文档库 最新最全的文档下载
当前位置:文档库 › 数值分析与算法 课程作业1(2014 - 2015秋季学期)

数值分析与算法 课程作业1(2014 - 2015秋季学期)

数值分析与算法 课程作业1(2014 - 2015秋季学期)

2014 –2015秋季学期数值分析与算法课程作业

第一章绪论

1、下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:

x1?=1.1021, x2?=0.031, x3?=385.6, x4?=56.430, x5?=7×1.0。

2、设Y0=28,按递推公式:

√783 (n=1,2,…)

Y n=Y n?1?1

100

计算到Y100。若取√783≈27.982(5位有效数字),试问计算Y100将有多大误差?

3、f(x)=ln(x?2?1),求 f(30)的值。若开平方用6位函数表,问求对数时误差有多大?若改用另一等价公式

ln(x?√x?1)=?ln(x+√x?1)

计算,求对数时误差有多大?

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析小论文 董安

数值分析作业 课题名称代数插值法-拉格朗日插值法班级Y110201 研究生姓名董安 学号S2******* 学科、专业机械制造及其自动化 所在院、系机械工程及自动化学院2011 年12 月26日

代数插值法---拉格朗日插值法 数值分析中的插值法是一种古老的数学方法,它来自生产实践。利用计算机解决工程问题与常规手工计算的差异就在于它特别的计算方法.电机设计中常常需要通过查曲线、表格或通过作图来确定某一参量,如查磁化曲线、查异步电动机饱和系数曲线等.手工设计时,设计者是通过寻找坐标的方法来实现.用计算机来完成上述工作时,采用数值插值法来完成。因此学好数值分析的插值法很重要。 插值法是函数逼近的重要方法之一,有着广泛的应用 。在生产和实验中,函数f(x)或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数 (x),使其近似的代替f(x),有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.本文着重介绍拉格朗日(Lagrange)插值法。 1.一元函数插值概念 定义 设有m+1个互异的实数1x ,2x ,···,m x 和n+1 个实值函数()0 x j , ()1 x j , ···()n x j ,其中n £m 。若向量组 k f =(()0k x j ,()1k x j ,···,() k m x j )T (k=0,1,,n ) 线性无关,则称函数组{()k x j (k=0,1, ,n )}在点集{i x (i=0,1, ,m)}上线性无关;否 则称为线性相关。 例如,函数组{2+x ,1-x ,x+2 x }在点集{1,2,3,4}上线性无关。 又如,函数组{sin x ,n2x ,sin 3x }在点集{0, 3p ,2 3 p ,p }上线性相关。 给点n+1个互异的实数0x ,1x ,···,n x ,实值函数() f x 在包含0x ,1x ,···,n x 的某个区间[] ,a b 内有定义。设函数组 {()k x j (k=0,1, ,n )} 是次数不高于n 的多项式组,且在点集{0x ,1x ,···,n x }上线性无关。

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

《数值分析》课程设计报告

《数值分析》课程设计实验报告 龙格—库塔法分析Lorenz 方程 200820302033 胡涛 一、问题叙述 考虑著名的Lorenz 方程 () dx s y x dt dy rx y xz dt dz xy bz dt ?=-???=--???=-?? 其中s ,r ,b 为变化区域内有一定限制的实参数,该方程形式简单,表面上看并无惊人之处,但由该方程揭示出的许多现象,促使“混沌”成为数学研究的崭新领域,在实际应用中也产生了巨大的影响。 二、问题分析 Lorenz 方程实际上是一个四元一阶常微分方程,用解析法精确求解是不可能的,只能用数值计算,最主要的有欧拉法、亚当法和龙格- 库塔法等。为了得到较高精度的,我们采用经典四阶龙格—库塔方法求解该问题。 三、实验程序及注释 (1)算法程序 function [T]=Runge_Kutta(f,x0,y0,h,n) %定义算法,其中f 为待解方程组, x0是初始自变量,y0是初始函数 值,h 是步长,n 为步数 if nargin<5 n=100; %如果输入参数个数小于5,则步数 n=100 end r=size(y0);r=r(1); %返回初始输出矩阵的行列数,并将 值赋给r(1) s=size(x0);s=s(1); %返回初始输入矩阵的行列数,并 将值赋给s(1) r=r+s; T=zeros(r,n+1); T(:,1)=[y0;x0]; for t=2:n+1 %以下是具体的求解过程 k1=feval(f,T(1:r-1,t-1)); k2=feval(f,[k1*(h/2)+T(1:r-1,t-1);x0+h/2]); k3=feval(f,[k2*(h/2)+T(1:r-1,t-1);x0+h/2]); k4=feval(f,[k3*h+T(1:r-1,t-1);x0+h]); x0=x0+h; T(:,t)=[T(1:r-1,t-1)+(k1+k2*2+k3*2+k4)*(h/6);x0]; end

北航数值分析大作业一

《数值分析B》大作业一 SY1103120 朱舜杰 一.算法设计方案: 1.矩阵A的存储与检索 将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] . 由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是: A的带内元素a ij=C中的元素c i-j+2,j 2.求解λ1,λ501,λs ①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。λmin即为λs; 如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。 ②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求 出对应的按摸最大的特征值λ,max, 如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。 3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。 使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。 4.求解A的(谱范数)条件数cond(A)2和行列式d etA。 ①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和 最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。 二.源程序 #include #include #include #include #include #include #include #define E 1.0e-12 /*定义全局变量相对误差限*/ int max2(int a,int b) /*求两个整型数最大值的子程序*/ { if(a>b) return a; else return b; } int min2(int a,int b) /*求两个整型数最小值的子程序*/ { if(a>b) return b; else return a; } int max3(int a,int b,int c) /*求三整型数最大值的子程序*/ { int t; if(a>b) t=a; else t=b; if(t

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

数值分析小论文论文

对于牛顿型方法的改进 对于函数f(x),假定已给出极小点* x 的一个较好的近似点0x ,则在0x 处将f(x)泰勒展开到二次项,得二次函数()x φ。按极值条件'()0x φ=得()x φ的极小点,用它作为*x 的第一个近似点。然后再在1x 处进行泰勒展开,并求得第二个近似点2x 。如此迭代下去,得到一维情况下的牛顿迭代公式'k 1''k ()() k k f x x x f x +=- (k=0,1,2,…) 对于多元函数f(x),设k x 为f(x)极小点*x 的一个近似值,在k x 处将f(x)进行泰勒展开,保留到二次项得21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ?≈=+?-+ -?-, 式中 2()k f x ?—f(x)在k x 处的海赛矩阵。 设1k x +为()x ?的极小点,它作为f(x)极小点*x 的下一个近似点,根据极值必要条件 1()0k x ?+?=即21()()()k k k k f x f x x x +?+?-得1 21()()k k k k x x f x f x -+??=-???? (k=0,1,2,…) 上式为多元函数求极值的牛顿法迭代公式。 对于二次函数,f(x)的上述泰勒展开式不是近似的,而是精确地。海赛矩阵是一个常矩阵,其中各元素均为常数。因此,无论从任何点出发,只需一步就可以找到极小点。因为若某一迭代法能使二次型函数在有限次迭代内达到极小点,则称此迭代方法是二次收敛的,因此牛顿方法是二次收敛的。 从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。因此对于非二次函数,如果采用上述牛顿法公式,有时会使函数值上升,即出现1>k k f f +(x )(x ) 现象。为此对上述牛顿方法进行改进,引入数学规划法的概念。 如果把1 2()()k k k d f x f x -??=-????看作是一个搜索方向,则采取如下的迭代公式 121()()k k k k k k k k x x a d x a f x f x -+??=-=-???? (k=0,1,2,…) 式中 k a —沿牛顿方向进行以为搜索的最佳步长k a 可通过如下极小化过程求得1()()()min k k k k k k k a f x f x a d f x a d +=+=+。由于此种方法每次迭代都在牛顿方向上进 行一维搜索,这就避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。其计算步骤如下:

北航数值分析报告第三次大作业

数值分析第三次大作业 一、算法的设计方案: (一)、总体方案设计: x y当作已知量代入题目给定的非线性方程组,求(1)解非线性方程组。将给定的(,) i i

得与(,)i i x y 相对应的数组t[i][j],u[i][j]。 (2)分片二次代数插值。通过分片二次代数插值运算,得到与数组t[11][21],u[11][21]]对应的数组z[11][21],得到二元函数z=(,)i i f x y 。 (3)曲面拟合。利用x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择适当k 值,并得到曲面拟合的系数矩阵C[r][s]。 (4)观察和(,)i i p x y 的逼近效果。观察逼近效果只需要重复上面(1)和(2)的过程,得到与新的插值节点(,)i i x y 对应的(,)i i f x y ,再与对应的(,)i i p x y 比较即可,这里求解 (,)i i p x y 可以直接使用(3)中的C[r][s]和k 。 (二)具体算法设计: (1)解非线性方程组 牛顿法解方程组()0F x =的解* x ,可采用如下算法: 1)在* x 附近选取(0) x D ∈,给定精度水平0ε>和最大迭代次数M 。 2)对于0,1, k M =执行 ① 计算() ()k F x 和()()k F x '。 ② 求解关于() k x ?的线性方程组 () ()()()()k k k F x x F x '?=- ③ 若() () k k x x ε∞∞ ?≤,则取*()k x x ≈,并停止计算;否则转④。 ④ 计算(1) ()()k k k x x x +=+?。 ⑤ 若k M <,则继续,否则,输出M 次迭代不成功的信息,并停止计算。 (2)分片双二次插值 给定已知数表以及需要插值的节点,进行分片二次插值的算法: 设已知数表中的点为: 00(0,1,,) (0,1,,)i j x x ih i n y y j j m τ=+=???=+=?? ,需要插值的节点为(,)x y 。 1) 根据(,)x y 选择插值节点(,)i j x y : 若12h x x ≤+ 或12 n h x x ->-,插值节点对应取1i =或1i n =-,

数值分析课程课程设计汇总

课 程 设 计 我再也回不到大二了, 大学是那么短暂 设计题目 数值分析 学生姓名 李飞吾 学 号 x x x x x x x x 专业班级 信息计x x x x x 班 指导教师 设 计 题 目 共15题如下 成绩

数值分析课程设计 1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途的颠簸,大家都很疲惫,很快就入睡了。第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?(15621) 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题 解:算法分析:解该问题主要使用递推算法,关于椰子数目的变化规律可以设起初的椰子数为0p ,第一至五次猴子在夜里藏椰子后,椰子的数目分别为01234,,,,p p p p p 再设最后每个人分得x 个椰子,由题: 14 (1)5 k k p p +=- (k=0,1,2,3,4)51(1)5 x p =- 所以551p x =+,11k k p p +=+利用逆向递推方法求解 15 1,4 k k p p +=+ (k=0,1,2,3,4) MATLAB 代码: n=input('n= '); n= 15621 for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; end if p==fix(p), break end end disp([x,p]) 1.2 设,1 5n n x I dx x =+? (1)从0I 尽可能精确的近似值出发,利用递推公式: 11 5(1,2,20)n n I I n n -=-+= 计算机从1I 到20I 的近似值; (2)从30I 较粗糙的估计值出发,用递推公式:

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目 第一题: 1. 算法设计方案 (1)1λ,501λ和s λ的值。 1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。 2)使用反幂法求λs ,其中需要解线性方程组。因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。 (2)与140k λλμλ-5011=+k 最接近的特征值λik 。 通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。 (3)2cond(A)和det A 。 1)1=n λλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。 2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。 由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。 2.全部源程序 #include #include void init_a();//初始化A double get_an_element(int,int);//取A 中的元素函数 double powermethod(double);//原点平移的幂法 double inversepowermethod(double);//原点平移的反幂法 int presolve(double);//三角LU 分解 int solve(double [],double []);//解方程组 int max(int,int); int min(int,int); double (*u)[502]=new double[502][502];//上三角U 数组 double (*l)[502]=new double[502][502];//单位下三角L 数组 double a[6][502];//矩阵A int main() { int i,k; double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

数值分析论文

数值分析结课论文 论文题目:浅谈数值分析在解决实际问题中的应用学校:天津商业大学 专业班级:数学类 1 0 0 3 班 姓名:何铭 学号: 2 0 1 0 2 3 4 1

摘要:数值分析是一门历史悠久的高等教育课程之一。是其他数学课程及应用的基础。同时它的应用也非常广泛,在经济生活以及科研教育领域都有应用。随着科学技术和信息技术的飞速发展,通过计算机编程方面的开发应用,数值分析也被更加广泛的应用于学习和生活中,使得人们对数值分析有了更深刻的了解以及最全面的认识。 正文:数值分析的原理和方法在各学科中的应用越来越广泛,因此将原来的主要面向应用数学专业开设的数值分析面向理工科大学中数学要求较高的专业本科生。同时由于科学及计算机的发展,计算机算法语言的多样化及数学软件的普及,要求数值分析更加强调算法原理及理论分析,而且加入了数学软件例如:MATLAB的学习以便学习及应用。数值分析目前涵盖了四大板块:极限论、微分学、积分学、级数理论,使得数学分析对计算机、物理、化学、生物、电教、经济学等课程产生了直接而重要的影响。另外,数学分析不仅在内容上为后继课程学习提供了必要的基础知识,而且它所蕴涵的分析数学思想、逻辑推理方法、解决问题的技巧,对于整个高等数学的学习及科学研究都起到基石和推波助澜的作用。 几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法也越来越多地应用于科学技术领域,新的计算性交叉学科分支不断涌现,如?:计算力学,计算物理,计算化学,计算生物学,计算经济学,统称科学计算,它涉及数学的各个分支,研究它们适合于计算机编程的算法就是计算数学的研究范畴。计算数学是各种计算性学科的共性基础,兼有基础性、应用性和边缘性的数学学科。科学计

数值分析大作业 三、四、五、六、七

大作业 三 1. 给定初值0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =- = ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

相关文档
相关文档 最新文档