文档库 最新最全的文档下载
当前位置:文档库 › 过采样理论简介

过采样理论简介

过采样理论简介
过采样理论简介

w过采样理论简介

AD转换的过采样技术一般分三步:1高速(相对于输入信号频谱)采样模拟信号2数字低通滤波3抽取数字序列。采用这项技术,既保留了输入信号的较完整信息,降低了对输入信号频谱的要求,又可以提高采样子系统的精度。

奈奎斯特采样定理

根据奈奎斯特采样定理,需要数字化的模拟信号的带宽必须被限制在采样频率fs的一半以下,否则将会产生混叠效应,信号将不能被完全恢复。这就从理论上要求一个理想的截频为fs/2的低通滤波器。实际中采用的通频带为0~fs/2的低通滤波器不可能既完全滤掉高于的fs/2的分量又不衰减接近于fs/2的有用分量。因此实际的采样结果也必然与理论上的有差别。如果采用高于fs的采样频率,如图1中为2fs,则可以很容易用模拟滤波器先滤掉高于1.5fs的分量,同时完整保留有用分量。采样后混入的界于0.5fs~1.5fs之间的分量可以很容易用数字滤波器来滤掉。这样输入模拟滤波器的设计将比抗混叠滤波器简单的多。

量化与信噪比

模拟信号的量化带来了量化误差,理想的最大量化误差为+/-0.5LSB。AD转换器的输入范围和位数代表了最大的绝对量化误差。量化误差也可以在频域进行分析,AD转换的位数决定了信噪比SNR;反过来说提高信噪比可以提高AD转换的精度。

假设输入信号不断变化,量化误差可以看作能量均匀分布在0~fs /2上的白噪声。但是对于理想的AD转换器和幅度缓慢变化的输入信号,量化误差不能看作是白噪声。为了利用白噪声理论,可以在输入信号上叠加一连续变化的信号,叫做“抖动信号”,它的幅值至少应为1LSB。

叠加白噪声提高信噪比

由于量化噪声功率平均分配在0~fs /2,而量化噪声能量是不随采样频率变化的,采用越高的采样频率时,量化噪声功率密度将越小,这时分布在输入信号的有用频谱上的噪声功率也越小,即提高了信噪比。只要数字低通滤波器将大于fs /2的频率分量滤掉,采样精度将会提高。

采用叠加白噪声进行的过采样在每提高一倍采样频率的情况下可以将信噪比提高3dB 或者说增加半位的分辨率,对于精度要求不太高的系统是不错的选择。这种方式需要通过某种方法产生白噪声,有时AD转换器内部的噪声已经足够,也就不用外加噪声源了。该方式对于输入原始波形没有限制,尤其适合于过采样倍数可以做的较高的系统。

叠加三角波提高信噪比

通过类似于∑-Δ调制的技术,在输入信号上叠加三角波可以达到比上述方法还高一倍的精度。如图2,假设输入信号位于量化步q0与q1之间,AD转换器将得到两者中的某一个值。通过叠加适当的三角波,则将会在某些点得到q0而另一些点为q1,而两者出现的比例代表了输入信号在q0~q1之间的较确切位置。为了使这种方法的效果达到最佳,三角波的幅度应为n+0.5LSB(n=0,1,2…),图2中n=1。由于采样频率很高,输入信号的相对变化可以认为很小。图2中表示输入信号约为(q0+0.6)LSB时,普通的转换器将采样量化为(q1)LSB。而叠加三角波后采样到一系列的q0和q1 ,而两者出现的比例代表了实际的输入信号位置。在图中,过采样倍数为16,量化值中q1出现9次q0出现7次,由此得到输入信号为(q0+0.563) LSB,可见比原来的q1量化误差小的多。

采用叠加三角波进行的过采样在每提高一倍采样频率的情况下可以将信噪比提高6dB 或者说增加1位的分辨率,可见其效果为叠加白噪声方法的2倍。然而要注意,该方法要求原始信号与三角波信号不相关,如果该条件不满足则必须保证在过采样周期(1/kfs)内原始信号的幅值变化不超过原始精度的+/-0.5LSB。

采样控制系统动态性能和稳定性分析的混合仿真研究

采样控制系统动态性能和稳定性分析的混合仿真研究一·实验目的 1.学习用混合仿真方法研究采样控制系统。 2.深入理解和掌握采样控制的基本理论。 二·实验要求 1.利用实验设备设计并实现已知被控对象为典型二阶连续环节的采样控制混合仿真系统。2.改变数字控制器的采样控制周期和放大系数,研究参数变化对采样控制系统的动态性能和稳定性的影响。 三·实验原理 进入实验界面后,先对实验类别进行设置(选择实验九或实验十),通过对界面下边开关来选择,点击开关向上(对应紫色信号灯亮)即选择采样控制混合仿真研究(即实验九);点击开关向下(对应绿色信号灯亮)即选择采样控制系统串联校正混合研究(即实验十)。选择“采样时间”为“200Hz/5ms”。 四·实验所用仪器 PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线 五·实验步骤和方法 1.利用实验设备设计并实现已知被控对象为典型二阶连续环节的采样控制混合仿真系统。2.改变数字控制器的采样控制周期和放大系数,研究参数变化对采样控制系统的动态性能和稳定性的影响。 具体步骤: 1.采样控制系统的混合仿真研究方法 (1)参阅本实验附录1(1)以及图9.1.1和图9.1.2,利用实验箱上的电模拟单元电路U9和U11,设计并连接已知传递函数的连续被控对象的模拟电路。 (2)将实验箱上的数据处理单元U3模拟量输出端“O1”与被控对象的模拟电路的输入端(对应图9.1.2的r(t)端)相连,同时将该数据处理单元U3的模拟量输入端口“I1”与被控对象的模拟电路的输出端(对应图9.1.2的c(t)端)相连。再将运放的锁零端“G”与电源单元U1的“-15V”相连。注意,实验中运放没有锁零,而模拟电路中包含“电容”,故每次实验启动前,必须对电容短接放电,以免影响实验结果。 (3)接线完成,经检查USB通讯线是否接好,再给实验箱上电后,启动上位机程序,进入主界面。界面上的操作步骤如下: ①通道接线设置”:将环节的输出端Uo接到U3单元的A/D输入端I1,U3单元的D/A 信号发生端接到环节的输入端Ui。 ②硬件按上述接线完后,检查USB通讯连线是否接好和检查实验箱电源是否正常后,点击LabVIEW上位机界面程序中的“RUN”按钮运行实验界面,如果有问题则请求指导教师帮助。 ③进入实验界面后,先对实验类别进行设置(选择实验九或实验十),通过对界面下边开关来选择,点击开关向上(对应紫色信号灯亮)即选择采样控制混合仿真研究(即实验九);点击开关向下(对应绿色信号灯亮)即选择采样控制系统串联校正混合研究(即实验十)。

信号处理中的采样

采样,其他名称:取样,指把时间域或空间域的连续量转化成离散量的过程。 1采样简介 解释1所谓采样(sampling)就是采集模拟信号的样本。 采样是将时间上、幅值上都连续的模拟信号,在采样脉冲的作用,转换成时间上离散(时间上有固定间隔)、但幅值上仍连续的离散模拟信号。所以采样又称为波形的离散化过程。 解释2把模拟音频转成数字音频的过程,就称作采样,所用到的主要设备便是模拟/数字转换器(Analog to Digital Converter,即ADC,与之对应的是数/模转换器,即DAC)。采样的过程实际上是将通常的模拟音频信号的电信号转换成二进制码0和1,这些0和1便构成了数字音频文件。采样的频率越大则音质越有保证。由于采样频率一定要高于录制的最高频率的两倍才不会产生失真,而人类的听力范围是20Hz~20KHz,所以采样频率至少得是20k×2=40KHz,才能保证不产生低频失真,这也是CD音质采用44.1KHz(稍高于40kHz是为了留有余地)的原因。 通过周期性地以某一规定间隔截取音频信号,从而将模拟音频信号变换为数字信号的过程。每次采样时均指定一个表示在采样瞬间的音频信号的幅度的数字。 2采样频率 每秒钟的采样样本数叫做采样频率。 采样频率越高,数字化后声波就越接近于原来的波形,即声音的保真

度越高,但量化后声音信息量的存储量也越大。 采样频率与声音频率之间的关系: 根据采样定理,只有当采样频率高于声音信号最高频率的两倍时,才能把离散模拟信号表示的声音信号唯一地还原成原来的声音。 目前在多媒体系统中捕获声音的标准采样频率定为44.1kHz、22.05kHz和11.025kHz三种。而人耳所能接收声音频率范围大约为20Hz--20KHz,但在不同的实际应用中,音频的频率范围是不同的。例如根据CCITT公布的声音编码标准,把声音根据使用范围分为以下三级: ·电话语音级:300Hz-3.4kHz ·调幅广播级:50Hz-7kHz ·高保真立体声级:20Hz-20kHz 因而采样频率11.025kHz、22.05kHz、44.1kHz正好与电话语音、调幅广播和高保真立体声(CD音质)三级使用相对应。 DVD标准的采样频率是96kHz 3采样位数 采样位数可以理解为采集卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实。我们首先要知道:电脑中的声音文件是用数字0和1来表示的。所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。反之,在播放时则是把数字信号还原成模拟声音信号输出。采集卡的位是指采集卡在采集和播放声音文件时所使用数字声音信号的二进制位数。采集卡的位客观地反映了数字

信号采样原理

6.2 信号采样与保持 采样器与保持器是离散系统的两个基本环节,为了定量研究离散系统,必须用数学方法对信号的采样过程和保持过程加以描述。 6.2.1 信号采样 在采样过程中,把连续信号转换成脉冲或数码序列的过程,称为采样过程。实现采样的装置,称为采样开关或采样器。如果采样开关以周期T 时间闭合,并且闭合的时间为τ,这样就把一个连续函数变成了一个断续的脉冲序列,如图6-3(b)所示。 ()e t *()e t 由于采样开关闭合持续时间很短,即T τ<<,因此在分析时可以近似认为0τ≈。这样可以看出,当采样器输入为连续信号时,输出采样信号就是一串理想脉冲,采样瞬时的脉冲等于相应瞬时的值,如图6-3(c) 所示。 ()e t *()e t ()e t 图6-3 信号的采样 根据图6-3(c)可以写出采样过程的数学描述为 *()(0)()()()()()e t e t e T t T e nT t nT δδδ=+?++?+L L )?nT (6-1) 或 (6-2) * ()()()()(δδ∞∞ =?∞=?∞=?=∑∑n n e t e nT t nT e t t nT 式中,是采样拍数。由式(6-2)可以看出,采样器相当于一个幅值调制器,理想采样序 n 列可看成是由理想单位脉冲序列对连续量调制而形成的,如图 * ()e t ()()δδ∞ =?∞=?∑T n t t 6-4所示。其中,()T t δ是载波,只决定采样周期,而为被调制信号,其采样时刻的值决定调制后输出的幅值。 ()e t ()e nT 图6-4 信号的采样 6.2.2 采样定理

一般采样控制系统加到被控对象上的信号都是连续信号,那么,如何将离散信号不失真地恢复到原来的形状,便涉及采样频率如何选择的问题。采样定理指出了由离散信号完全恢复相应连续信号的必要条件。 由于理想单位脉冲序列()T t δ是周期函数,可以展开为复数形式的傅氏级数 ()ωδ+∞=?∞= ∑s jn t T n n t c e (6-3) 式中,T s /2πω=为采样角频率,T 为采样周期,是傅氏级数系数,它由下式确定 n c /2/2 1()d ωδ+??=∫s T jn t n T T c t e T t (6-4) 在]2,2[T T +?区间中,)(t T δ仅在0=t 时有值,且,所以 1|0==?t t jn s e ω0011()d δ+?= ∫n c t t T T = (6-5) 将式(6-5)代入式(6-3),得 1()ωδ+∞=?∞ =∑s jn t T n t e T (6-6) 再把式(6-6)代入式(6-2),有 * 11()()()ωω+∞+∞ =?∞=?∞==∑∑s s jn t jn t n n e t e t e e nT e T T (6-7) 将式(6-7)两边取拉氏变换,由拉氏变换的复数位移定理,得到 ∑+∞?∞=+=n s jn s E T s E )(1)(* ω (6-8) 令ωj s =,得到采样信号的傅氏变换 )(*t e * 1()[()]ωωω+∞=?∞=+∑s n E j E j n T (6-9) 式中,)(ωj E 为相应连续信号的傅氏变换,)(t e (j )E ω为的频谱。一般来说,连续信号的频带宽度是有限的,其频谱如图6-5(a)所示,其中包含的最高频率为)(t e h ω。 式(6-9)表明,采样信号具有以采样频率为周期的无限频谱,除主频谱外,还包含无限多个附加的高频频谱分量(如图6-5(b)所示),只不过在幅值上变化了* ()e t 1T 倍。为了准确复现被采样的连续信号,必须使采样后的离散信号的主频谱和高频频谱彼此不混叠,这样就可以用一个理想的低通滤波器(其幅频特性如图6-5(b)中虚线所示)滤掉全部附加的高频频谱分量,保留主频谱。

应用_MATLAB实现连续信号的采样与重构

抽样定理及应用 2.1课程设计的原理 2.1.1连续信号的采样定理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号 恢复原信号 必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求, 即只有带限信号才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2)。(对取样频率的要 求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率 大于或等于 ,即 ( 为连续信号 的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。一个频 谱在区间(- , )以外为零的频带有限信号,可唯一地由其在均匀 间隔 ( < )上的样点值 所确定。根据时域与频域的对称性, 可以由时域采样定理直接推出频域采样定理。一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的频谱)(1ωj F 可以惟一表示原信号的条件为重复周期 m t T 21≥,或频域间隔m t f 21 21≤ = πω(其中112T πω=)。采样信号 的频谱是原 信号频谱 的周期性重复,它每隔 重复出现一次。当s ω>2 时, 不会出现混叠现象,

原信号的频谱的形状不会发生变化,从而能从采样信号中恢复原信号。 >2的含义是:采样频率大于等于信号最高频率的2倍;这里的“不(注: s 混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!) (a) (b) (c) 图* 抽样定理 a)等抽样频率时的抽样信号及频谱(不混叠) b)高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠) 2.1.2信号采样 如图1所示,给出了信号采样原理图

带通采样定理精编版

3.1.3 带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为,下截止频率为,这时并不需要抽样频率高于两倍上截止频率,可按照带通抽样定理确定抽样频率。 [定理3-2] 带通抽样定理:一个频带限制在内的时间连续信号,信号带宽,令,这里为不大于的最大正整数。如果抽样频率满足条件 , (3.1-9) 则可以由抽样序列无失真的重建原始信号。 对信号以频率抽样后,得到的采样信号的频谱是的频谱经过周期延拓而成,延拓周期为,如图3-3所示。为了能够由抽样序列无失真的重建原始信号,必须选择合适的延拓周期(也就是选择采样频率),使得位于和的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在频带的两边,有着两个延拓频谱分量:和。为了避免混叠,延拓后的频带分量应满足 (3.1-10) (3.1-11) 综合式(3.1-10)和式(3.1-11)并整理得到 (3.1-12) 这里是大于等于零的一个正数。如果取零,则上述条件化为 (3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 取得越大, 则符合式(3.1-12)的采样频率会越低。但是有一个上限,因为,而为了避免混叠,延拓周期要大于两倍的信号带宽,即。 因此 (3.1-14) 由于为不大于的最大正整数,因此不大于的最大正整数为,故有 综上所述,要无失真的恢复原始信号,采样频率应满足 , (3.1-15) H f L f H f ),(H L f f )(t x L H f f B -=N B f M H -=/N B f H /s f m f f m f L s H 212≤≤+10-≤≤N m )(t x )(t x s f )(s nT x )(t x s f )(t x ),(H L f f ),(L H f f --),(H L f f ),(H L f f ),(s L s H mf f mf f +-+-))1(,)1((s L s H f m f f m f ++-++-L s L f mf f ≤+-H s H f f m f ≥++-)1(m f f m f L s H 212≤≤+m m H s f f 2≥m m m f f L s 2≤B f s 2≥B f B f f f m L L s L =≤≤ 222N B f H /B f L /1-N 10-≤≤N m )(t x s f m f f m f L s H 212≤≤+10-≤≤N m

低通信号的抽样定理

实验一抽样定理 一.概述 抽样的分类: (1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理。 (2) 根据用来抽样的脉冲序列是等间隔的还是非等同隔的,又分均匀抽样定理和非均匀抽样。 (3) 根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。 二.实验原理及其框图 抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。 低通型连续信号的抽样定理 一个频带限制在内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。 原理框图 图1 抽样 说明:抽样过程中满足抽样定理时,PCM系统应无失真。这一点与量化过程有本质区别。量化是有失真的,只不过失真的大小可以控制。

三.实验步骤 1、根据抽样原理,用Systemview 软件建立一个仿真电路,如下图所示: 图2 仿真电路 元件参数配制 Token 0: 被采样的模拟信号—正弦波(频率=100Hz,电平=1V,相位=0)Token 2: 乘法器 Token 5 抽样脉冲——窄脉宽矩形脉冲(脉宽=1us ) Token1,3: 模拟低通滤波器(截止频率=100 Hz ) Token 4,6,7: 观察点—分析窗(6频率=100Hz 电压=-1V) 2、运行时间设置 运行时间=0.3 秒采样频率=10,00 赫兹 3、运行系统 在Systemview 系统窗内运行该系统后,转到分析窗观察Token 5,6,8三个点的波形。 4、功率谱 在分析窗绘出该系统调制后的功率谱。 四、实验报告 1)观察实验波形:Token 0-被采样的模拟信号波形;Token 2-采样后波形;Token 3-恢复信号的波形。 2)整理波形,存入文档。

信号采样与重建

1.软件介绍 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩形计算、视化以线性动态线性系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多领域一面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。经过不断完善MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具。 MTLAB的语言特点: (1)语言简洁紧凑,使用方便灵活,库函数极其丰富。 (2)运算符丰富。 (3)MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。 (4)程序限制不严格,程序设计自由度大。 (5)MATLAB的图形功能强大。 (6)MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。

2.课程设计的方案 2.1课程设计的原理 2.1.1连续信号的采样定理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其 频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号 恢复原信号必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求, 即只有带限信号才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2 )。(对取样频率的要求, 即取样频率要足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率 大于或等于 ,即 ( 为连续信号 的有限频谱), 则采样离散信号能无失真地恢复到原来的连续信号 。一个频谱在区间 (- , )以外为零的频带有限信号 ,可唯一地由其在均匀间隔 上 的样点值所确定。根据时域与频域的对称性,可以由时域采样定理直接推 出频域采样定理。一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的 频谱)(1ωj F 可以惟一表示原信号的条件为重复周期m t T 21≥。采样信号 的 频谱是原信号频谱 的周期性重复,它每隔 重复出现一次。当s ω>2 时,不会出现混叠现象,原信号的频谱的形状不会发生变化,从而能从采样 信号 中恢复原信号 。(注:s ω>2 的含义是:采样频率大于等于 信号最高频率的2倍;这里的“不混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!)

采样信号处理

目录 摘要 (2) 正文 一、设计目的与要求 (3) 二、设计原理 (4) 三、设计内容和步骤 (5) 1.用MATLAB产生连续信号y=sin(t)和其对应的频谱 (6) 2.对连续信号y=sin(t)进行抽样并产生其频谱 (7) 3. 通过低通滤波恢复原连续信号 (9) 四、总结 (12) 五、致谢 (13) 六、参考文献 (14)

一、设计目的与要求 1.设计目的和要求 1.掌握利用MATLAB在数字信号处理中的基本应用,并会对结果用所学知识进行分 析。 2.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号 和采样信号进行FFT频谱分析。 3.从采样信号中恢复原信号,对不同采样频率下的恢复信号进行比较分析。 4.基本要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。

二、设计原理 本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知识。 1.采样定理: 设连续信号)(t x a 属带限信号,最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样性信号)(t x a ∧ 通过一个增益为T 、截止频率为2/s Ω的理想低通滤波器,可以唯一地恢复出原连续信号)(t x a 。否则,c s Ω<Ω2会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 对连续信号进行等间隔采样形成采样信号,对其进行傅里叶变换可以发现采样信号的频谱是原连续信号的频谱以采样频率s Ω为周期进行周期性的延拓形成的。 对模拟信号进行采样可以看做一个模拟信号通过一个电子开关S ,设电子开关每隔周期T 和上一次,每次和上的时间为τ,在电子开关的输出端得到采样信号x^a(t)。用公式表示如下: (2.2.1)

实验九 信号的自然采样与恢复

实验九 信号的自然采样与恢复 一、实验目的: 1、理解信号的采样及采样定理以及自然采样信号的频谱特征。 2、掌握和理解信号自然采样以及信号重建的原理,并能用MATLAB 实现。 二、实验原理及方法: 本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知 识。信号的抽样与恢复示意图如图7-1所示。 图7-1 信号的抽样与恢复示意图 信号抽样与恢复的原理框图如图7-2所示。 图 7-2 信号抽样与恢复的原理框图 由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理 环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连 续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相 比无失真的信号。 原信号得以恢复的条件是B f s 2≥,其中s f 为采样频率,B 为原信号占有的频带 宽度。B f 2min =为最低采样频率,当B f s 2<时,采样信号的频率会发生混迭, 所以无法用低通滤波器获得原信号频谱的全部内容。 三、实验内容及步骤: 给定带限信号 f(t),其频谱为 1、画出此信号的频谱图(ω的取值:-0.5π <ω <0.5π ,精度取0.01rad )。 答:画出f(t)的频谱图即F(W)的图像 程序代码如下: #include #include #define PI 3.14

double f(double w) { if (w>=-0.5*PI && w<=0.5*PI) return cos(w); else return 0; } main() { double w,F; FILE *fp; for (w=-0.5*PI;w<=0.5*PI;w+=0.01) { F=f(w); printf("w=%.2f, F(w)=%f\n",w,F); fp=fopen("d:\\2.txt","w"); fprintf(fp,"%f\t",F); } system("pause"); } ③F(W)的图像 2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t)(t的取值:-20s #include #define PI 3.14 double f(double t)

自动控制原理实验 采样系统分析

自动控制原理实验报告实验名称:采样系统分析 班级:自动化级班 姓名: 一、实验目的 1.了解采样开关,零阶保持器的原理及过程; 2.学会环采样系统特性分析; 3.掌握学习用MA TLAB仿真软件实现采样系统分析方法。

二、实验设备及仪器 1.模拟实验箱; 2.低频信号发生器; 3.虚拟仪器(低频示波器); 4.计算机; 5.MA TLABL 仿真软件。 三、实验内容 一、对低频正弦信号进行采样(采样频率应为原信号的两倍以上),观察其输出波形,再加入零阶保持器,观察其输出波形。 仿真电路图如下: 其中输入的连续波形图的信号为: c ω=2π×10=10π≈31.4 rad/s T S =0.03s ,即S ω=2π× 3 100 ≈209.4 rad/s> 2c ω 输出波形图如下: 可见此时输入波形图并没有得到完全复现。

T S =0.3s ,即S ω=2π× 3 10 ≈20.94 rad/s<2c ω 输入输出波形图如下:可见此时输出波形图完全与输入的不一样。显然是由于不满足香农定理m ax 2ωω≥S ,由下图可以看出零阶保持器可以将每次瞬间的值保持到下一次采样瞬间。 实验波形如下: 加入采样开关后的波形:

二、设计一个二阶闭环连续系统,分别观察加入采样开关前后的阶跃响应,进行分析。仿真电路图如下: 令K=20,T=0.03时,输出波形如下: 有采样器时输出的曲线已经不稳定了。

T=0.3时,输出波形如下:有采样器时输出的曲线极不稳定。 实验波形如下: 加入采样开关后的波形:

三、改变采样开关在系统内的位置,(输入端,输出端),重复上述内容。仿真电路图如下: K=2 T=0.03 输出波形如下: 四、在二阶闭环采样系统输出端加入零阶保持器,重复上述内容 仿真电路图如下:

带通采样定理和低通采样定理

带通采样定理和低通采样定理 模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采 样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样 频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。 一、低通采样周期性频谱搬移 低通采样的原理分析见数字信号处理(西电版)。 首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。 @——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N 庚宙IB茸障站霆号的魚谒 E 64 2 Q 2 4 € B . :1. ■ U

的耳 IS r/ 电 £写抽Mil 保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下: 结论: (1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。 (2) 低通采样后的信号重构只需要经过低通滤波器即可。 二、带通采样定理原理和重构分析 1、带通采样定理原理 带通采样定理: 一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽 B f H f L ,令 N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件 -] I - 1 i r ■ q r n 1 1 I 1 : ! i i …-一. .... r 1 i i i i i : 1 1 1 1 i i J L J i L i * L 1 J i L ] J L €

信号采样与重构

实验五 信号采样与重构 一、实验目的:学会用MATLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理 若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱)(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω

我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。我们取理想低通的截止频率c ω=m ω。下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa : 例5-1 Sa(t)的临界采样及信号重构; wm=1; %信号带宽 wc=wm; %滤波器截止频率 Ts=pi/wm; %采样间隔 ws=2*pi/Ts; %采样角频率 n=-100:100; %时域采样电数 nTs=n*Ts %时域采样点 f=sinc(nTs/pi); Dt=0.005;t=-15:Dt:15; fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构 t1=-15:0.5:15; f1=sinc(t1/pi); subplot(211); stem(t1,f1); xlabel('kTs'); ylabel('f(kTs)'); title('sa(t)=sinc(t/pi)的临界采样信号'); subplot(212); plot(t,fa) xlabel('t'); ylabel('fa(t)'); title('由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)'); grid; 例5-2 Sa(t)的过采样及信号重构和绝对误差分析 程序和例4-1类似,将采样间隔改成Ts=0.7*pi/wm , 滤波器截止频率该成wc=1.1*wm , 添加一个误差函数 wm=1; wc=1.1*wm; Ts=0.7*pi/wm; ws=2*pi/Ts; n=-100:100; nTs=n*Ts f=sinc(nTs/pi); Dt=0.005;t=-15:Dt:15; fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));

信号的采样与恢复(采样定理)

实验六 信号的抽样与恢复实验报告 光信二班 一、 实验目的 (1)了解电信号的采样方法与过程以及信号恢复的方法。 (2)验证抽样定理。 二、 实验原理 (1)离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。抽样信号f ()s t 可以看成连续信号()f t 和一组开关函数()s t 是一组周期 形窄脉冲,见图2-9-1,s T 称为抽样周期, 其倒数1s s f T 称抽样频率。 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于抽样频率f ()s t 及其谐波频率 2s f 、3s f ….。当抽样信号是周期性窄脉冲时,平移后的频率幅度按 (sin )x x 规律衰减。抽样信号的频谱是原信号频谱周期的延拓,它占 有的频带要比原信号频谱宽得多。 (2)正如测得了足够的实验数据以后,我们 可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包括了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信

号。 (3)还原信号得以恢复的条件是2s m f f ≥,其中s f 为抽样频率, m f 为原信号的最高频率。而min 2m f f =为最低抽样频率,又称“奈斯特 抽样率”。当2s m f f <时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。在实际使用中,仅包含有限频率的信号是极少的。因此即使min 2m f f =,回复后的信号失真还是难免的。图2-9-2画出了当抽样频率2s m f f ≥(不混叠时)及当抽样频率2s m f f <(混叠时)两种情况下冲激抽样信号的频谱。

异步光学采样系统-MenloSystems

在时间分辨测量过程中利用一个超快光脉冲触发样品反应,再由第二个脉冲来记录反应导致的变化。通过改变探测脉冲对于泵浦脉冲到达样品的时间差可对受激过程实时跟踪。无需机械延迟线的异步光学采样技术能支持在纳秒量级延时窗口内实现高速扫描。这一技术得益于可将产生超快泵浦和探测脉冲的两个激光器相位锁定在一起,并且两者重复频率差可调谐。 两个激光器也可被锁定在相同的重复频率处,通过改变两束脉冲的相位差,可以实现在更短时间窗口内,比如100 ps的测量。两种工作模式之间可以一键切 换。关键规格 ■ASOPS TWIN:1560 nm ■DUAL COLOR: 780 nm 或 1560 nm ■时间测量窗口 4 ns 或 10 ns ■重复频率 250 MHz 或 100 MHz 应用 ■双色场泵浦-探测光谱学 ■太赫兹时域光谱学 ■材料特性表征 特色 ■数据采集时间更快 ■更宽的时间测量窗口 ■无需可移动机械扫描元件 (光束指向性更好,扫描速度更快)■ASOPS 控制软件 通过图形化用户界面可对ASOPS的 电路进行完全控制,XML-RPC界面 允许进行远程控制,并包含计算机和计数器。 可选配件 ■VARIO 自定义重复频率 出厂设置值可以在50-250 MHz之间选择■MULTIBRANCH 额外的种子光源输出端口 可选不同的频率转换器以覆盖多个波 长,来作为多种放大器的种子光源 异步光学采样系统A S O P S T W I N250L A S E R H E A D S

异步光学采样系统 规格参数A S O P S T W I N 250A S O P S D U A L C O L O R 重复频率 250 MHz 100 MHz 重复频率偏移调节范围D f = -10 kHz .. +10 kHz,步长 10-5 Hz D f = -10 kHz .. +10 kHz, 步长 10-5 Hz 时间测量窗口 4 ns 10 ns 扫描时间 1 /△ f *0.1 ms @ 10 kHz 偏移, 1 s @ 1 Hz 偏移0.1 ms @ 10 kHz 偏移, 1 s @ 1 Hz 偏移数据点增量** 160 fs @ 10 kHz, 0.016 fs @ 1 Hz 1 ps @ 10 kHz, 0.1 fs @ 1 Hz 均方根时间抖动 [0.1 Hz - 500 kHz]<150 fs <150 fs 激光头规格参数波长1560 nm 1560 nm 780 nm 平均输出功率>75 mW (每个激光)>100 mW >100 mW 输出端口光纤耦合 FC/APC 自由空间自由空间脉冲宽度 6 m 保偏光纤后 <150 fs <90 fs <120 fs 压电调谐范围>625 Hz >100 Hz >100 Hz 压电带宽>30 kHz >30 kHz >30 kHz 步进电机调谐范围>2 MHz >330 kHz >330 kHz 触发信号 偏移频率处TTL 电平,<25 ns 上升沿 偏移频率处TTL 电平,<25 ns 上升沿 *与重复频率偏移值成反比。 **重复频率偏移值与重复频率平方的比值(△f/fr 2)。工作要求工作电压110/115/230 VAC 110/115/230 VAC 频率50 到 60 Hz 50 到 60 Hz 制冷需求 无需水冷 无需水冷 工作温度 22 ± 5 °C 22 ± 5 °C 光学单元尺寸/重量415 x 400 x 110 mm3, 35 kg 500 x 535 x 110 mm3, 35 kg 控制电路尺寸/重量 安装在 19” 机柜中, 800 x 600 x 1800 mm3, 75 kg 安装在 19” 机柜中, 800 x 600 x 1800 mm3, 75 kg Menlo Systems GmbH T+49 89 189 166 0 sales@https://www.wendangku.net/doc/c01250669.html, Menlo Systems, Inc. T+1 973 300 4490 ussales@https://www.wendangku.net/doc/c01250669.html, Thorlabs , Inc. T+1 973 579 7227sales@https://www.wendangku.net/doc/c01250669.html, 欢迎致电询价。规格参数如有变动恕不另行通知。欢迎致电咨询定制事宜。 D-ASOPS-EN 01/12/14 https://www.wendangku.net/doc/c01250669.html, https://www.wendangku.net/doc/c01250669.html, Thorlabs China T+86 21 6056 1122 chinasales@https://www.wendangku.net/doc/c01250669.html,

第数字信号处理讲义--3章 连续时间信号的采样

第3章连续时间信号的采样 [教学目的] 1.理解周期采样的原理,掌握采样的频域表示法,奈奎斯特采样定理; 2.掌握样本重构带限信号的原理与条件; 3.掌握连续信号转换成离散信号的方法,理想低通滤波器特点,冲激响应的概念; 4.掌握离散时间信号的连续时间处理方法; 5.了解量化误差产生的原因和影响。 [教学重点与难点] 重点: 1.采样的频域表示法,奈奎斯特采样定理; 2.样本重构带限信号; 难点: 1.采样的频域表示法; 2.样本重构带限信号; 3.1周期采样 在某些合理条件限制下,一个连续时间信号能用其采样序列来完全给予表示,连续时间信号的处理往往是通过对其采样得到的离散时间序列的处理来完成的。本节将详细讨论采样过程,包括信号采样后,信号的频谱将发生怎样的变换,信号内容会不会丢失,以及由离散信号恢复成连续信号应该具备哪些条件等。采样的这些性质对离散信号和系统的分析都是十分重要的。要了解这些性质,让我们首先从采样过程的分析开始。 采样器可以看成是一个电子开关,它的工作原理可由图3-1(a)来说明。设开关每隔T秒短暂地闭合一次,将连续信号接通,实现一次采样。如果开关每次闭合的时间为τ秒,那么采样器的输出将是一串周期为T,宽度为τ的脉冲。而脉冲的幅度却是重复着在这段τ时间内信号的幅度。如果以xa(t)代表输入的连续信号,如图3-1(b)所示,以xp(t)表示采样输出信号,它的结构如图3-1(d)所示。显然,这个过程可以把它看作是一个脉冲调幅过程。被调制的脉冲载波是一串周期为T、宽度为τ的矩形脉冲信号,如图3-1(c)所示,并以p(t)表示,而调制信号就是输入的连续信号。因而有 t x )( x )( t )(t p p a

信号抽样及抽样定理

(一)信号抽样 信号抽样是利用抽样脉冲序列)(t p 从连续信号)(t f 中抽取一系列的离散值,通过抽样过程得到的离散值信号称为抽样信号,记为)(t f s 。从数学上讲, 抽样过程就是信号相乘的过程,即)()()(t p t f t f s ?= 因此,可以使用傅里叶变换的频域卷积性质来求抽样信号)(t f s 的频谱。常用的抽样脉冲序列有周期矩形脉冲序列和周期冲激脉冲序列。 上式表明,信号在时域被抽样后,它的频谱是原连续信号频谱以抽样角频率为间隔周期的延拓,即信号在时域抽样或离散化,相当于频域周期化。在频谱的周期重复过程中,其频谱幅度受抽样脉冲序列的傅里叶系数加权,即被n P 加权。 可以看出,)(ωs F 是以s ω为周期等幅地重复。 (二)抽样定理 如果)(t f 是带限信号,带宽为m ω,则信号)(t f 可以用等间隔的抽样值来唯一表示。)(t f 经过抽样后的频谱()ωs F 就是将)(t f 的频谱()ωF 在频率轴上以抽样频率s ω为间隔进行周期延拓。因此,当m s ωω2≥时,周期延拓后频谱()ωs F 不会产生频率混叠;当m s ωω2<时,周期延拓后频谱()ωs F 将产生频率混叠。

通常把满足抽样定理要求的最低抽样频率)2,2(2πωπωm m s s m s f f f f == =称为奈奎斯特频率,把最大允许的抽样间隔m s s f f T 211== 称为奈奎斯特间隔。 (三)信号重建 抽样定理表明,当抽样定理小于奈奎斯特间隔时,可以使用抽样信号唯一表示原信号,即信号的重建。为了从频谱中无失真的恢复原信号,可以采用截止频率为m c ωω≥的理想低通滤波器。 上式表明连续信号可展开为抽样函数()t Sa 的无穷级数,该级数的系数为抽样值。 利用MATLAB 中的函数t t t c ππ)sin()(sin =来表示()t Sa ,所以可获得由()s nT f 重建()t f 的表达式,即()()()??? ??-=∑+∞ =-∞=s c n n s c s nT t c nT f T t f πωπωsin

采样原理

实验二采样原理 实验过程 数学背景知识 在信号与系统分析中,采样定理是十分重要的,它构成了连续信号与离散信号之间关系的基础。采样定理是说,一个带限信号x (t),即信号的傅立叶变换对某个带宽W有| f |>W

为0,可以完全用在间隔为T s 的时刻取得的样本值来表示,只要T s ≤1/ (2W)。如果采样在T s = 1/ (2W)内完成(该间隔称为奈奎斯特间隔,按该间隔采样的频率称为奈奎斯特频率),那么x (t)就能按 ))(2(sinc )()(s n s nT t W nT x t x ?= ∑∞?∞= (1) 由样本值{给予重建。这一结果是基于已采样波形,定义为 }∞?∞==n s nT x n x )()()(t x δ)()()(s n s nT t nT x x x ?= ∑∞?∞=δδ (2) (2)式的傅立叶变换为

相关文档