文档库 最新最全的文档下载
当前位置:文档库 › 2D-C_SiC复合材料的氧化损伤及刚度模型

2D-C_SiC复合材料的氧化损伤及刚度模型

2D-C_SiC复合材料的氧化损伤及刚度模型
2D-C_SiC复合材料的氧化损伤及刚度模型

急性脊髓损伤动物模型制备

急性脊髓损伤动物模型制备 材料与方法 1.实验仪器及试剂 1.1实验仪器及耗材: BL-420E+生物机能实验系统成都泰盟科技有限公司 生物信号导联电极(三向)成都泰盟科技有限公司 CZF/BZF SZC/SZB型非接触式电涡流传感器杭州华瑞仪器有限公司 信号采集针<银针> ATZ-4,8型弹簧度盘秤永康市华鹰仪器有限公司 数字式脊髓损伤动物模型制备仪成都医学院基础医学实验技术中心 一次性注射器(1ml, 5ml, 10ml)上海双鸽实业有限公司 一次性使用无菌注射器(2ml)浙江欧健医用器材有限公司 金属骨针(克式针)上海浦东金环医疗用品有限公司 Argox Amigo 系列条形码打印机立象科技股份有限公司 常规手术器械上海医疗器械(集团)有限公司手术器械厂 缝合用针线上海医用缝合线厂、江苏省淮阴医疗器械厂 温度计江苏省无锡县标准计量管理所 棉签成都市华辉医疗器械有限公司 大鼠营养饲料华西医科大学动物供应中心 1.2 试剂 酒精 75%:自行配制 生理盐水:四川科伦药业股份有限公司产品批号:C070311 G1 碘伏:四川华天科技实业有限公司产品批号:20070202 阿司匹林肠溶片:南京白敬宇制药有限公司产品批号:061006

注射用青霉素钠80万单位:哈药集团制药总厂产品批号:A06086310 葡萄糖氯化钠:成都军区总医院产品批号:07020708 1.5%戊巴比妥钠:自行配制 1.3 主要试剂的配制 1.3.1 75% 酒精: 1.3.2 阿司匹林溶液:选取14片阿司匹林片剂,碾磨 1.3.3 青霉素溶液 8U/ml:用针筒量取10ml生理盐水,溶解80万单位1.3.4 1.5%戊巴比妥钠溶液的配制: 2. 实验方法 2.1 实验大鼠的选取及麻醉标准 该动物模型制备实验对大鼠有严格的限定,选取Spargue-Drawly 大鼠,年龄为77±1d,体重为260 ± g。麻醉标准为雄性65mg/kg, 雌性40mg/kg。 2.2 实验大鼠手术 2.2.1 大鼠抓取、麻醉及固定:抓取手术大鼠,腹腔注射麻药。大约三分钟左右,大鼠出现站立不稳,醉酒样步态。四肢固定与手术台上,松紧适中,手术过程中注意观察四肢是否出现瘀血,注意按摩。此时,可用大头针刺激大鼠尾巴,如果大鼠的反应不强烈,预示着可以开始手术。 2.2.2 大鼠打击区域的选定及手术:首先剪除大鼠胸椎区域毛,而后均匀喷洒碘伏溶液两倍备皮区域。在大鼠背部脊柱有一个明显的凸起,经过大量的解剖实验证明该凸起为T11,从该凸起区域剖开皮肤2-3cm,逐步暴露筋膜、肌肉直到椎骨。由该凸起出发向前数两个节段即T9,用手术刀小心刮去T9椎骨上的肌肉。随后进行椎板切除术,移植暴露到硬脊膜。 2.2.3 打击装置的安装固定、调整及记录电极的挟持:该打击装置利用物体自由落体运动,打击金属杆从6.25mm,12.5mm,25mm,50mm四个不同的高度,以初速度为0,自由下落打击暴露的脊髓,压迫脊髓。根据具体打击高度安装非接触式位移传感器,位于打击杆的圆盘上,距离小于30mm,并限定金属杆恰恰接触(未压缩)时为零高度。电位变化记录夹,红色夹子挟持于T11棘突,黑色夹子挟持于T9同一水平面的肌肉和皮肤,在T13与T12椎骨之间的缝隙处,插入银针約1cm,白色夹子挟持银针顶端。 非接触式位移传感器信号输出线导入BZF-Ⅲ型电涡流式前置变换器并由此导入BL-420E+第二号通道。电位变化记录夹采集信号导入BL-420E+第一号通道。在BL-420实验系统软件选择实验通道输入信号,一号通道选择神经放电,二号通道选择 2.2.4 脊髓打击、金属杆和脊髓电位变化记录:从注射麻药60±1min后,释放选定高度的金属杆对脊髓进行打击。电涡流传感器将会在空间上20微米,时间上20微秒采集金属杆在空间上物理位移所有点,并且输出一系列的电压信号,经过信号转换器输入电脑,程序将会自动生成一条能反应整个金属杆的速度-位移曲线。电位记录将会从三个不同的地点采集脊髓受到打击时所释放的不规则的电位变化。 2.2.5 大鼠术后处理:打击完毕后,立即用消毒的手术缝合针线分别对肌肉、筋膜和皮肤进行缝合,每缝合完一层时用酒精对其消毒,缝合完皮肤

乘用车副车架静刚度分析规范

精选文档 Q/JLY J711 -2009 乘用车副车架静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二〇〇九年三月

精选文档 前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本规范。 本规范是对Q/JLY J711160-2008《乘用车副车架刚度CAE分析规范》的修订。与Q/JLY J711160-2008相比,主要差异如下: ——对原有章节进行重新编排; ——对分析模型的处理进行重新定义; ——对数据处理进行详细表述; ——对评价标准进行补充; ——对分析报告内容进行修改。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司工程分析部负责起草。 本规范主要起草人:李慧梅。 本规范于2009年4月15日发布并实施。标准号为Q/JLY J711160-2008的规范于2008年7月28日第一次发布,本次修订为第一次。

1 范围 本规范规定了乘用车副车架静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车副车架静刚度CAE分析。 2 软硬件设施 a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 乘用车副车架静刚度分析的输入条件主要指副车架有限元模型,一个完整的副车架有限元模型含内容如下: a)副车架各个零件的网格数据; b)副车架焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车副车架静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型副车架静刚度分析报告》(“车型”代表车型代号,如:车型为GC-1,则分析报告命名为《GC-1副车架静刚度分析报告》)。 5 分析方法 5.1 分析模型 分析模型包括副车架的有限元模型,钣金件均采用壳单元模拟,点焊采用CWELD模拟,线焊采用RBE2或壳单元模拟。 5.2 分析模型的建立 建立有限元模型,应符合下列要求: a)副车架各个零件的网格质量应符合求解器的要求; b)副车架各个零件的材料,须与明细表规定的材料相对应; c)副车架各个零件的厚度,须与明细表规定的厚度相对应;

二十种常见实验动物模型

二十种常见实验动物模型 一、缺铁性贫血动物模型 缺铁性贫血(iron deficiency anemia,IDA)是体内用来合成血红蛋白(HGB)的贮存铁缺乏,HGB合成减少而导致的小细胞低色素性贫血,主要发生于以下情况:(1)铁需求增加而摄入不足,见于饮食中缺铁的婴幼儿、青少年、孕妇和哺乳期妇女。(2)铁吸收不良,见于胃酸缺乏、小肠粘膜病变、肠道功能紊乱、胃空肠吻合术后以及服用抗酸和H2受体及抗剂等药物等情况。(3)铁丢失过多,见于反复多次小量失血,如钩虫病、月经量过多等。 IDA是一种多发性疾病,据报道,在多数发展中国家,约2/3的儿童和育龄妇女缺铁,其中1/3患IDA,因此,研究IDA的预防和治疗具有重要的意义。在这些研究中,缺铁性贫血的动物模型(Animal model of IDA),又是实施研究的基础工具。常见的IDA动物模型的构建技术如下: 实验动物:一般选用SD大鼠,4周龄,雌雄不拘,体重65g左右,HGB≥130g/L。 建模方法:低铁饲料加多次少量放血法。低铁饲料一般参照AOAC 配方配制,采用EDTA浸泡处理以去除饲料中的铁,饲料中的含铁量是诱导SD大鼠形成缺铁性贫血模型的关键,现有研究表明,饲喂含铁量<15.63mg/Kg的饲料35天,SD大鼠出现典型IDA表现,而饲喂

含铁40.30mg/Kg的饲料SD大鼠出现缺铁,但并不表现贫血症状。建模时一般采用去离子水作为动物饮水,以排除饮水中铁离子的影响。少量多次放血主要用于模拟反复多次小量失血导致的铁丢失,还可以加速贫血的形成。放血一般在低铁饲料饲喂2周后进行,常用尾静脉放血法,1~1.5ml/次,2次/周。 模型指标:(1)HGB≤100g/L;(2)血象:红细胞体积较正常红细胞偏小,大小不一,中心淡染区扩大,MCV减小、MCHC降低;(3)血清铁(SI)降低,常小于10μmol/L,血清总铁结合力(TIBC)增高,常大于60μmol/L。 需要指出的是,以上模型不能用于铁吸收不良相关IDA的防治研究。根据具体的研究需要,也可以适当调整建模方法。 二、白血病动物模型 用免疫耐受性强的人类胎儿骨片植入重症联合免疫缺陷病(SCID)小鼠皮下,出于人类造血细胞与造血微环境均植入小鼠,建立具有人类造血功能的SCID小鼠模型称为SCID-hu小鼠。再将髓系白血病患者的骨髓细胞植入SCID-hu小鼠皮下的人类胎儿骨片内,植入的髓系白血病细胞选择性生长在SCID-hu小鼠体内的人类造血微环境中,即为人类髓系白血病的小鼠模型。SCID小鼠是由于其scid所致。T、B淋巴细胞功能联合缺陷,这种小鼠能接受人类器官移植物。 造模方法:

动刚度与静刚度

动刚度与静刚度 静载荷下抵抗变形的能力称为静刚度,动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需要的动态力。 静刚度一般用结构的在静载荷作用下的变形多少来衡量,动刚度则是用结构振动的频率来衡量; 如果动作用力变化很慢,即动作用力的频率远小于结构的固有频率时,可以认为动刚度和静刚度基本相同。否则,动作用力的频率远大于结构的固有频率时,结构变形比较小,动刚度则比较大。 但动作用力的频率与结构的固有频率相近时,有可能出现共振现象,此时动刚度最小,变形最大。金属件的动刚度与静刚度基本一样,而橡胶件则基本上是不一样的,橡胶件的静刚度一般来说是非线性的,也就是在不同载荷下的静刚度值是不一样的;而金属件是线性的,也就是说基本上是各个载荷下静刚度值都是一样的; 橡胶件的动刚度是随频率变化的,基本上是频率越高动刚度越大,在低频时变化较大,到高频是曲线趋于平坦,另外动刚度与振动的幅值也有关系,同一频率下,振动幅值越大,动刚度越小 刚度 刚度 受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。各向同性材料的刚度取决于它的弹性模量E和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的弹性模量外,还同其几何形状、边界条件

等因素以及外力的作用形式有关。分析材料和结构的刚度是工程设计中的一项重要工作。对于一些须严格限制变形的结构(如机翼、高精度的装配件等),须通过刚度分析来控制变形。许多结构(如建筑物、机械等)也要通过控制刚度以防止发生振动、颤振或失稳。另外,如弹簧秤、环式测力计等,须通过控制其刚度为某一合理值以确保其特定功能。在结构力学的位移法分析中,为确定结构的变形和应力,通常也要分析其各部分的刚度。 刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的力或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。 工艺系统的刚度 1 .基本概念 刚度的一般概念是指物体或系统抵抗变形的能力。用加到物体的作用力与沿此作用力方向上产生的变形量的比值表示,即(10-5 ) 式中——静刚度( N) ; ——作用力(N/mm ); ——沿作用力方向的变形量(mm )。 越大,物体或系统抵抗变形能力越强,加工精度就越高。

脊髓损伤动物模型的制备与评价

脊髓损伤动物模型的制备与评价【摘要】脊髓损伤(SCI)的修复是医学界面临的一大难题,虽然现在还没有理想的治疗方法,但是世界各地的许多学者已对脊髓损伤的病理机制和再生修复进行了深入的研究。脊髓损伤动物模型的制备和评价方法对脊髓损伤相关研究具有很重要的意义,本文将回顾目前常用的脊髓损伤模型制备和评价的方法。 【关键词】脊髓损伤;动物模型;评价 【Abstract】Objective restore the neural function after spinal cord injury is a hard work.Though there are no promising therapies,the scientists all over the world have made great effort in studying the pathological meschasim ofspinal cord injury and spinal cord regenerate.The establishment of animal model and evaluating methods are playing an important role in these researches.This article will review applications about how to make and evluate animal models of spinal cord injury. Key words:spinal cord injury,animal model,evaluation 1 脊髓损伤动物模型的制备

CAE技术在橡胶悬置静刚度设计中的应用

CAE技术在橡胶悬置静刚度设计中的应用 橡胶悬置是指动力总成(包括发动机,离合器及变速器)与车架/底盘之间的弹性连接件,不仅可以减少发动机向车架传递的振动,降低整车振动和噪声,改善乘坐舒适性,而且可以喊小路面激励对动力总成的振动破坏,保证动力总成工作安全性,延长其使用寿命。 CAE技术在汽车零部件产品开发中的应用非常广泛,与传统的橡胶悬置设计方法相比,CAE设计不仅可以减少试制开模的次数,缩短产品开发周期,而且可以节约开发成本。 1 产品设计要求 图1所示为要求设计的橡胶悬置原模型结构,橡胶主体的内外表面分别与铸铁内管、外管共硫化。橡胶主体的主要尺寸包括高度、内径和外径。产品静刚度(K)性能主要对轴向(K X)和Y向(K Y)有要求,对Z向不作要求,具体数值见表1。 点击图片查看大图 图1 原悬置模型 表1 橡胶悬置静刚度要求 点击图片查看大图

2 原模型静刚度的有限元计算 2.1 橡胶主体的网格划分 利用HyperMesh中的spin功能将橡胶主体部分划分成六面体单元,如图2所示。将划分好的网格导出inp格式文件,提交ABAQUS作进一步分析。 点击图片查看大图 图2 原悬置橡胶主体的有限元模型 2.2 静刚度有限元计算 在ABAQUS中对有限元模型使用M-R模型描述其超弹性属性,采用邵尔A型硬度为70度的橡胶。

橡胶体内表面与铸铁内管硫化在一起,因此把该表面上所有的节点与所建立的一个参考点(一般取内表面的中心点)通过刚性连接耦合在一起,并以该参考点作为加载点,在加载点施加X方向的位移,通过计算可获得该点的反力。 外表面与铸铁外管硫化在一起,且该外管固定在一个安装孔内,因此,在进行边界条件定义时,可令外表面上所有的节点位移为零。 有限元计算完成后,可以得出X方向的位移及其对应的反力,得到的刚度曲线如图3所示。经计算K X 为559.3N·mm-1,小于产品该方向的静刚度要求。 点击图片查看大图 图3 有限元计算原悬置结构X方向刚度曲线 同理,计算出K Y为2111.2N·mm-1,大于产品该方向的静刚度要求。 有限元计算结果表明,原悬置结构静刚度不能满足产品性能要求,需要进行重新设计。 3 产品设计思路

乘用车驾驶员座椅安装点静刚度分析规范

Q/JLY J711 -2008 乘用车驾驶员座椅安装点静刚度 CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司

二〇〇八年九月

前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本标准。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。 本规范主要起草人:汤志鸿。 本规范于2008年9月5日发布并实施。

1 范围 本标准规定了乘用车驾驶员座椅安装点静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车驾驶员座椅安装点静刚度CAE分析。 2 软硬件设施 a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 3.1 白车身有限元模型 乘用车驾驶员座椅安装点静刚度分析的输入条件主要指白车身的有限元模型,一个完整的白车身有限元模型中含内容如下: a)白车身各个零件的网格数据; b)白车身焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 3.2 白车身3D几何模型 乘用车驾驶员座椅安装点静刚度CAE分析的白车身3D几何模型,数据要求如下: a)白车身各个零件的厚度或厚度线; b)白车身几何焊点数据; c)3D CAD数据中无明显的穿透或干涉; d)白车身各个零件的明细表。 4 输出物 乘用车驾驶员座椅安装点静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型驾驶员座椅安装点静刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1驾驶员座椅安装点静刚度分析报告》),报告内容的按7规定的内容编制。 5 分析方法 5.1 分析模型

乘用车悬架安装点静刚度分析规范

Q/JLY J711 -2008 乘用车悬架安装点静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司

二〇〇八年九月

前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本标准。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。 本规范主要起草人:汤志鸿。 本规范于2008年9月15日发布并实施。

1 范围 本标准规定了乘用车悬架安装点静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车悬架安装点静刚度CAE分析。 2 软硬件设施 乘用车悬架安装点静刚度CAE分析,主要包括以下设施: a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 3.1 白车身3D几何模型 乘用车悬架安装点静刚度CAE分析的白车身3D几何模型,数据要求如下: a)白车身各个零件的厚度或厚度线; b)白车身几何焊点数据; c)3D CAD数据中无明显的穿透或干涉; d)白车身各个零件的明细表。 3.2 白车身有限元模型 乘用车悬架安装点静刚度分析的输入条件主要指白车身的有限元模型,一个完整的白车身有限元模型中含内容如下: a)白车身各个零件的网格数据; b)白车身焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车悬架安装点静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型悬架安装点静刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1悬架安装点静刚度分析报告》),报告内容的按7规定的内容编制。

慢性脊髓损伤的动物模型的研究现状

慢性脊髓损伤的动物模型的研究现状 发表时间:2016-06-17T14:16:02.970Z 来源:《医师在线》2016年3月第5期作者:孙永刘郑生 [导读] 用于慢性脊髓脊髓损伤实验研究的动物有多种选择,实验动物的选择既要考虑到其生物力学特性是否接近人类。 孙永刘郑生 中国人民解放军总医院骨科,北京 100853 摘要:慢性脊髓压迫损伤是临床中常见的一种病理状态,其特征为骨赘、退变的椎间盘、韧带的增生钙化压迫脊髓产生一系列的临床症状。建立慢性脊髓压迫的动物模型是对于脊髓损伤的病理生理学和组织学等进行深入研究的前提条件。该综述描述了各种类型的慢性脊髓压迫损伤动物模型优缺点。 关键词:脊髓损伤;慢性;动物模型;综述 1.慢性脊髓损伤实验动物的选择 用于慢性脊髓脊髓损伤实验研究的动物有多种选择,实验动物的选择既要考虑到其生物力学特性是否接近人类,也要考虑到来源和实验动物的成本。灵长类动物(猿、猴等)的脊髓解剖最接近人类,是最理想的实验动物,但是其价格昂贵,手术成本大。从脊髓功能上来看,猪、犬、猫等四肢行走动物的脊髓与人类的相似,而兔、鼠等动物的脊髓再生能力较强,与人类脊髓功能相距较远。但初期试验多选择兔、鼠等低等动物,而实验愈近成功,则应趋向于大动物。目前,大鼠和小鼠是最为常见的脊髓损伤的动物模型,这是由于成本低,种系内纯合性好,而且个体小,便于操作,具有较强的抗感染能力和生命力。 2.理想慢性脊髓压迫损伤的动物模型 建立慢性脊髓压迫的动物模型是对于脊髓损伤的病理生理学和组织学等进行深入研究的前提条件。理想的实验慢性压迫动物模型应该具备以下五个方面的要求:(1)临床相似性:实验的动物模型与临床相似,能模拟人类发生脊髓损伤的病理过程。(2)可重复性和可操作性:动物模型的操作技术简单,易于掌握。(3)可定量分级,即压迫力度、压迫时间可自由控制,用统一方法不同的压迫做同一部位产生不同程度的脊髓压迫损伤,压迫程度大小与脊髓损伤程度呈正相关。(4)适应性广:即统一种方法能复制多种类型的慢性脊髓损伤,又能在多种动物上应用。(5)操作简单,即手术设备要求不高,操作不复杂,可以快速大批制作。 3.慢性脊髓损伤的动物模型 3.1 螺钉直接压迫模型 1972年Hukuda[1]首次采用经前路手术椎体内攻入螺钉,此后每日沿原切口将螺钉攻入一个螺纹约1mm,直至动物出现神经功能障碍的征象,此次研究最大压迫率时脊髓组织受到损伤状况,这显然是一种亚急性压迫损伤模型,该方法在制作慢性脊髓压迫损伤时被广泛使用。Schramm等[2]通过后路椎板钻孔拧入合适大小的螺钉,开始并不产生直接的脊髓压迫,随后采用固定的螺钉拧入频率,多次缓慢的将螺钉拧入,从而对脊髓产生一种慢性渐进性的脊髓压迫。但是Kanchiku[3]等人认为这种模型是一种非线性压迫模型,在压迫的早期,螺钉的拧入体感诱发电位也常无明显的变化,而在后期螺钉拧入会明显影响体感诱发电位,长时间的螺钉直接压迫可造成神经元脱髓鞘改变,引起脊髓神经纤维传到功能障碍。Doppman[4]将带气囊的导管插入椎间孔,充气后造成脊髓亚急性压迫损伤,以观察损伤后的病理学改变,这种方式可以减少动物的创伤,而且可以避免反复手术造成的局部疤痕引起的负面影响,但是难以改进为慢性压迫模型。1993年Al-Mefty[5]对该模型进行了长期压迫效果的观察,采用特氟隆制作螺钉以便进行影像学观察。另外,还在脊髓压迫的背侧下放置特氟隆垫圈,以便更好的模拟临床上黄韧带骨化想前方突入椎管内,造成前后方脊髓压迫状态。JangBo Lee等[6]采用经后路钛制慢性压迫内固定器,内固定器 C2和T2棘突之间,螺钉固定在棘突间的链接棒上,这样增加螺钉的稳定性及拧入螺钉深度的精确性。但是钛制螺钉的金属伪影影响了术后影像学评估。 在国内,蔡钦林等[7]采用套管装螺钉植入体前缘渐进性拧入致慢性压迫。2006年,梁益建等[8]根据大鼠脊柱解剖学特点自行设计一种后路不锈钢压迫器,压迫器械契合在关节突和棘突之间,中间留置拧入螺钉的孔道。此方法可有效的防止内固定脱落,又避免了螺钉拧入时对脊髓的直接损伤。 3.2 硬膜外气囊压迫模型 1954年Tarlov等[9]阐述气囊压迫法制作脊髓背侧压迫损伤的动物模型,可模拟临床上椎管内占位造成的脊髓压迫病变。原理和方法:用一个小气囊连接导管,置于硬膜外椎板下,在术后24h动物恢复正常后。向气囊中充气对脊髓造成压迫伤,脊髓机械压迫和受压后血流障碍造成的脊髓组织变性坏死。该模型属于闭合性损伤,方法简便重复性好,通过调节压力的大小和受压时间的长短造成不同程度的脊髓损伤,但是气囊膨胀时内部的压力并非呈直线型改变。杨诗球等[10]对该模型进行了改进,采用向囊内注入泛影葡胺使胶囊膨胀压迫脊髓,便于影像学观察。2003年,Takahashi等[11]将一个塑料球置于狗的Sl椎板下,塑料球连接一个测量空气压力系统装置,在l0mmHg的注射压力F缓慢地向球内注射一种称为“konnyaku”的物质,对脊髓形成压迫。于向华等[12]利用医用的硅胶导尿管该制成压力球囊,向内注入非离子型造型机——优维显300,利用压力注射器(Basix Compak)测试球囊内压力,每2周向压力注射器内注入造影剂,造成犬腹侧慢性压迫模型。这一模型的优点为可对不同脊髓节段压迫致伤,持续时间可控,重复性好,方法简便,但其缺点为气球膨胀时球内压力并非旱直线样改变。通过对气球材料的改进造成脊髓受压的变化曲线或许可以近似于直线样改变。 3.3 可膨胀材料压迫模型 Ehud Arbit等[13]首次将甲基纤维素-聚丙烯腈块状置人硬膜外,直径0.25mm,该物在37. 5 ℃下普通生理盐水中 6d 之内可膨胀为原来的 11 倍使其在硬膜外膨胀时对脊髓产生直接压迫。由于膨胀速度过快,可用于急性或亚急性脊髓压迫,不符合慢性压迫的损伤机制。1997年Cornefjord等[14]利用成份为酪蛋白衍生物的一种坚硬的塑料材料做成压缩器,压缩器吸收水分后能够缓慢膨胀。由于压缩器外层有坚硬的金属外壳,其只能向心性膨胀。将压缩器附加37℃的盐水试管,压缩器的内径每天用双目显做镜测量,持续40d。2004年Kim[15]采用氨基甲酸乙酯多聚体作为吸水性材料,将其植入鼠颈椎背侧,材料遇水后在24小时之内体积变成原来的2.3倍,可维持16天,内植材料周围未见炎症反应和肉芽组织生成。2011年胡勇等[16]改进Kim使用的吸水性膨胀材料,在材料的表面涂上一层控制吸水的保护膜,以此来控制材料对于细胞外液的吸收,24小时内该材料膨胀到最大,但是可以维持最大体积6个月,将其植入大鼠颈椎管的一侧,双侧对照研究慢性压迫损伤中SEP波幅和潜伏期的变化。该模型主要优点减少手术操作次数,方法简单,提高动物的生存率,前后路均可有压迫,符合临床

轿车白车身模态和静刚度的试验和CAE

轿车白车身模态和静刚度的试验和CAE 东南(福建)汽车工业有限公司研发中心蔡坚勇宋名洋 [摘要]本文介绍利用AItair/HyperMesh软件创建某紧凑型轿车白车身有限元模型,运用MSC/Nastran软件求解白车身结构的固有模态、静态弯曲刚度和扭转刚度。介绍相关试验方法,并把试验值和CAE分析值进行比较。验证了CAE分析模型的有效性,认为该车型车身具有较好的动态特性和静态扭转刚度。 [关键词]白车身;模态;弯曲刚度;扭转刚度 当前,CAE(计算机辅助工程分析)技术已经成熟,在国外大型汽车企业中得到了广泛应用,在我国一些大型汽车企业为了提升自主研发能力。已将CAE技术应用到新车型研发中,且获得了良好的效果。本文分别利用试验方法和CAE分析方法求解某紧凑型轿车白车身的模态、静态刚度值,并把试验值和CAE分析值进行比较,验证了CAE分析值的可靠性。 1白车身CAE模型创建 该车轴距25lOmm.前轮距l472mm。后轮距1465mm。采用Altair/HyperMesh软件创建白车身CAE模型,钣金件用壳单元模拟,共有444031个,其中三三角形壳单元14124个.占3.2%,单元尺寸5~15mm,粘胶和焊点采用实体单元模拟,共5195个。烧焊和螺栓采用刚性单元模拟。单元质缱符合企业给定标准。为减少CAE建模的工作耸.采用同一个白车身CAE模型进行以上所有工况分析。材料属性南企业提供的参数设置,见表1。白车身CAE模型如图l所示。 表1材料参数 图1白车身CAE模型 2白车身模态试验和CAE分析 模态分析技术源于20世纪30年代提出的将机电进行比拟的机械阻抗技术,是用于对机械系统、土建结构、桥梁等工程结构系统进行分析的现代化方法和手段川。模态试验是通过试验设备,采集激励点信号和测肇点的响应信号,经过软件分析处理后获得结构固有频率和相应振型。它可以验证和校核有限元模型的合理性,为后续进行静刚度或其它CAE分析提供一个合理的有限元模型。CAE分析是由计算机根据有限元方法,求解有限元模型的固有频率和相应振型。模态试验和CAE分析方法具有相同的效果,二者相互辅助。2.1模态试验 车辆坐标系的定义:以车辆前进方向为x轴负向,前进方向左侧为y轴负向,竖直向上为z轴正向。 为了使试验值和CAE分析值能够进行对比,试验时白车身上布置的测量点和CAE模型中的观察点应具有相同的位置。 测量点布置在车身主要承载件上,发动机舱部分均匀布置在左、右前纵梁,前横梁,前嗣上挡板上,乘员舱部分均匀分布在顶蓬前横梁,顶蓬左、右横梁,左、右前立柱。左、右中立柱.左、右后立柱,后门框,左、中、右地板纵梁,前、后地板横梁,顶蓬加强梁上。x、y、z三个方向信号提取点数目各为130个。 试验时用四根柔软的橡皮绳将白车身悬挂在刚性的支架上。悬挂点位于前、后悬架与车身的连接点上。车身保持水平。这样.整个车身的约束状态接近于自由状态。本次试验布置两个激励点,分别位于臼车身前部的右纵梁和尾部的左纵梁上,激励信号为猝发随机信号。试验测餐分析系统如图2所示。 2010年第12期(总第48期) 121

脊髓损伤动物模型造模设备的制作技术

本技术涉及一种脊髓损伤动物模型造模装置,包括传送与控制装置、加热装置、排水装置组成,所述传送与控制装置由电脑、压力传感器、脊柱固定夹、电动钳夹器、调节旋钮、手术台、底座、电动机、滑轨、传动齿条、夹钳组成;所述排水装置由排水槽、排水孔组成;手术台底部安装了内置温控器的加热装置,加热装置一端连接有插头。其优点表现在:(1)将钳夹损伤所有过程机械化控制,摆脱手持操作的误差;(2)精确控制所有致伤因素,使造模过程更可控、稳定;(3)对造模过程有反馈数据,使模型均一性更具有说服力。 技术要求

1.一种脊髓损伤动物模型造模装置,包括传送与控制装置、加热装置(14)、排水装置,其特征在于,所述传送与控制装置含有电脑(1)、压力传感器(2)、脊柱固定夹(3)、电动钳夹器(4),电脑(1)通过数据线(9)与电动钳夹器(4)相连接,所述电动钳夹器(4)内含有传动齿条(12)、滑轨(10)和双向电动机(11);传动齿条(12)上端与双向电动机(11)衔接;滑轨(10)贯穿于两列传动齿条(12)之间;滑轨(10)下端连接有两个夹钳(13);夹钳(13)内侧含有压力传感器(2),电动钳夹器(4)上端有垂直位置调节旋钮(5);支架将电动钳夹器(4)与手术台(7)连接起来;手术台(7)台面放置有脊柱固定夹(3),手术台(7)两侧有水平位置调节旋钮(6);手术台(7)下端有底座(8);所述加热装置(14)是内置温控器的加热装置,温控器可在37℃-40℃内调节温度,加热装置(14)位于手术台(7)操作区域正下方,加热装置(14)一端连接有插头(15);所述排水装置是由排水孔(16)、排水槽(17)组成,排水孔(16)位于手术台一侧,排水槽(17)位于手术台(7)上表面。 2.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,所述电动钳夹器(4)共有两个,一个上端与数据线(9)连接,另一个上端与垂直位置调节旋钮(5)连接。 3.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,所述脊柱固定夹(3)共有3-6个。 4.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,所述手术台(7)是长为30-50厘米,宽为20-40厘米,高为10-20厘米的长方形手术台。 5.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,所述底座(8)是长为40-60厘米,宽为30-50厘米,高为10-20厘米的长方形底座。 6.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,排水孔(16)是直径为3-10厘米的圆形排水孔。 7.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,所述排水槽(17)是高为3-10厘米,长为20-40厘米,宽为10-30厘米,圆弧半径为3-5厘米的环形排水槽。 8.根据权利要求1所述脊髓损伤动物模型造模装置,其特征在于,所述夹钳(13)是长为5-15厘米的夹钳。

车床静刚度测量实验报告

机械制造工艺学实验 实验一车床静刚度测量 一、实验目的 1.通过本实验,熟悉车床静刚度测量的原理方法和步骤 2.通过对车床静刚度的实测和分析,对机床的静刚度和工艺系统的静刚度的基本概念加深 认识 3.了解实验仪器的布置和调整,熟悉其使用方法 二、基本概念 工艺系统的静刚度是指车床在静止状态下,垂直主轴的切削力P y与工件在y向的位移的比值: 三、实验原理 1.由于静刚度仪和模拟车刀的刚度很大,在实验的加载范围内所产生的变形很小可以忽略 不计。这样所测得的变形可以完全是车床各部的变形,这样就可以把工艺系统的静刚度和车床的静刚度等同起来。 2.为模拟车床实际切削状态,使之在XYZ三个方向都有切削力载荷,并可以调整到一般切 削条件下的P X、P y、P z三个力的比值,采用三向刚度测定仪。该仪器是通过加载机构和测力环,再经过弓形体和模拟车刀,对车床施加载荷,模拟切削力和三向切削分力的关系为: P X= P*sinαβ P y= P*cosα*sinβ P z= P*cosα*cosβ 公式中:P 模拟切削力(由测力环千分表测得) α角为加载螺钉在弓形体上所调整的角度(刻度) β角为弓形体绕X轴(主轴)转动刻度读数的余角 3.为计算方便,模拟车刀的位置调整在弓形体的正中间,这样 为简便起见,去表中载荷P的最大值280kgf时,主轴头、刀架及尾座的静刚度代替三个部位的平均静刚度,这样带入下面公式就可以算出车床的静刚度。(公式的推导见教科书)

四、实验设备 1.C616车床一台 2.三向静刚度仪一台 3.千分表4只 五、实验步骤 1.消除车床零部件之间的间隙,加预载荷、 2.卸掉预载荷,将此时的各千分表的读数记下来(初始值),测力环千分表调零 3.按实验记录表中给出的测力环变形量和载荷的对应值依次加载,最大加至280kgf然后再 逐点依次卸载,每次加载后记录各千分表的读数 六、实验注意事项 1.在实验过程中刀架、溜板箱要锁紧 2.主轴锁紧,防止转动 3.机床在实验过程中不许有任何震动,以免影响测量结果 七、实验报告要求 1.实验名称 2.实验目的 3.实验所用的仪器设备 4.实验记录表 5.以实验记录数据中Y值做横坐标,计算出得P y为纵坐标,画出刀架在三种受力情况下的 静刚度曲线

基于HyperMesh二次开发的静刚度分析程序pdf

基于HyperMesh 二次开发的静刚度分析程序 作者:樊红光 昝建明 摘要:静刚度分析是汽车研发CAE 分析中的一项基础、繁琐而又十分重要的工作。本文利用TCL 语言对HyperMesh 进行二次开发,将静刚度分析流程化,程序化,既节省了工作时间,同时也提高了分析的准确率,一致性。 1 前言 在汽车研发的CAE 分析工作中,静刚度分析是一项基础而重要的内容。静刚度分析内容多,工作量大,且分析流程类似,操作大量重复,枯燥繁琐;同时,静刚度分析项目不同工况的载荷大小、约束及其它操作和参数存在较多细节上的差异,工程师在完成该类分析时,容易出现人为的遗漏和错误,还需耗费大量时间去检查;另外,静刚度分析对应的分析规范多,并且由于分析方法的改进,分析规范也处在不断的更新过程之中。为了确保分析方法与最新的分析规范相一致,工程师每次分析之前均需要查阅和确认最新的分析规范。不仅耗时费力,而且容易出错。这样就很难保证分析规范严格高效地执行。本文利用TCL/TK 语言,对HyperMesh 进行二次开发,将基本的静刚度分析项和分析规范集成到HyperMesh 当中,固化分析参数与步骤,最大程度地减少人工干预。实现了静刚度分析流程自动化,很好的解决了静刚度分析面临的上述问题,大大提高了工作效率。为了便于推广应用,还编写了相应的使用帮助文档《静刚度/模态分析程序使用手册》,便于CAE 工程师快速学习和查阅。 2 程序功能介绍 程序界面如图1所示,在HyperMesh 菜单栏上添加了一个NVH 下拉菜单,菜单分为二级,第一级为静刚度分析和模态分析,静刚度分析的二级菜单则为20多项常规的刚度分析内容,模态分析的二级菜单则为自由模态分析和约束模态分析。网格模型导入后,选择二级菜单中的相关分析项,程序将提示并引导用户作一些简单的输入,程序将自动完成其它的处理工作,并生成求解器输入文件,同时在HyperMesh 中添加了一个工具条,使得用户可以直接在工具条上点击相应按钮,即可启动求解器进行分析,并将结果文件保存到用户指定的目录当中,如果用户一次选择了多个分析项,并在最后点击工具条上的启动求解器计算按钮,则程序生成批处理文件,可使求解 器批量处理这些分析项。 C A M E O 凯模C A E 案例库 w w w .c a m e o .o r g .c n

实验动物心肌肥厚模型

III.实验动物心肌肥厚模型 A、压力超负荷/主动脉缩窄 压力超负荷引起的心脏肥厚常用的手术方法是主动脉缩窄(i.e.缩窄升主动脉)。 小鼠行主动脉缩窄(TAC)可以引起心脏机械性的压力超负荷,最终导致心肌肥厚、心衰(20,84)。TAC通常诱导方法采用在近胸骨端行小切口, 缩窄主动脉的这样的开胸手术。TAC模型虽然不能完全模拟人类的心室重构,但该模型可以用于肥厚发病过程中多种基因学的研究。主动脉缩窄模型能很好的模拟血流动力学超负荷引起左心室肥厚的发生发展。该动物模型在主动脉缩窄造成心肌肥厚几个月后会导致心衰。 B、容量超负荷 在静脉回流适当的情况下,心脏不能排出足够的血液满足全身组织代谢的需要就会引起CHF(充血性心力衰竭)。心内檐沟血或回心血量增加导致瓣膜闭锁不全就会引起心室容量超负荷。在慢性动脉和/或二尖瓣瓣膜回流疾病中的容量超负荷,我们会观察到“舒张期压力-容积曲线”整体右移,说明心脏僵硬度增加,即发生LVH (可见于主动脉瓣狭窄、高血压、肥厚性心肌病)(36)。通常情况下,容量超负荷CHF模型制备方法是腹主动脉-下腔静脉分流术。即于肾动脉上方分离出下腔静脉和腹主动脉,用血管夹在近肾动脉端夹闭主动脉阻断血流;用0.6-mm的针头由主动脉远端刺入,继续进针刺入下腔静脉,使动静脉联合。退针后,缝合血管壁伤口。4-5周后,就能复制出心肌肥厚模型,并具有左心室收缩力增强、舒张末期压力增加的特点(257)。 C、冠状动脉结扎 冠状动脉结扎常用于复制心衰动物模型。冠脉左前降枝(LAD)结扎后会阻断心脏的供养和营养输送,这种情况类似于人类心脏病发作时伴随的症状。血氧和营养供输阻断后,心肌细胞死亡,心脏整体功能受影响,最终导致心功能紊乱。由于这种动物模型非常接近临床心衰疾病的发生发展,研究证明该模型是心衰发病机制研究的重要手段(13)。 D、转基因型心脏肥大模型 几十年以来,一些心脏肥大和心力衰竭的转基因小鼠模型被学者们用于心肌肥厚和心衰这些致命疾病的可能的分子机制研究。受条件限制,在此不能针对于所有模型作一全面的综述,但在此文中,我们介绍一种转基因小鼠模型,该模型能成功模拟心肌肥厚的发生发展以及最终演变为心衰的过程。表1列举的是截止目前,研究学者们发现的较成熟的心肌肥厚/心衰模型。 表1:小鼠心衰模型 转基因小鼠模型代谢转变模型ECM紊乱转基因模型 肌侵蛋白,TNFα,G i,Gαq,PKCβ,PKA,β1AR, 磷酸化蛋白, 肌集钙蛋白, 钙调磷酸酶, L-型Ca2+ 通道 线粒体功能紊乱 氧化应激 脂肪酸氧化(FAO) 通路的受损 基质金属蛋白酶2/MMP2 基质金属蛋白酶9/MMP9 组织金属蛋白酶抑制剂 1/TIMP1

机床静刚度实验

实验一机床静刚度实验 一、实验目的: 通过实验,使学生进一步了解由机床(包括夹具)一工件一刀具所组成的工艺系统是一弹性系统,在此系统中因切削力、零件自重及惯性力等的作用,工艺系统各组成环节会产生弹性变形及系统中各元件之间若有接触间隙,在外力的作用下会产生位移,并且熟悉机床静刚度的测量方法和计算方法,从而更深的理解机械制造工艺中的工艺设备及其对零件加工质量的影响,提高学生分析和处理问题的能力。 二、实验装置 机床一台 静刚度测定装置一套 图1 机床静刚度测定装置图 三、实验方法与步骤 1、如上图所示,在机床的两顶尖间装夹一根刚度很大的光轴1 (光轴受力后变形可忽略 不计)。 2、将加力器5固定在刀架上,在加力器与光轴间装一测力环4。 3、在测力环内孔中固定安装一个千分表,当对如图1所示安装的测力环施加外力时, 其中的千分表指针就会变动,其变动量与外载荷之间对应关系可在材料试验机上预先测出,千分表2、3、6的指针也会因与之接触部位的位移而变动。 4、实验时用扳手扭转带有方头的螺杆7,以施加外载荷(Fy)。然后读出靠近在车头, 尾座和刀架安放的千分表(2)、(3)、(6)的读数,并记录下来填入表1中。 表1 外加载荷与千分表读数记录

根据以上数据,计算出床头、刀架和尾座的受力F 头、F 刀和F 尾。 为了说明尾座套筒伸出长度对刚度的影响,实验时可将套筒分别伸出5mm 和105mm 。并分别测出千分表读数和计算出刚度的数值,填入表2中。 表2 机床静刚度计算 三、静刚度的计算 为了计算方便,实验时可将测力环抵在刚性轴的中点处。故机床、床头、刀架它们之间的刚度关系可以用下式表示: 实验时将测力环对准光轴中间,即X=L/2时,则上式简化为 式中:头 头头Y F j = ;刀刀 刀Y F j = ;尾 尾尾Y F j = 四、画出尾座套筒分别伸出为5mm 、105mm 时尾座的刚度曲线图。 其中横座标为尾座位移量Y 尾,纵座标为F 尾值。 五、实验结果分析及体会 六、填写实验报告

乘用车白车身接头静刚度分析规范

Q/JLY J711 -2008 乘用车白车身接头静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司

二〇〇八年九月

前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本规范。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。 本规范主要起草人:袁连太。 本规范于2008年10月15日发布并实施。

1 范围 本规范规定了乘用车白车身接头静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车白车身接头静刚度CAE分析。 2 软硬件设施 乘用车白车身接头静刚度CAE分析,主要包括以下设施: a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 3.1 白车身有限元模型 乘用车白车身接头静刚度分析的输入条件主要指白车身有限元模型,一个完整的白车身有限元模型其中含内容如下: a)白车身各个零件的网格数据; b)白车身焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车白车身接头静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型白车身接头静刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1白车身接头静刚度分析报告》),报告内容按7规定的内容编制。 5 分析方法 5.1 分析模型 乘用车白车身接头静刚度分析的有限元模型,一般是从白车身有限元模型中抽取下来的接头模型,主要包括A柱与顶盖连接点、B柱与顶盖连接点、B柱与门槛连接点、C柱与顶盖连接点,这些接头模型用于接头参数化和引导设计。 5.2 分析模型截取 截取接头有限元模型,应符合下列要求:

相关文档