文档库 最新最全的文档下载
当前位置:文档库 › 2012高三数学一轮复习单元练习题:解析几何

2012高三数学一轮复习单元练习题:解析几何

2012高三数学一轮复习单元练习题:解析几何
2012高三数学一轮复习单元练习题:解析几何

2012高三数学一轮复习单元练习题:解析几何

第Ⅰ卷

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的

括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2

+2y 2

=1与直线x sin θ+y -1=0(θ∈R ,θ≠2

π

+k π,k ∈Z )的位置关系是( )

A .相交

B .相切

C .相离

D .不确定的 2.下列方程的曲线关于x =y 对称的是

( )

A .x 2-x +y 2=1

B .x 2y +xy 2=1

C .x -y =1

D .x 2-y 2=1

3.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q

的轨迹是 ( ) A .圆 B .两条平行直线

C .抛物线

D .双曲线

4.已知双曲线)0( 12

2

2>=-a y

a

x 的一条准线为2

3=x ,则该双曲线的离心率为 ( )

A .

2

3 B .

2

3 C .

2

6 D .

3

32

5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是

( )

A .平行

B .垂直

C .相交但不垂直

D .重合

6.抛物线2

4x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )

A .2

B .3

C .4

D .5

7.设直线l 过点)0,2(-,且与圆12

2

=+y x 相切,则l 的斜率是

( )

A .1±

B .2

1± C .3

D .3±

8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2

2

14

y

x +

=的交点为A 、B 、,点P 为椭

圆上的动点,则使P A B ?的面积为12

的点P 的个数为

( )

A .1

B .2

C .3

D .4

9.直线3+=x y 与曲线14

9

2

=-

x x y

的公共点的个数是

( )

A .1

B .2

C .3

D .4

10.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是

( )

A .0

B .2

1 C .

2

2 D .2

11.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆4

1)4(22=++y x 和圆4

1

)4(22=+-y x 上的点,则

|PQ|+|PR|的最小值是 ( )

A .89

B .85

C .10

D .9

12.动点P (x ,y )是抛物线y =x 2 -2x -1上的点,o 为原点,op 2 当x=2时取得极小值,求,op 2的最小值

( ) A.

4

3

116- B.

4

3

611+ C.

4

3

611- D.

4

3

116+

第Ⅱ卷

二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90?所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.

15.已知⊙M :,1)2(2

2

=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P

的轨迹方程为 . 16.如图把椭圆

22

125

16

x

y

+

=的长轴AB 分成8分,过每个

作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......P F P F P F +++=______.

三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。

17.(12分)设直线1+=kx y 与圆042

2

=-+++my kx y x 交于N M ,两点,且N M ,关于直线0

=+y x

对称,求不等式组??

?

??≥≤-≥+-0001y my kx y kx 表示平面区域的面积.

18.(12分)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求

直线PN 的方程.

19.(12分)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2

=1,动点M 到圆C 的切线长与|MQ |的比等于常

数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线. 20.(12分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (I )当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (II )当3,121-==x x 时,求直线l 的方程.

21.(12分)已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上. (I )求动圆圆心的轨迹M 的方程;

(II )设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.

(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.

22.(14分)已知椭圆)0(1:

2

22

2>>=+

b a b

y a

x C 的离心率为

3

6,F 为椭圆在x 轴正半轴上的焦点,M 、

N 两点在椭圆C 上,且)0(>=λλFN MF ,定点A (-4,0). (I )求证:当1=λ时AF MN ⊥; (II )若当1=λ时有3

106=

?AN AM ,求椭圆C 的方程;

(III )在(2)的条件下,当M 、N 两点在椭圆C 运动时,试判断MAN AN AM ∠??tan 是否有最大

值,若存在求出最大值,并求出这时M 、N 两点所在直线方程,若不存在,给出理由.

参考答案(4)

一、选择题

1.C ;2.B ;3.B ;4.A ;5.B ;6.D ;7.D ;8.B ;9.C ;10.B ;11.D ;12.C . 二、填空题

13.220x y -+=; 14.22(1)(2)4x y -+-=; 15.).2(16

1)

4

7(2

2

≠=

-+y y x ; 16.35.

三、解答题

17.解:由题意直线1+=kx y 与圆042

2

=-+++my kx y x 交于N M ,两点,且N M ,关于直线

0=+y x 对称,则1+=kx y 与0=+y x 两直线垂直,可求出m k ,,又不等式组所表示的平面区域

应用线性规划去求,易得面积为

4

1。

18.解:设点P 的坐标为(x ,y ),由题设有

2|

|||=PN PM ,

即2

2

2

2)1(2)1(y x y

x +-?=++.

整理得 x 2

+y 2

-6x +1=0. ①

因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±

3

3,

直线PM 的方程为y =±

3

3(x +1).②

将②式代入①式整理得x 2

-4x +1=0. 解得x =2+3,x =2-3.

代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).

直线PN 的方程为y =x -1或y =-x +1.

19.如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为

圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.

设点M 的坐标为(x ,y ),则

2

222)2(1y x y x +-=-+λ

整理得(λ2

-1)(x 2

+y 2

)-4λ2

x +(1+4λ2

)=0 当λ=1时,方程化为x =

4

5,它表示一条直线,该直线与x 轴垂直,交x 轴于点(

4

5,0);

当λ≠1时,方程化为(x -

122

2

-λλ

)2+y 2

=

)

1(312

2

-+λλ

它表示圆心在(

1

22

2

-λλ

,0),半径为

|

1|312

2

-+λλ

的圆.

20.解:(1)∵抛物线22x y =,即4

1,2

2

=∴=

p y x ,

∴焦点为1

(0,)8F

直线l 的斜率不存在时,显然有021=+x x

直线l 的斜率存在时,设为k ,截距为b 即直线l :y =kx +b ,由已知得:

1

2

1

2

121

2

2

2

1k b

k

y

y x

x

y y x

x

?++?=?

+??-

?=-

?-?

22

1

21222

12122212222k b k x x x x x x x x ?++=?+?

?

??-?=-?-?

22121212212k b

k x x x x x x +?+=?+????

?+=-??

221

2

104

b x

x

?

+

=-

+≥14

b ?≥

即l 的斜率存在时,不可能经过焦点1(0,)8

F .

所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F .

(2)当121,3x x ==-时,直线l 的斜率显然存在,设为l :y=kx+b

则由(1)得:

22121212212k b

k x x x x x x +?+=?+???

?

+=-??

1

2

10

2

1

2

2k b k

x

x

+?

?+=?????-

=-??

14414

k b ?

=????

?=?? 所以,直线l 的方程为1414

4

y x =

+

,即4410x y -+=.

21.(1)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线

的抛物线,所

以曲线M 的方程为y 2=4x .

解法二:设M (x ,y ),依题意有|MP |=|MN |, 所以|x +1|=

2

2)1(y x +-.化简得:y 2=4x .

(2)(i )由题意得,直线AB 的方程为y =-3(x -1).

由????

?=--=.

4),

1(32

x y x y 消y 得3x 2-10x +3=0,

解得x 1=

3

1,x 2=3.

所以A 点坐标为(3

3

2,

3

1),B 点坐标为(3,-23),|AB |=x 1+x 2+2=

3

16.

假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即

???????=-++=+++.)316()32()13

1(,)316()32()13(22222

2y y

由①-②得42+(y +23)2=(3

4)2+(y -3

3

2

)2,

解得y =-93

14

.

但y =-

9

3

14不符合①,

所以由①,②组成的方程组无解.

因此,直线l 上不存在点C ,使得△ABC 是正三角形.

(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由???-=--=.

1),

1(3x x y 得y =23,

即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.

又|AC |2

=(-1-

3

1)2

+(y -

3

32)2

=

3

349

28y -

+y 2

|BC |2=(3+1)2+(y +23)2=28+43y +y 2

|AB |2=(

3

16)2=

9

256.

当∠CAB 为钝角时,co sA =

|

|||2|

|||||2

22AC AB BC AC AB ?-+<0.

即|BC |2

>|AC |2

+|AB |2

,即

9

2563

349

2834282

2

+

+-

>

++y y y y ,即

y >

39

2时,∠CAB 为钝角.

当|AC |2

>|BC |2

+|AB |2

,即

9

25634283

349

282

2+

++>+-

y y y y ,即y <-

33

10时,∠CBA 为钝角.

又|AB |2

>|AC |2+|BC |2

,即

2

234283

349

289

256y y y y ++++-

>

即0)3

2(,03

433

42

2

<+

<+

+

y y y .

该不等式无解,所以∠ACB 不可能为钝角.

因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是

)32(9

323310≠>

-

解法二:以AB 为直径的圆的方程为(x -3

5)2

+(y +33

2)2

=(

3

8)2

.

圆心(33

2

,35-

)到直线l :x =-1的距离为3

8,

所以,以AB 为直径的圆与直线l 相切于点G (-1,-3

32

).

当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.

因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为)3

1(3

33

32-

=

-x y .

令x =-1得y =93

2

.

过点B 且与AB 垂直的直线方程为y +23

33=

(x -3).

令x =-1得y =-

33

10.

又由??

?-=--=.

1),1(3x x y 解得y =23,

所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形. 因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3

310或y >93

2

(y ≠23).

22.(1)设)0,(),,(),,(2211c F y x N y x M ,则),(),,(2211y c x NF y x c MF -=--=,

当1=λ时,c x x y y FN MF 2,,2121=+=-∴=,

由M ,N 两点在椭圆上,2

2212

2

22

22

2

2

12

21

),1(),1(x x b

y a x

b

y a x =∴-

=-

=∴

若21x x -=,则c x x 2021≠=+舍,21x x =∴

.),0,4(),2,0(2AF MN c AF y MN ⊥∴+==∴ 。

(2)当1=λ时,不妨设2

42

2

2

)4(),,(),,

(a

b c AN AM a

b

c N a

b

c M -

+=?∴-

又3

1061686

5,2

,2

32

2

2

22

=

++∴

=

=

c c c

b c a ,

2=∴c ,椭圆C 的方程为

.12

6

2

2

=+

y

x

(3)||||2tan N M AMN y y AF S MAN AN AM -==∠???,

设直线MN 的方程为)0(),2(≠-=k x k y

联立?

????=+-=126

)2(2

2y

x x k y ,得024)31(2

22=-++k ky y k ,

2

2

4

312424||k

k

k

y y N M ++=

-∴。

记2

2

2

4

31,312424k s k

k

k

t +=++=

则2

2

2113

62)3

1(

)31(

24s

s

s

s s t -

+

?=

-+-?

=

3≤

∴t ,当4=s ,即1±=k 时取等号 .

并且,当k =0时0tan =∠??MAN AN AM ,

当k 不存在时33

62||<=

-N M y y

综上MAN AN AM ∠??tan 有最大值,最大值为36 此时,直线的MN 方程为02=--y x ,或02=-+y x 。

中职数学解析几何测试卷

中职数学解析几何测试卷 一.选择题 1.过点(1,-3)且与直线4x -3y+2=0平行的直线方程为( ) A.3x+4y+13=0 B.3x-4y+13=0 C.4x+3y+13=0 D.4x-3y-13=0 2.下列4条直线中与直线2x+3y-6=0垂直的直线方程( ) A.2x-3y-5=0 B.3x-2y+1=0 C.4x+6y+11=0 D.3x+2y-5=0 3.直线3x-4y-2=0与圆x 2+y 2+2x=0之间的位置关系是( ) A.相离 B.相切 C.相交且直线过圆心 D.相交且直线不过圆心 4.方程x 2+y 2-x-y+m=0表示一个圆。则m 的值( ) A.m<2 B. m ≤-2 C. 21m 5.求A (3,2) B(5,1)的距离是( ) A.152 B. 5 C. 73 D.732 6.椭圆的长轴是短轴的2倍,则椭圆的离心率是( ) A.21 B. 31 C. 22 D.23 7.F 1、F 2是椭圆x 2+4y 2=1的两个焦点。A 是椭圆上任意一点,AF 1的延长线交椭圆于B 。则△ABF 2的周长是( ) A.4 B. 3 C. 2 D.1 8.过抛物线y 2=4x 的焦点且倾斜角为300的直线方程是( ) A.)1(33-= x y B. )2(33-=x y C. )1(3-=x y D.)2(3-=x y

9.如果方程1232 2=+++k y k x 表示椭圆。那么实数k 的取值范围是( ) A.k>-3 B. -3-2 D.k<-3 10.抛物线y 2=-12x 上一点P 到焦点的距离是6.则点P 的坐标是( ) A. (-3,6) B. (3,6) C. (-3,±6) D.(±3,6) 11.F 1、F 2分别是双曲线19 1622=-y x 的左右焦点。点P 是双曲线上一点,|PF 1|=10, |PF 2|=( ) A.4 B. 18 C. 2或18 D.8或18 12.若椭圆的长轴为8.短轴的一个顶点与两个焦点构成等边三角形。,则椭圆的方程( ) A. 1416y 14162222=+=+x y x 或 B. 112 16y 112162222=+=+x y x 或 C. 14864y 148642222=+=+x y x 或 D.116 64y 116642 222=+=+x y x 或 二.填空题 1.经过点P 1(-3,5)和P 2(-4,7)的直线方程是____________ 2.已知俩直线L 1;ax+3y-3=0 L 2;4x+6y-1=0若l 1//l 2,则a=____________ 3. 已知直线L 1;x-y+4=0与圆C;(x-1)2+(y-1)2=2,则圆C 上各点到L 的最小距离为____________ 4.焦点在x 轴上的椭圆1922=+m y x 。其离心率是方程9x 2-18x+8=0的根。则m=____________

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高中数学必修2解析几何初步测试题及答案详解

解析几何初步测试题及答案详解 (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.下列叙述中不正确的是( ) A .若直线的斜率存在,则必有倾斜角与之对应 B .每一条直线都有唯一对应的倾斜角 C .与坐标轴垂直的直线的倾斜角为0°或90° D .若直线的倾斜角为α,则直线的斜率为tan α 2.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32 D .2 3 3.在同一直角坐标系中,表示直线y =ax 与直线y =x +a 的图象(如图所示)正确的是( ) 4.若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于( ) A .2 B .3 C .9 D .-9 5.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是( ) A .x +y +1=0 B .4x -3y =0 C .4x +3y =0 D .4x +3y =0或x +y +1=0 6.已知点A (x,5)关于点(1,y )的对称点为(-2,-3),则点P (x ,y )到原点的距离是( ) A .4 B .13 C .15 D .17 7.已知直线l 1:ax +4y -2=0与直线l 2:2x -5y +b =0互相垂直,垂足为(1,c ),则a +b +c 的值为( ) A .-4 B .20 C .0 D .24 8.圆(x +2)2+y 2 =5关于y 轴对称的圆的方程为( ) A .(x -2)2+y 2 =5 B .x 2+(y -2)2 =5 C .(x +2)2+(y +2)2 =5 D .x 2+(y +2)2 =5 9.以点P (2,-3)为圆心,并且与y 轴相切的圆的方程是( ) A .(x +2)2+(y -3)2 =4 B .(x +2)2+(y -3)2 =9 C .(x -2)2+(y +3)2 =4 D .(x -2)2+(y +3)2 =9

全国名校高三数学经典压轴题100例(人教版附详解)

好题速递1 1.已知P 是ABC ?内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r ,x 、y R ∈,则2y x +的取值范围是 ___ . 解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x y x y x y +=++,知点Q 在线段 BC 上.从而1AP x y AQ +=>?? +

2014年高考文科数学分类汇编练习题---分解几何含答案分解

2014高考文科数学分类汇编 解析几何 H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 6.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D. 20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-1 3, 故l 的方程为y =-13x +8 3. 又|OM |=|OP |=2 2,O 到直线l 的距离为410 5, 故|PM |=4105,所以△POM 的面积为16 5. 21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分 别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为2 2 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率() A. 等于0 B . 等于1 C . 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A.1 B .-1 C .0 D.7 3. 已知A (x 1,y 1)、B(x2,y 2)两点的连线平行y 轴,则|AB |=( ) A、|x 1-x 2|B 、|y 1-y 2|C、 x 2-x1D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限B.第一象限 C.第四象限D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x轴上的截距为() A.23- B .32- C .32 D .2 6.直线2x -y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2)B .(2)(3) C.(1)(3)D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线22 1:2+=x y l 垂直,则a 的值是( ) A 2 B -2 C.21 D .2 1- 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1y x =-

高三数学立体几何经典例题

高三数学立体几何经 典例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

厦门一中 立体几何专题 一、选择题(10×5′=50′) 1.如图,设O 是正三棱锥P-ABC 底面三角形ABC 的中心, 过O 的动平面与P-ABC 的三条侧棱或其延长线的交点分别记 为Q 、R 、S ,则 PS PR PQ 1 11+ + ( ) A.有最大值而无最小值 B.有最小值而无最大值 C.既有最大值又有最小值,且最大值与最小值不等 D.是一个与平面QRS 位置无关的常量 2.在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 ( ) A.??? ??ππ-,1n n B.??? ??ππ-,2n n C.??? ??π2,0 D.? ? ? ??π-π-n n n n 1,2 3.正三棱锥P-ABC 的底面边长为2a ,点E 、F 、G 、H 分别是PA 、PB 、BC 、AC 的中点,则四边形EFGH 的面积的取值范围是 ( ) A.(0,+∞) B.???? ??+∞,332a C.??? ? ??+∞,632a D.??? ??+∞,212a 4.已知二面角α-a -β为60°,点A 在此二面角内,且点A 到平面α、β的距离分别是AE =4,AF =2,若B ∈α,C ∈β,则△ABC 的周长的最小值是 ( ) A.43 B.27 C.47 D.23 5.如图,正四面体A-BCD 中,E 在棱AB 上,F 在棱CD 上, 使得 FD CF EB AE ==λ(0<λ<+∞),记f (λ)=αλ+βλ,其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则 ( ) A.f (λ)在(0,+∞)单调增加 B.f (λ)在(0,+∞)单调减少 C.f (λ)在(0,1)单调增加,在(1,+∞)单调减少 D.f (λ)在(0,+∞)为常数 6.直线a ∥平面β,直线a 到平面β的距离为1,则到直线a 的距离与平面β的距离都等于5 4 的点的集合是 ( ) A.一条直线 B.一个平面 C.两条平行直线 D.两个平面 7.正四棱锥底面积为Q ,侧面积为S ,则它的体积为 ( ) A.)(6 122Q S Q - B. )(31 22Q S Q - C. )(2 122Q S Q - D. S Q 3 1 8.已知球O 的半径为R ,A 、B 是球面上任意两点,则弦长|AB |的取值范围为 ( ) 第1题图 第5题图

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:In terspace An alytic Geometry (2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向 量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2?教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3?教学难点:求解平面和空间直线的方程。 4.教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。 (二)特殊曲面(8学时)

20112017高考全国卷文科数学解析几何汇编

新课标全国卷Ⅰ文科数学汇编 解 析 几 何 一、选择题 【2017,5】已知F 是双曲线2 2 :13 y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ?的面积为( ) A . 13 B .12 C .23 D .32 【解法】选D .由2 2 2 4c a b =+=得2c =,所以(2,0)F ,将2x =代入2 2 13 y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为13 3(21)22 ??-=,选D . 【2017,12】设A 、B 是椭圆C :22 13x y m +=长轴的两个端点,若C 上存在点M 满足∠AMB =120° ,则m 的取值范围是( ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞U D .(0,3][4,)+∞U 【解法】选A . 图 1 图 2 解法一:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只 需使0120AEB ∠≥. 1.当03m <<时,如图1,03 tan tan 6032AEB a b m ∠=≥=,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,0tan tan 60323 AEB a m b ∠==≥9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 解法二:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只

需使0120AEB ∠≥. 1.当03m <<时,如图1,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 【2016,5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1 4 ,则该椭圆的离心率为( ) A .13 B . 12 C .23 D . 3 4 解析:选B . 由等面积法可得 1112224bc a b ?=???,故1 2 c a =,从而12c e a ==.故选B . 【2015,5】已知椭圆E 的中心为坐标原点,离心率为 1 2 ,E 的右焦点与抛物线C : y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12 解:选B .抛物线的焦点为(2,0),准线为x =-2,所以c=2,从而a=4,所以b 2=12,所以椭圆方程为 22 11612 x y +=,将x =-2代入解得y=±3,所以|AB |=6,故选B 【2014,10】10.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |= 05 4 x ,则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=0015 44 x x + =,解之得x 0=1. 故选A 【2014,4】4.已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则a=( ) D A .2 B . 26 C .2 5 D .1 解:2c e a ====,解得a=1,故选D 【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

全国高考文科数学试题解析几何

高考文科数学真题分类汇编:解析几何 H1 直线的倾斜角与斜率、直线的方程 6.[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 20.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 图1-5 H2 两直线的位置关系与点到直线的距离 18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43 . (1)求新桥BC 的长. (2)当OM 多长时,圆形保护区的面积最大? 图1-6

平面解析几何知识点总结

平面解析几何知识点总结 直线方程 1.直线的倾斜角 (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率 (1)定义:当直线l 的倾斜角α≠π 2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率 通常用小写字母k 表示,即k =tan α. (2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1 . (3) 直线的倾斜角α和斜率k 之间的对应关系 每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下: 3.直线方程的五种形式 4.

说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直 设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2?A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2?A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式 点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2. (2)点到直线的距离公式 点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d = |Ax 0+By 0+C | A 2+ B 2 . 说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式 两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2 . 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同. 圆的方程 1.圆的定义 在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径. 2. 圆的标准方程 (1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程 x 2+y 2+Dx +Ey +F =0可变形为????x +D 22 +????y +E 22 =D 2+E 2 -4F 4 . (1) 当 D 2+ E 2-4 F >0 时,方程表示以????-D 2,-E 2为圆心,D 2+E 2-4F 2 为半径的圆; (2) 当D 2+E 2-4F =0时,该方程表示一个点????-D 2 ,-E 2;

高中数学立体几何初步平面解析几何初步检测考试试题含答案B

综合测评 (满分:150分;时间:120分钟) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知倾斜角为α的直线l 与直线x-2y+2=0平行,则tan α的值为( ) A.-1 2 B.1 2 C.2 D.-2 2.圆x 2+y 2-2x+2y=0的周长是( ) A.2√2π B.2π C.√2π D.4π 3.已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n 平行于同一平面,则m 与n 平行 C.若α,β不平行··· ,则在α内不存在··· 与β平行的直线 D.若m,n 不平行··· ,则m 与n 不可能··· 垂直于同一平面 4.一个球的表面积是16π,那么这个球的体积为( ) A.16 3π B.32 3π C.16π D.24π 5.圆C 1:(x+2)2+(y-2)2=1与圆C 2:(x-2)2+(y-5)2=16的位置关系是( ) A.外离 B.相交 C.内切 D.外切 6.已知直线l 1:x+ay-1=0与l 2:(2a+1)x+ay+1=0垂直,则a 的值是( ) A.0或1 B.1或1 4 C.1 D.-1 7.若直线l 1:ax+2y-8=0与直线l 2:x+(a+1)y+4=0平行,则a 的值为( ) A.1 B.1或2 C.-2 D.1或-2 8.某一棱锥的三视图如图所示,则其侧面积为( ) A.8+4√13 B.20

C.12√2+4√13 D.8+12√2 9.三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V 1 ,P-ABC的体积 为V 2,则V1 V2 =( ) A.1 3 B.1 2 C.1 4 D.1 10.与圆C:x2+(y+5)2=3相切,且纵截距和横截距相等的直线共有( ) A.2条 B.3条 C.4条 D.6条 11.过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤9}分成两部分,使得两部分的面积相差最大,则该直线的方程是( ) A.x+y-2=0 B.y-1=0 C.x-y=0 D.x+3y-4=0 12.若空间中n个不同的点两两距离都相等,则正整数n的取值( ) A.至多等于3 B.至多等于4 C.等于5 D.大于5 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.在空间直角坐标系Oxyz中,设点M是点N(2,-3,5)关于坐标平面xOy的对称点,则线段MN的长度等于. 14.与直线7x+24y=5平行,并且与直线7x+24y=5的距离等于3的直线方程是. 15.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为. 16.已知直线l:x+y-2=0和圆C:x2+y2-12x-12y+54=0,则与直线l和圆C都相切且半径最小的圆的标准方程是. 三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(12分)已知直线l 1:x+2y+1=0,l 2 :-2x+y+2=0,它们相交于点A. (1)判断直线l 1和l 2 是否垂直,请给出理由;

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高等数学-向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:? ?? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ ο a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 1 2121z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→a 与→ b 夹角为3 π ,求||→ →+b a 。 解 22 ||cos ||||2||2)()(||→ →→→ →→→→→→→→→→→ →++=?+?+?=+?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222=+???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

相关文档
相关文档 最新文档