r 13

=l 3

T 2=T 1

3

粒子在第一次经过y 轴到第六次经过y 轴的时间

t =T 1+3

2

T 2,

粒子在第一次经过y 轴到第六次经过y 轴的时间内的位移x ″=4r 1-6r 2=2l ,

平均速度v =x ″t ,联立解得v =23π 2qEl

m

,方向沿y 轴负方向.

高考物理专题复习:力学题专题.doc

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规 律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面 打点计吋器电源的频率为50Hz o 上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个 ①通过分析纸带数据,可判断物块在相邻计数点 _____ 和_______ 之间某 吋刻开始减速。 ②计数点5对应的速度大小为 ________ m/s,计数点6对应的速度大小 为______ m/so (保留三位有效数字)。 ③物块减速运动过程屮加速度的大小为a二_____ m/s2,若用纟來计算物 g 块与桌面间的动摩擦因数(g为重力加速度),则计算结果比动摩擦因 数的真实值____________ (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据乙=儿,其中T = 5x^ = OAs ,得 (9.00+11.0 l)xl0-2| 心 , (11.01 + 12.28) xl0~2/

= ------------------------ = 1.00m Is、 = ------------------------------ = 1 ? 16/n/ s , 2x0.1 2x0.1 「7 = (12.28+10.06)x1° =] ]4加/s ,因为v6 > v5, v7 < v6,所以可判断物块2x0.1 在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中冬是正确的,*、*7是错误的。因为公式 竝是匀变速运动的公式,而在6、7之间不是匀变速运动了。2T 第一问应该这样解析: ①物块在两相邻计数点6和7之间某吋刻开始减速。 根据1到6Z间的As = 2.00cm ,如果继续做匀加速运动的话,则6、7之间的距离应该为s67 = 556 + As = 11.01+2.00 = 13.01,但图中567= 12.28cm,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的As = 2.00",加速度a =耸=] ° mls = 2.00m/s T~ 0.12 所以* 二v_ +aT= 1.00+ 2.00x0.1 = i.20m/s。 因为v =£L±£L=(10?66+&61)X10-2 =@96 物/$ 8 2T 2x0.1 v7 = v8-aT= 0.964- (-2) x 0.1 = l.l&n/s。 ③首先求相邻两个相等时间间隔的位移差,从第7点开始依次为, 3=10.6061 = 1.99cm, As*2 = &61-6.60=2.01如,Ay3 =6.60-4.60= 2.00cm,求平均值A.v = -(Av, + Av2 + ) = 2.00^ ,所以 力口速度a = = 2.00x]0皿」s1 = 2.00ml s1 T2 O.l2 根据“mg = ma,得a = “g这是加速度的理论值,实际上/zmg+ f = md (此 式中/为纸带与打点计时器的摩擦力),得ajg 丄这是加速度的理论m 值。因为a'> a所以“二纟的测量值偏大。 g

高三物理高考第一轮专题复习——电磁场(含答案详解)

高三物理第一轮专题复习——电磁场 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 电子自静止开始经M 、N 板间(两板间的电压 为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e ) 高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少?

制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 (1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能; (3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。 如图甲所示,图的右侧MN 为一竖直放置的荧光屏,O 为它的中点,OO’与荧光屏垂直,且长度为l 。在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。乙图是从甲图的左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的直角坐标系。一细束质量为m 、电荷为q 的带电粒子以相同的初速度 v 0从O’点沿O’O 方向射入电场区域。粒子的重力和粒子间的相互作用都可忽略不计。 (1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。 (2)如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 3 3 ,求它的横坐标的数值。 E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: (1)中间磁场区域的宽度d ; (2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。 如下图所示,PR 是一块长为L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行 B B l O 甲 乙

高三物理选择题专项训练(7套含答案)

2013年高三物理选择题专项训练(一) 14.如图所示,直线I、Ⅱ分别表示A、B两物体从同一地点开始运动的v-t图 象,下列说法中正确的是 A.A物体的加速度小于B物体的加速度B.t0时刻,两物体相遇 C.t0时刻,两物体相距最近D.A物体的加速度大于B物体的加速度 15.如图所示,物块A、B通过一根不可伸长的细线连接,A静止在斜面上, 细线绕过光滑的滑轮拉住B,A与滑轮之间的细线与斜面平行。则物块 A受力的个数可能是 A.3个B.4个C.5个D.2个 16.如图所示,A、B、C、D是真空中一正四面体的四个顶点。现在在A、B两 点分别固定电量为+q、-q的两个点电荷,则关于C、D两点的场强和电势, 下列说法正确的是 A.C、D两点的场强不同,电势相同B.C、D两点的场强相同,电势不同 C.C、D两点的场强、电势均不同D.C、D两点的场强、电势均相同 17.图示为某种小型旋转电枢式发电机的原理图,其矩形线圈在磁感应强 度为B的匀强磁场中绕垂直于磁场方向的固定轴OO′以角速度ω匀 速转动,线圈的面积为S、匝数为n、线圈总电阻为r,线圈的两端经 两个半圆形的集流环(缺口所在平面与磁场垂直)和电刷与电阻R连 接,与电阻R并联的交流电压表为理想电表。在t=0时刻,线圈平面 与磁场方向平行(如图所示),则下列说法正确的是 A.通过电阻R的是直流电B.发电机产生电动势的最大值E m= nBSω C.电压表的示数为D.线圈内产生的是交流电 18.2009年5月,英国特技演员史蒂夫·特鲁加里亚飞车挑战世界最大环形车道。如图所示,环形车道竖直放置,直径达12m,若汽车在车道上以12m/s恒定的速率运动, 演员与摩托车的总质量为1000kg,车轮与轨道间的动摩擦因数为0.1, 重力加速度g取10m/s2,则 A.汽车发动机的功率恒定为4.08×104W B.汽车通过最高点时对环形车道的压力为1.4×l04N C.若要挑战成功,汽车不可能以低于12 m/s的恒定速率运动 D.汽车在环形车道上的角速度为1 rad/s 19.如图所示,一竖直绝缘轻弹簧的下端固定在地面上,上端连接一带正电小球P,小球所处的空间存在着竖直向上的匀强电场,小球平衡时,弹簧恰好处于原长

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高考物理磁场知识点

2019高考物理磁场知识点 2019高考物理磁场知识点 1.磁场 (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。 (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流) 之间通过磁场而发生的相互作用。 (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。 (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。 2.磁感线 (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。 (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。 (3)几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。 ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。 ④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。 3.磁感应强度 (1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。 (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。 (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。 (4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。 4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

高考物理一轮复习磁场专题

第十一章、磁场 一、磁场: 1、基本性质:对放入其中的磁极、电流有力的作用。 磁极间、电流间的作用通过磁场产生,磁场是客观存在的一种特殊形态的物质。 2、方向:放入其中小磁针N极的受力方向(静止时N极的指向) 放入其中小磁针S极的受力的反方向(静止时S极的反指向) 3、磁感线:形象描述磁场强弱和方向的假想的曲线。 磁体外部:N极到S极;磁体内部:S极到N极。 磁感线上某点的切线方向为该点的磁场方向;磁感线的疏密表示磁场的强弱。 4、安培定则:(右手四指为环绕方向,大拇指为单独走向) 二、安培力: 1、定义:磁场对电流的作用力。 2、计算公式:F=ILBsinθ=I⊥LB式中:θ是I与B的夹角。 电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB 0≤F≤ILB 3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。 三、磁感应强度B: 1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

qB m v r =2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。 注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。 3、国际单位:特斯拉(T)。 4、磁感应强度B是矢量,方向即磁场方向。 磁感线方向为B方向,疏密表示B的强弱。 5、匀强磁场:磁感应强度B的大小和方向处处相同的磁场。磁感线是分布均匀的平行直线。例:靠近的两个异名磁极之间的部分磁场;通电螺线管内的磁场。 四、电流表(辐向式磁场) 线圈所受力矩:M=NBIS ∥=k θ 五、磁场对运动电荷的作用: 1、洛伦兹力:运动电荷在磁场中所受的力。 2、方向:用左手定则判断——磁感线穿过掌心,四指所指为正电荷运动方向(负电荷运动的反方向),大拇指所指方向为洛伦兹力方向。 3、大小:F=qv ⊥B 4、洛伦兹力始终与电荷运动方向垂直,只改变电荷的运动方向,不对电荷做功。 5、电荷垂直进入磁场时,运动轨迹是一个圆。 IL F B =

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

高三物理专题训练

高三物理专题训练 —连接体 一、选择题 1. 如图1-23所示,质量分别为m1=2kg,m2=3kg的二个物体置于光滑的水平面上,中间用一 轻弹簧秤连接。水平力F1=30N和F2=20N分别作用在m1和m2上。以下叙述正确的是: A. 弹簧秤的示数是10N。 B. 弹簧秤的示数是50N。 C. 在同时撤出水平力F 1、F2的瞬时,m1加速度的大小 13m/S2。 D. 若在只撤去水平力F1的瞬间,m1加速度的大小为13m/S2。 2. 如图1-24所示的装置中,物体A在斜面上保持静止,由此可知: A. 物体A所受摩擦力的方向可能沿斜面向上。 B. 物体A所受摩擦力的方向可能沿斜面向下。 C. 物体A可能不受摩擦力作用。 D. 物体A一定受摩擦力作用,但摩擦力的方向无法判定。 3. 两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图1-25所示。如果它们 分别受到水平推力F1和F2,且F1>F2,则1施于2的作用力的大小为: A. F 1 B. F2 C. (F1+F2)/2 D. (F1-F2)2 4. 两物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图1-26所示,对物 体A施于水平推力F,则物体A对物体B的作用力等于: A. m1F/(m1+m2) B. m2F/(m1+m2) C. F D. m1F/m2 5. 如图1-27所示,在倾角为θ的斜面上有A、B两个长方形物块,质量分别为m A、m B,在平 行于斜面向上的恒力F的推动下,两物体一起沿斜面向上做加速运动。A、B与斜面间的动摩擦因数为μ。设A、B之间的相互作用为T,则当它们一起向上加速运动过程中: A. T=m B F/(m A+m B) B. T=m B F/(m A+m B)+m B g(Sinθ+μCosθ) C. 若斜面倾角θ如有增减,T值也随之增减。 D. 不论斜面倾角θ如何变化(0?≤θ<90?),T值都保持不变。 6. 如图1-28所示,两个物体中间用一个不计质量的轻杆相连,A、 B质量分别为m1和m2,它们与斜面间的动摩擦因数分别为μ1和μ2。当它们在斜面上加速下滑时,关于杆的受力情况,以下说法中正确的是: A. 若μ1>μ2,则杆一定受到压力。 B. 若μ1=μ2,m1m2,则杆受到压力。 D. 若μ1=μ2,则杆的两端既不受拉力也不受压力。

高考物理:专题9-磁场(附答案)

专题9 磁场 1.(15江苏卷)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是 答案:A 解析:因为在磁场中受安培力的导体的有效长度(A)最大,所以选A. 2.(15海南卷)如图,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点.在电子经过a 点的瞬间.条形磁铁的磁场对该电子的作用力的方向() A .向上 B.向下 C.向左 D.向右 答案:A 解析:条形磁铁的磁感线方向在a 点为垂直P 向外,粒子在条形磁铁的磁场中向右运动,所以根据左手定则可得电子受到的洛伦兹力方向向上,A 正确. 3.(15重庆卷)题1图中曲线a 、b 、c 、d 为气泡室中某放射物质发生衰变放出的部分粒子的经迹,气泡室中磁感应强度方向垂直纸面向里.以下判断可能正确的是 A.a 、b 为粒子的经迹 B. a 、b 为粒子的经迹 C. c 、d 为粒子的经迹 D. c 、d 为粒子的经迹 答案:D 解析:射线是不带电的光子流,在磁场中不偏转,故选项B 错误.粒子为氦核带正电,由左手定则知受到向上的洛伦兹力向上偏转,故选项A 、C 错误;粒子是带负电的电子流,应向下偏转,选项D 正确. 4.(15重庆卷)音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.题7图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为,匝数为,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P 流向Q,大小为. βγαβγαβL n B I

2019年高考物理:磁场选择题专题训练

磁场 1.如图所示,表面粗糙的水平传递带在电动机的带动下以速度v 匀速运动,在空间中边长为2L的正方形固定区域内有竖直向上的匀强磁场,磁感应强度大小为B。质量为m,电阻为R,边长为L的正方形金属线圈abcd平放在传送带上,与传送带始终无相对运动,下列说法中正确的是 A.在线圈进入磁场过程与穿出磁场过程中,感应电流的方向都沿abcda方向B.在线圈穿过磁场区域的过程中,线圈始终受到水平向左的安培力 C.在线圈进入磁场过程中,线圈所受静摩擦力的功率为 23 B L R v D.在线圈穿过磁场区域的过程中,电动机多消耗的电能为 23 2B L R v 2.如图所示,甲、乙两个带等量异种电荷而质量不同的带电粒子,以相同的速率经小孔P垂直磁场边界MN,进入方向垂直纸面向外的匀强磁场,在磁场中做匀速圆周运动,并垂直磁场边界MN射出磁场,运动轨迹如图中虚线所示.不计粒子所受重力及空气阻力,下列说法正确的是() A.甲带负电荷,乙带正电荷 B.甲的质量大于乙的质量 C.洛伦兹力对甲做正功 D.甲在磁场中运动的时间等于乙在磁场中运动的时间

3. 对磁现象的研究中有一种“磁荷观点”。人们假定,在N 极上聚集着正磁荷,在 S 极上聚集着负磁荷。由此可以将磁现象与电现象类比,得出一系列相似的定律,引入相似的概念。例如磁的库仑定律、磁场强度、磁偶极矩等。在磁荷观点中磁场强度定义为:其大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同。则一个磁荷量为6Nm/A (磁荷量的单位是“牛米每安”)的磁荷在磁场强度为3A/m (磁场强度的单位是“安每米”)的磁场中受到的磁场力为: A .18N B .0.5N C .2N D .3N 4. 如图所示为一种自动跳闸的闸刀开关示意图,O 是转动轴,A 是绝缘手柄,C 是闸刀卡 口,M 、N 接电源线。闸刀处于垂直纸面向里B =0.1 T 的匀强磁场中,CO 间距离10 cm 。当磁场力为0.2 N 时,闸刀开关会自动跳开。则要使闸刀开关能跳开,通过绝缘手柄CO 中的电流的大小和方向为 A .电流大小为20A ,电流方向O →C B .电流大小为20 A ,电流方向 C →O C .电流大小为2 A ,电流方向O →C D .电流大小为2 A ,电流方向C →O 5. 环形对撞机是研究高能粒子的重要装置,如图所示正、负粒子由静止经过电压为U 的直线加速器加速后,沿圆环切线方向注入对撞机的真空环状空腔内,空腔内存在与圆环平面垂直的匀强磁场,调节磁感应强度的大小可使两种带电粒子被局限在环状空腔内,沿相反方向做半径相等的匀速圆周运动,并在碰撞区内迎面 甲 乙 P B M N o o

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

物理高考专题训练题及答案解析(珍藏版):磁场(测)

专题测试 【满分:100分时间:90分钟】 一、选择题(本题共包括10小题,每小题5分,共50分) 1.(2020·江西临川一中高三调研)如图所示,三根通电长直导线P、Q、R均垂直纸面放置,ab为直导线P、Q连线的中垂线,P、Q中电流强度的大小相等、方向均垂直纸面向里,R中电流的方向垂直纸面向外,则R受到的磁场力可能是() A.F1B.F2C.F3D.F4 2.(2020·福建泉州二中模拟)如图,光滑斜面上放置一根通有恒定电流的导体棒,空间有垂直斜面向上的匀强磁场B,导体棒处于静止状态。现将匀强磁场的方向沿图示方向缓慢旋转到水平方向,为了使导体棒始终保持静止状态,匀强磁场的磁感应强度应同步()

A.增大B.减小 C.先增大,后减小D.先减小,后增大 3.(2020·辽宁大连质检)如图所示,AC是四分之一圆弧,O为圆心,D为圆弧中点,A、D、C处各有一垂直纸面的通电直导线,电流大小相等,方向垂直纸面向里,整个空间还存在一个磁感应强度大小为B 的匀强磁场,O处的磁感应强度恰好为零。如果将D处电流反向,其他条件都不变,则O处的磁感应强度大小为() A.2(2-1)B B.2(2+1)B C.2B D.0 4.(2020·河南郑州模拟)如图所示,边界OM与ON之间分布有垂直纸面向里的匀强磁场,边界ON上有一粒子源S。某一时刻,从粒子源S沿平行于纸面,向各个方向发射出大量带正电的同种粒子(不计粒子

的重力及粒子间的相互作用),所有粒子的初速度大小相等,经过一段时间后有大量粒子从边界OM 射出磁场。已知∠MON =30°,从边界OM 射出的粒子在磁场中运动的最长时间等于T 2(T 为粒子在磁场中运动的周 期),则从边界OM 射出的粒子在磁场中运动的最短时间为( ) A.T 3 B.T 4 C.T 6 D.T 8 5.(2020·重庆巴蜀中学一诊)如图所示,两根平行固定放置的长直导线a 和b 载有大小、方向均相同的电流,a 受到的磁场力大小为F ,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为2F ,则此时b 受到的磁场力大小可能为( ) A .4F B .3F C .2F D .0 6.(2020·江西南昌调研)如图所示,三条长直导线a 、b 、c 都通以垂直纸面的电流,其中a 、b 两条导线中的电流方向垂直纸面向外。O 点与a 、b 、c 三条导线距离相等,且Oc ⊥ab 。现在O 点垂直纸面放置一

高三物理选择题专项训练题(全套)

2018届高三物理选择题专题训练1 14.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表相连,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A.安培力的方向可以不垂直于直导线 B.安培力的方向总是垂直于磁场的方向 C.安培力的大小与通电直导线和磁场方向的夹角无关 D.将直导线从中点折成直角,安培力的大小一定变为原来的一半 16.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。 不计重力。铝板上方和下方的磁感应强度大小之比为() 2 A.2 B.2 C.1 D. 2 17.如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低 C.保持不变D.升高或降低由橡皮筋的劲度系数决定 18.如图(a),线圈ab、cd绕在同一软铁芯上。在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示。已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是()

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

2019年高考理科综合物理电磁场压轴专项练习集

2019年高考理科综合物理电磁场压轴专项练习集(一) 1.如图所示,平面直角坐标系的第二象限内存在水平向左的匀强电场和垂直于纸面向里的匀强磁场,一质量为 、带电荷量为的小球以速度沿直线AO运动,AO与轴负方向成角。在轴与MN之间的区域Ⅰ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅱ内存在宽度为的竖直向上匀强电场和垂直纸面向里的匀强磁场,小球在区域Ⅱ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为,重力加速度为,,,求: (1)第二象限内电场强度的大小和磁感应强度的大小; (2)区域Ⅰ内最小电场强度的大小和方向; (3)区域Ⅱ内电场强度的大小和磁感应强度的大小。 2.电视机中显像管(抽成真空玻璃管)的成像原理主要是靠电子枪产生高速电子束,并在变化的磁场作用下发生 偏转,打在荧光屏不同位置上发出荧光而形成像。显像管的原理示意图(俯视图)如图甲所示, 在电子枪右侧的偏转线圈可以产生使电子束沿纸面发生偏转的磁场,偏转的磁场可简化为由通电螺线管产生的与纸面垂直的磁场,该磁场分布的区域为圆形(如图乙所示),其磁感应强度,式中为磁常量,为螺线管线圈的匝数,为线圈中电流的大小。由于电子的速度极大,同一电子穿过磁场过程中可认为磁场没有变化,是稳定的匀强磁场。已知电子质量为,电荷量为,电子枪加速电压为,磁常量为,螺线管线圈的匝数,偏转磁场区域的半径为,其圆心为O点。当没有磁场时,电子束通过O点,打在荧光屏正中的M点,O 点到荧光屏中心的距离。若电子被加速前的初速度和所受的重力、电子间的相互作用力以及地磁场对电子束的影响均可忽略不计,不考虑相对论效应及磁场变化所激发的电场对电子 束的作用。 (1)求电子束经偏转磁场后打到荧光屏上P点时的速率; (2)若电子束经偏转磁场后速度的偏转角,求此种情况下电子穿过磁场时,螺线管线圈中电流的大小; (3)当线圈中通入如图丙所示的电流,其最大值为第(2)问中电流的倍。求电子束打在荧光屏上发光所形成“亮线”的长度。

高考物理选修3-4专项训练

高考物理选修专项训练3-4 1.(1)(6分)下列说确的是(选对一个给3分,选对两个给4分,选对3个给6分,每选错一个扣3分,最低得分为0分) A.拍摄玻璃橱窗的物品时,往往在镜头前加一个偏振片以增加透射光的强度 B.在海面上,向远方望去,有时能看到远方的景物悬在空中。在沙漠中,向远方望去,有时能看到远方景物的倒影 C.如果地球表面没有大气层覆盖,太阳照亮地球的围要比有大气层时略大些 D.已知某玻璃对蓝光的折射率比对红光的折射率大,红光从该玻璃中射入空气发生全反射时,红光临界角较大 E.全息照片往往用激光来拍摄,主要是利用了激光的相干性 (2).(9分)一列简谐横波在x轴上传播,如图所示,实线为t = 0时刻的波形图,虚线为△t = 0.2s后的波形图,求: ①此波的波速为多少? ②若△t >T且波速为165m/s,试通过计算确定此波沿何方向传 播? 2.(1)(6分)下列说法中正确的是.。(填正确答案标号。选对1个得3分,选对2个得4分,选对3个得6分。每错选1个扣3分,最低得分为0分) A.做简谐运动的物体,其振动能量与振幅无关 B.全息照相的拍摄利用了光的干涉原理 C.真空中的光速在不同的惯性参考系中都是相同的,与光源和观察者的运动无关 D.医学上用激光做“光刀”来进行手术,主要是利用了激光的亮度高、能量大的特点E.机械波和电磁波都可以在真空中传播 (2)(9分)如图3所示,一棱镜的截面为直角三角形ABC,∠A=30°,斜边AB=a.棱镜材料的折射率为n=2.在此截面所在的平面,一条光线以45°的入射角从AC边的中点M 射入棱镜.画出光路图,并求光线从棱镜射出的点的位置(不考虑光线沿原路返回的情况).

相关文档
相关文档 最新文档