文档库 最新最全的文档下载
当前位置:文档库 › 准ZVS双管正激变换器

准ZVS双管正激变换器

准ZVS双管正激变换器
准ZVS双管正激变换器

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

高效率双管正激变换器的研究 开题报告

高效率双管正激变换器的研究 一、课题来源、意义、目的、国内外概况与预测 如何提高电能的利用率一直是电力电子领域最为重要的研究方向,而且必将成为未来该领域研究热点,并在某种程度上决定电力电子技术未来的兴衰命运。 DC/DC 变换技术一直是开关电源技术的重点,也是开关电源技术发展的基础。DC/DC 变换是开关电源的基本单元,其他各种形式的变换电路都是DC/DC 变换电路的演变。DC/DC 变换技术的发展伴随着开关电源技术发展,也是发展最快的电源变换技术之一。所以,研究高效率DC/DC 变换器对电力电子技术的发展具有重要意义。 在各种隔离式DC/DC 变换器中,单管正激变换器由于具有电路结构简单、成本较低、输出电流大、工作可靠性高等优点而广泛应用于中小功率变换场合,更成为低压大电流功率变换器的首选拓扑结构。但由于主开关管电压应力较大而不适合输入电压高的场合。 传统双管正激变换电路使得正激电路的主开关电压应力减小了一半左右,但是受复位机制的限制,它的工作占空比只能小于0.5,不适合电压范围较宽的场合。且开关管工作在硬开关状态下,开关损耗大,在不断追求高频化的今天,显得不合时宜。 本着最大可能提高电路效率的原则,本文着重研究了一种高效率双管正激变换器。 目前,通常采用的磁复位方法主要有以下几种: (1) 采用辅助绕组复位; (2) 采用RCD 复位; (3) 采用LCD 复位; (4) 采用谐振复位; (5) 采用有源钳位复位。 1、辅助绕组复位正激变换器 V O V 图一所示的单端正激变换器的隔离变压器有三个绕组:一次绕组1N 、二次绕组2N 和去磁绕组3N 。在on T 时间内,T 导通,2D 导通,1D 、3D 截止,电源向负载传递能量,此时,磁通增量为11(/)(/)D on D S V N T V N DT ?Φ=?=?,输出电压为21/o D v N N V =?。

宽输入多路输出双管反激变换器的分析与制作

摘要本文对dc-dc变换器进行了分析、比较,结合高压、宽输入,小功率和多路输出的设计要求,并做了双管反激变换器的saber仿真分析及样机的制作。 【关键词】双管反激变换器 saber仿真 1 前言 世界对能源、环保问题的重视,人们对绿色能源的期望越来越高,从而促进了可再生能源,尤其是太阳能及风能的开发利用。在太阳能光伏发电系统中,光伏电池的特性随照射光的强度变化幅度比较大,所以系统逆变器的控制电源应具备大范围直流电压变化情况下的稳定工作能力,即应该有一个相当宽的工作电压范围,这样在太阳光线很弱的情况下仍能保证逆变器控制系统的正常工作。 2 线性稳压电源和开关稳压电源是现有的电源两种主要类型概述 开关电源是一种新型、高效的直流电源,因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代了传统的线性稳压电源。在本课题中多路输出开关电源需要在一个相当宽的工作电压范围内稳定输出,要保证开关电源能够在这么宽的输入电压范围内正常工作,如果用常规方法设计,首先要保证在最低电压时主功率管工作在最大的占空比,当电压上升到最高电压时,主功率管的占空比很小了,这样肯定会丢脉冲,系统会工作不稳定。为此本课题针对宽输入多路输出的关键问题讲进行研究。 隔离型dc-dc 变换器包括反激、正激、推挽、半桥以及全桥等。这类变压器适用于升降压范围宽,输入输出间需要电气隔离的场合。下面将结合电路要求,简要介绍这几种变换器的优缺点。 2.1 单端反激变换器 单端反激电路结构简单,成本低,易于多路输出。反激变换器相当于隔离的buck-boost 变换器,其中隔离变压器是个多绕组耦合电感,具有储能、变压和隔离的作用。变压器储能限制了变换器的输出功率,因此只适合于小功率应用场合。且变压器单向激磁,利用率低。 2.2 单端正激变换器 电路形式与反激式变换器相似,只是变压器的接法和作用不同。优点同样是是电路结构简单。但其变压器铁芯磁复位必须采取磁复位电路来实现,除有源箝位等少数几种磁复位方式外,其它多种复位方式拓扑一般存在以下缺陷:变压器铁芯单向磁化,利用率低,主功率管的占空比一般都不超过0.5,主功率管承受两倍左右的输入电压。 2.3 半桥变换器 铁芯双向磁化,利用率高。变压器铁芯不存在直流偏磁现象,功率管承受电源电压,流过两倍的输入电流,适合高压中功率场合。 2.4 双管反激小功率辅助电源 对于小功率应用场合,通常采用正激变换器和反激变换器这两种变换器。输入电压不高的场合,通常采取单端反激的设计方法,但在较高输入电压场合单端反激电路不适用,由于输入电压的变化范围、反激电压、输出轻载状况,单端反激变换器主开关电压应力较大。反激变换器中变压器磁芯处于直流偏磁状态,为防磁饱和要加入气隙,因此漏感较大。当功率管关断时,会产生很大的关断电压尖峰,从而进一步增加了主开关管的电压应力,使emi更为严重,有可能损坏功率管。因此本文采用双管反激的思路,将单管用两只开关管替代,同时导通、关断,并采用箝位二极管把开关管在反激过程中承受的峰值电压箝制在输入电源电压。由此双管反激电路每个开关管上的电压应力大大降低了,开关管的选择范围也更大,同时也具备了单端反激电路的优点。 双管反激变换器的saber仿真,仿真原理图如图1所示。 测试条件:

正激变换器及其控制电路的设计及仿真

正激变换器及其控制电路的设计及仿真 电气工程 张朋 13S053081

设计要求: 1、输入电压:100V(±20%); 2、输出电压:12V; 3、输出电流:1A; 4、电压纹波:<70mV(峰峰值); 5、效率:η>78%; 6、负载调整率:1%; 7、满载到半载,十分之一载到半载纹波<200mV。 第一章绪论 1.课题研究意义: 对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本DC/DC变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC变换器。而正激变化器就实现了这种功能。 2.课题研究内容: 1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。 2、正激变换器的控制方式主要通过闭环实现。其中闭环方式又分为PID控制和fuzzy控制。本文分别针对开环、PID控制,fuzzy控制建立正激变换器的Matlab仿真模型,并进行仿真分析了,最后对得出的结果进行比较。 第二章:正激电路的参数计算 本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。 1、正激变换器的等值电路图 图1 正激变换器等值电路图 2、参数计算 (1)变比n 根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比:

n= D U U out in ?=4.012 100 ?=3.3 (2) 最大、最小占空比 最大占空比D max 定义为 D max = ()n U U U in d out 1 min ? +, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。 最小占空比D min 定义为 D min = ()n U U U in d out 1 max ? +, 式中U in(max) =120V , 所以D min =0.333。 (3) 电容 电容的容量大小影响输出纹波电压和超调量的大小。取开关频率f=200KHZ ,则T=5×10-6 s , 根据公式: C=ripple ripple V f I ??81 , 式中取I ripple =0.2A ,V ripple =0.07mV , 所以C=1.79μF 。为稳定纹波电压,放大电容至50μF 。 (4) 电感 可使用下列方程组计算电感值: U out =L ×dt di , dt= f D m in 1-, 式中U out =12V ,di 取为0.2A ,D min =0.333, 所以L=0.334mH 。 第三章 正激变换器开环的Matlab 仿真 本章首先建立了正激变换器开环下的Matlab 仿真模型,然后对其进行了仿真分析。

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

双管正激变换器交错并联的方法比较

双管正激变换器交错并联的方法比较 摘要:从开关器件的电压应力来看,双管正激变换器较一般的正激变换器有更多的优点。本文提出了两种双正激变换器交错并联的方法,分析了两种电路的工作状态,比较了两种电路中输出滤波电感和电容中的电流脉动,对比了两种电路中各半导体器件的电流电压应力。最后通过仿真和实验证明了分析和比较的正 确性。 关键词:双管正激变换器移相并联开关应力 Comparison of Interleaving Methods of Two-transistor Forward Converter Abstract:Two methods of inte rleaving two-transistor forward converters are presented in this paper. Firstly, the operation stages are a nalyzed. Then the ripple currents in filter inductors and output capactiors in toth methods are discussed a nd compared. After that ,the current and voltage stresses of divices are investigated and compared as wel l.Finally, simulation and experiments are performed to verify the analysis and comparision. Keywords:Two -transistor forward converter Interleaving of converters Switching stress 1引言 双管正激变换器较单管正激变换器有很多优点,特别是在电压应力方面,因为变换器中每个功率器件只需承受电源电压,而在单管正激变换器中则要承受两倍的电源电压。而且同半桥或全桥变换器相比,它不存在桥臂直通的危险。因此双管正激变换器吸引了许多研究者的目光。在参考文献[1]中,作者提出了采用无损吸收的高效率双管正激变换器。在[2]和[3]中,两种零电压转换(ZVT)技术用于双管正激变换器。在[4]中,作者提出了一种可控变压器,用于增加双管正激变换器的效率。在[5]中,作者研究了多输出双管 正激变换反馈的模型。 为了增加变换器的输出功率,需要将两个双正激变换器并联运行。有两种方法实现两个双正激变换器的移相并联;一种是在输出电压侧并联(CPOC),另一种是在续流二极管侧并联(CPFD)。以前还没有 过关于两种方法比较的报道。 本文首先分析了两种并联方式的工作原理,然后分析和比较了两种方法中滤波电感和输出电容中的电流脉动,接着分析和比较了两种途径中各半导体器件的电流电压应力,最后用仿真和实验验证了前面的分 析和比较。 2工作状态分析 (1)两个双管正激变换器在输出电容侧并联 将两个双管正激变换器在输出电容侧并联如图1所示,其工作状态与单个双管正激变换器一样,图2 示出了这种并联方式的主要波形。 (2)两个双管正激变换器在续流二极管侧并联 两个双管正激变换器在续流二极管侧并联如图3所示。两变换器共用一个滤波电感和续流二极管,两 变换器在运行中移相180°。

3843控制的反激变换器

看到一篇文章,220+-20%输入整流后为240-360 单端反激式电源中产生的反向电动势e=170v 则脉冲信号的最大占空比为170/(170+240)=41.5% 我记得反激最大占空比不是可以达到100%吗?可是如果用上面的式子是绝对小于1的 请高手指教 双管反激占空比可以大于50%,CCM下可以大于50%但是需要补偿. 常规我们说的反激最大也就在47%左右,不大于50%. Dmax=V or/(V or+VDCmin-Vds(ON)) 其中,V or为反射电压,80~135V,常规下取默认值110V,至于为什么,请看书.自己推导一下变知. VDCmin指的是母线上最低直流电压,这个只与你的输入交流值有关. Vds(ON)指的是开关管导通时开关管DS两端压降,在10V以下.与MOSFET的Rds以及你的负载有关,负载大的时候,这个压降会大一些,轻载的时候小一些. 所以,占空比怎么达到100%呢? 占空比还与选择开关管的耐压有关,有一些早期的反激电源使用比较低耐压开关管,如600V或650V作为交流220V 输入电源的开关管,也许与当时生产工艺有关,高耐压管子,不易制造,或者低耐压管子有更合理的导通损耗及开关特性,像这种线路反射电压不能太高,否则为使开关管工作在安全范围内,吸收电路损耗的功率也是相当可观的.实践证明600V管子反射电压不要大于100V,650V管子反射电压不要大于120V,把漏感尖峰电压值钳位在50V时管子还有50V的工作余量.现在由于MOS管制造工艺水平的提高,一般反激电源都采用700V或750V甚至800-900V 的开关管.像这种电路,抗过压的能力强一些开关变压器反射电压也可以做得比较高一些,最大反射电压在150V比较合适,能够获得较好的综合性能.PI公司的TOP芯片推荐为135V采用瞬变电压抑制二极管钳位.但他的评估板一般反射电压都要低于这个数值在110V左右.这两种类型各有优缺点: 第一类:缺点抗过压能力弱,占空比小,变压器初级脉冲电流大.优点:变压器漏感小,电磁辐射低,纹波指标高,开关管损耗小,转换效率不一定比第二类低. 第二类:缺点开关管损耗大一些,变压器漏感大一些,纹波差一些.优点:抗过压能力强一些,占空比大,变压器损耗低一些,效率高一些. 反激电源的反射电压还与一个参数有关,那就是输出电压,输出电压越低则变压器匝数比越大,变压器漏感越大,开关管承受电压越高,有可能击穿开关管、吸收电路消耗功率越大,有可能使吸收回路功率器件永久失效(特别是采用瞬变电压抑制二极管的电路).在设计低压输出小功率反激电源的优化过程中必须小心处理,其处理方法有几个: 1、采用大一个功率等级的磁芯降低漏感,这样可提高低压反激电源的转换效率,降低损耗,减小输出纹波,提高多路输出电源的交差调整率,一般常见于家电用开关电源,如光碟机、DVB机顶盒等. 2、如果条件不允许加大磁芯,只能降低反射电压,减小占空比.降低反射电压可减小漏感但有可能使电源转换效率降低,这两者是一个矛盾,必须要有一个替代过程才能找到一个合适的点,在变压器替代实验过程中,可以检测变压器原边的反峰电压,尽量降低反峰电压脉冲的宽度,和幅度,可增加变换器的工作安全裕度.一般反射电压在110V时比较合适. 3、增强耦合,降低损耗,采用新的技术,和绕线工艺,变压器为满足安全规范会在原边和副边间采取绝缘措施,如垫绝缘胶带、加绝缘端空胶带.这些将影响变压器漏感性能,现实生产中可采用初级

双管正激

双管正激理想模型的理论缺陷及实际工作过程分析 The defects in operation principle of dual switch forward converter based on ideal model and the analysis of practical operation principle adlsong 摘要:本文阐述的双管正激拓朴结构基于理想模型的工作原理的缺陷,分析了基于基于实际模型的磁通复位工作原理。还讨论了散热器寄生电容对磁通复位过程的影响。文中给出的实际双管正激电源的工作波形,实验的结果证明了分析的正确。此外,还讨论了磁通复位后开关管两端的电压大小与负载的变化关系,也给出相应的实验波形。 Abstract: The principle of dual switch forward converter based on ideal model and its defects are presented in this paper. The practical operation principle based on real model is also discussed in detail. The effect on transformer reset caused by parasitic capacitance between power devices and the heat sink is also discussed. It proves to be correct by the waveforms of a practical dual switch forward converter. It is discussed how the voltage value between the power device after the transformer demagnetized completely varies with the output load. The waveforms are presented in the end. 关键词:双管正激,磁通复位,寄生电容,散热器 Key Words: Dual Switch Forward, Magnetic Reset, Parasitic Capacitor, Heat Sink 双管正激变换器拓朴结构由两个功率开关管和两个二极管构成,当二个开关管Q1和Q2同时关断时,磁通复位电路的二个二极管D3和D4同时导通,输入的电流母线电压Vin反向加在变压器的初级的励磁电感上,初级的励磁电感在Vin作用下励磁电流从最大值线性的减小到0,完成变压器磁通的复位,并将储存在电感中的能量返回到输入端,没有功率损耗,从而提高电源的效率;此外,每个功率开关管理论的电压应力为直流母线电压,这样就可以选取相对较低的额定电压的功率MOSFET 管,成本低,而且额定功率较低的功率MOSFET的导通电阻小,因此可以进一步的提高效率。所以双管正激变换器广泛的应用于台式计算机的主电源及大功率通信电源、变频器等三相电路的辅助电源中。本文将讨论在一些教材和资料中所阐述的这种拓朴结构基于理想模型的工作原理的缺陷,并

基于UC3844的多路输出双管正激电源设计

第十七届全国电源技术年会论文集 基于UC3844的多路输出双管正激电源设计 石晓丽张代润黄念慈郑越四川大学电气信息学院(成都610065) 摘要:介绍了一种基于UC3844集成芯片实现双管正激多路输出的电路,分析了电路的工作原理,并介绍了电路启动和控制设计方法,该控制方法简单,成本低,工作频率高,实用性强,同时设计了两种输出方案来满足不同需要,与一般的双管正激相比有较高的实用价值,实验证明效果良好。 叙词:双管正激多路输出开关电源 1引言 在中等容量的开关电源中,双管正激变换器有比较明显的 优势,它克服了单管正激变换器开关管电压应力过高的缺点,而 且不需要特殊变压器磁复位电路。更重要的是,与全桥变换器 和半桥变换器相比,其在结构上有抗桥臂直通的优点,因此已成 为应用最为普遍的电路拓扑结构。本文设计了一种采用 UC3844控制的多路输出双管正激开关电源。UC3844是一种电 流调制的PWM控制器,实现电压电流双闭环控制,芯片内阻较 大(30k),启动电流小(小于lmA),因此在高压输入时仍然可以 使用大电阻分压来进行启动,直接采用变压器输出端反馈,控制 电路简单,电路输出采用LM350调整电压精度。 2变换器工作原理 本文设计的变换器输出功率200W,工作频率50kHz,工作范围400V~600V,输出4路分别为24V、±12V和5V。 图l是变换器的原理图,主电路是双管正激变换器,开关管Q1和Q2同时导通,能量通过高频变压器传输到输出侧,经整流输出给负载;开关管关断时,变压器能量通过续流二极管D。和D2回馈到输入端,变压器磁芯复位。 Q和Q采用功率M喽;H『r作为功率开关管。开关管与瞬态电压抑制器(TVS)并联,可靠保护开关管。R3、G、b构成高频变压器原边缓冲电路,用以限制开关管漏极因高频变压器的漏感而可能产生的尖峰电压,岛选用超快恢复二极管,恢复时间为75ns。变压器原边的直流输入电压、原边绕组的感应电压以及由变压器的漏感而产生的尖峰电压,三者叠加在一起,其值可能超过M哽;既丌的额定电压,所以必须在开关管的DS极增加钳位电路和吸收电路,用以保护功率M瞪;H『r不被损坏。R。、Rz、C1、聩与R、R5、c3、D4构成了两个开关管的缓冲电路,D3和D4选用超快恢复管,其最大反向耐压值为700V,恢复时间为30ns。 输出部分采用半波加续流二极管整流,二极管选用超快恢复MUR820,额定值为8A/200V,恢复时间为30ns。 3控制电路的设计 UC3844电流PWM模式集成控制芯片广泛用于中小功率的13(3-13(3开关电源,UC3844内部主要由5.0V基准电压源、振荡器、降压器、电流检测比较器、PWM锁存器、高增益E/A误差放大器和用于驱动功率MOSFET的大电流推挽输出电路等 图1由UC3844控制的多路输出双管正激开关电源 构成,启动/关闭电压阀值为16v/10V,输出最大占空比为50%,工作频率0~500kHz,驱动能力达士1A。 R2 R4 图2UC3844的典型外部接线图 UC3844典型外围电路如图2所示。UC3844的内阻大约30k,它的启动电压可以由主电路输入电压经过Rt、Rz、R。、R(芯片内阻)分压而得到,由图2可以知道,A点电压的计算公式为: UA2i孺Rl‰ UC3844的启动电压为16V,式中R一30k,R2—20k,R4—4.7k,可计算出,当R-一300k时,%一400V电路开始工作。UC3844启动时电流不到lmA,启动过程中电阻R-所消耗的功率大约为: Pea=r×R1一(10-3)2×300×103—0.3W在双管正激变换器中,两开关管是同步的,因此采用变压器分两路来同时给开关管驱动信号,接线如图3所示。UC3844正 ?189?

反激变压器绕制详解

反激式开关电源变压器的设计(小生我的办法,见笑) 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有

VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)= 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。现在下一步就是求那个电流峰值,尖峰值是多少呢,这个我们自己还要设定一个参数,这个参数就是KRP,所谓KRP,就是指最大脉动电流和峰值电流的比值这个比值下图分别是最大脉动电流和峰值电流。是在0和1之间的。这个值很重要。已知了KRP,现在要解方程了,都会解方程吧,这是初一的应用题啊,我来解一下,已知这个波形一个周期的面积等于电流平均值*1,这个波形的面积等于,峰值电流*KRP*D+峰值电流*(1-KRP)*D,所以有电流平均值等于上式,解出来峰值电流=电流平均值/()*D。比如说我这个输出是10W,设定效率是.则输入的平均电流就是10/*90=,我设定KRP的值是而最大值=.D=**=.

1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计 正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法: 规格: 输入电压Vin=400V(一般在输入端会有CCM A PFC将输入电压升压在稳定的DC400V左右) 输出电压Vout=12V 输出功率Pout=1200W 效率η=85% 开关频率Fs=68KHz 最大占空比Dmax=0.35 第一, 第一,选择磁芯的材质 选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下: 因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB

得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB 的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T 第二,确定磁芯规格 根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku) 其中: Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数 对正激变换器,视在功率Ps=Pout/η+Pout 电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2 铜窗口占用系数Ku取0.2 ΔB=0.20T,J=600A/cm2,Ku=0.2 代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4 查磁芯规格书,选用磁芯ETD49,其相关参数如下: 第三,计算匝比、匝数 1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf) 其中Vf为输出二极管正向压降,取0.8V 得匝比N=(400*0.35)/(12+0.8)=10.9375, 取匝比N=11验算最大占空比Dmax, 最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352 2. 根据公式Np=Vin*Ton/(ΔB*Ae)

双管正激同步整流变换器

本科毕业设计(论文) 双管正激同步整流变换器 *** 燕山大学 2012年6月

本科毕业设计(论文) 双管正激同步整流变换器 学院(系):里仁学院 专业:08应电2班 学生姓名:*** 学号:*** 指导教师:*** 答辩日期:2012/6/17

燕山大学毕业设计(论文)任务书学院:系级教学单位: 学号*** 学生 姓名 *** 专业 班级 08应电2班 题目题目名称推挽正激式DC-DC变换器的设计 题目性质 1.理工类:工程设计(√ );工程技术实验研究型(); 理论研究型();计算机软件型();综合型() 2.管理类(); 3.外语类(); 4.艺术类() 题目类型 1.毕业设计(√ ) 2.论文() 题目来源科研课题()生产实际()自选题目(√) 主要内容随着电源技术的发展,低电压、大电流的变换器因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激式和反激式有电路拓扑结构简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。与正、反激式相比,推挽式变换器变压器利用率高,输出功率较大,基本不存在励磁不平衡的现象。因此,一般认为推挽式变换器适用于低压,大电流,功率较大的场合。应用SG3525设计一套用于正激电路的低压大电流变换器及其控制系统,并通过Pspice仿真验证其闭环控制性能。 基本要求1. 了解正激变换器的基本原理,建立推挽正激式低压大电流DC-DC变换器的Pspice仿真模型; 2. 基于SG3525的特性设计PI控制闭环系统,给出控制参数的设计过程; 3. 仿真验证控制系统的性能。 参考资料1. 基于SG3525控制的双管正激变换器 2. SG2525A-REGULA TING PULSE WIDTH MODULA TORS 3. 脉宽调制电路SG3525AN原理与应用 4. SG3525在开关电源中的应用 周次第~周第~周第~周第~周第~周 应完成的内容查阅资料、 分析原理 建立正激式 DC-DC变换器的 Pspice仿真模型 闭环控制参 数的设计与 整定; 仿真验证;撰写论文 准备答辩 指导教师: 职称:年月日系级教学单位审批: 年月日

正激变换器和反激变换器的特性

正激变换器和反激变换器 正激变换器磁性元件的设计 正激变换器磁性元件除了变压器外,还有一个电感器,即扼流圈(输出电感)。一般的资料上都是从变压器开始算起的,但本人认为应该从电感器开始算起比较好,这样比较明了,思维可以比较清楚。因为正激变换器起源于BUCK变换器,而BUCK变换器,其功率的心脏是储能电感,因此,正激变换器的功率心脏是扼流圈,而不是变压器,变压器只有负责变电压,并没有其它的功能,功率传输靠得是电感。当然一般书上从变压器算起,也未尝不可,但这样算,思路不是很明确,也不容易让读者理解。 双管正激变换器工作特点 a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd(Vs:输入电 压;Vd:D1、D2的正向压降,),D1、D2必须是快恢复管(当然用恢复时间越短越好,我在实际设计和调试中多使用MUR460)。 b、在与单端正激变换器相比,无需复位电路,有利于简化电路和变压器设计;功率器件可选择较低的耐压值;功率等级也会很大,据我所知现在很多大功率等级的通信电源及电力操作电源都选用了这种电路。 c、两个调整管工作状态一致,同时处通态或断态。我个人建议在大功率等级电源中选用此种电路,主要是调整管好选,比如IRFP460、IRFP460A等调整管即可。 正激变换器输出电感计算 单端正激、双管正激、半桥、推挽、全桥、BUCK等电路设计方法相同。我实际设计和调试中一般仅以公式计算值作参考,适当的可以调整匝数以达到最佳状态(我个人认为)。 单端反激变换器设计 1、反激变换器电路拓扑图 图单端反激变换器

2、反激变换器电路原理 其变压器T1起隔离和传递储存能量的作用,即在开关管Q开通时Np储存能量,开关管Q 关断时Np向Ns释放能量。在输出端要加由电感器Lo和两Co电容组成一个低通滤波器(没有也可以),变压器初级需有Cr、Rr和Dr组成的RCD漏感尖峰吸收电路。输出回路需有一个整流二极管D1。由于其变压器使用有气隙的磁芯,故其铜损较大,变压器温相对较高。并且其输出的纹波电压比较大。但其优点就是电路结构简单,适用于200W以下的电源且多路输出交调特性相对较好。 正激变换器和反激变换器的区别 正激式变换器不蓄积能量,只担负耦合传输,反激式变换器需把开通过程中的能量蓄积在本身,关断过程中再释放:正激式绕组同相位,反激式绕组反相;正激式变换器不用调节电感值,反激式需调节.正激式工作存在剩磁为防饱和需消磁电路,本身不蓄能。需要蓄能线圈和续流二极管.反激式不用..因为成本和它们的特性,一般反激式电源在100瓦以下,正激式100瓦以上,并不是它们不能互换做功率.

正激、反激、双管反激、推挽开关电路小结

开关电源电路学习小结 1.正激(Forward)电路 正激电路的原理图如图1所示: 图1、单管正激电路 1.1电路原理图说明 单管正极电路由输入Uin、滤波电容C1、C2、C3,变压器Trans、开关管VT1、二极管VD1、电感L1组成。 其中变压器中的N1、N2、N3三个线圈是绕在同一个铁芯上的,N1、N2的绕线方向一致,N3的绕线方向与前两者相反。 1.2电路工作原理说明 开关管VT1以一定的频率通断,从而实现电压输出。当VT1吸合时,输入电压Uin被加在变压器线圈N1的两边,同时通过变压器的传输作用,变压器线圈N2两边产生上正下负的电压,VD1正向导通。Uin的能量通过变压器Tran传输到负载。 由于N3的绕线方向与N1的相反,VT1导通时,N3的电压极性为上负下正。 当VT1关断时,N1中的电流突然变为0,但铁芯中的磁场不可能突变,N1产生反电动势,方向上负下正;N3则产生上正下负的反向电动势,多出的能量将被回馈到Uin。 通过上述内容可以看到W3的作用,就是为了能使磁场连续而留出的电流通路,采用

这种接线方式后,VT1断开器件,磁场的磁能被转换为电能送回电源。 如果没有N3,那么VT1关断瞬间要事磁场保持连续,唯有两个电流通路:一是击穿开关;二是N2电流倒流使二极管反向击穿。击穿开关或二极管,都需要很高电压,使击穿后电流以较高的变化率下降到零;而很高的电流变化率(磁通变化率)自然会产生很高的感生电动势来形成击穿电压。 由此可见,如果没有N3,则电感反向时的磁能将无法回收到电源;并且还会击穿开关和二极管。 1.3小结 1)正激电路使用变压器作为通道进行能量传输; 2)正激电路中,开关管导通时,能量传输到变压器副边,同时存储在电感中;开关管 关断时,将由副边回路中的电感续流带载; 3)正激电路的副边向负载提供功率输出,并且输出电压的幅度基本是稳定的。正激输 出电压的瞬态特性相对较好; 4)为了吸收线圈在开关管关断时时的反电动势,需要在变压器中增加一个反电动势吸 收绕组,因此正激电路的变压器要比反激电路的体积大; 5)由于正激电路控制开关的占空比都取0.5左右,而反激电路的占空比都较小,所以 正激电路的反激电动势更高。

相关文档
相关文档 最新文档