文档库 最新最全的文档下载
当前位置:文档库 › 高三数学“数形结合”的思想方法应用举例

高三数学“数形结合”的思想方法应用举例

高三数学“数形结合”的思想方法应用举例
高三数学“数形结合”的思想方法应用举例

每题可独立选择编辑

高三数学“数形结合”的思想方法应用举例

①以形助数:

②以数助形:

1、

2、

3、

______.

18、

参考答案

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

三种数学思想方法教案

课题:中职常见的三种数学思想方法 教学目标:1.理解数形结合思想,分类讨论思想,转化与化归思想; 2.学会用数形结合思想,分类讨论思想,转化与化归思想 等三种思想解答实际数学问题。 教学重点:帮助学生树立数形结合思想,分类讨论思想,转化与化归思想。 教学难点:数形结合思想,分类讨论思想,转化与化归思想在实际数学问题中的应用。 教学方法:讲练结合及世界大学城空间网络教学 教学设计: Ⅰ.新课讲授 (一)专题一:数形结合思想 1.数形结合的含义 (1)数形结合,就是根据数与形之间的对应关系,通过数与形 的相互转化来解决数学问题的一种重要思想方法. 数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化, 抽象问题具体化,能够变抽象思维为形象思维,有助于把握数 学问题的本质,它是数学的规律性与灵活性的有机结合. (2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大 致可以分为两种情形:一是借助形的生动性和直观性来阐明数 形之间的联系,即以形作为手段,数作为目的,比如应用函数

的图像来直观地说明函数的性质;二是借助于数的精确性和规 范严密性来阐明形的某些属性,即以数作为手段,形作为目的, 如应用曲线的方程来精确地阐明曲线的几何性质. 角度一:利用数形结合讨论方程的解或图像交点 [例1]函数f(x)=x 1 2 - ? ? ? ? ?1 2 x 的零点的个数为( ) A.0 B.1 C.2 D.3 方法规律:讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. 强化训练:1.方程log3(x+2)=2x解的个数为 角度二:利用数形结合解不等式或求参数问题 [例2]使log2(-x)

高中数学应用题

函数、不等式型 1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3 a y x x = +--,其中3

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

数形结合的思想方法--练习

1. 2. 3. 数形结合的思想方法---练习 设命题甲:0b>1 D. b>a>1 f(x) = cos 2x + sinx 的最小值是( 在区间[3,7] 5 C. D. 上是增函数且最小值是 5,那么f (x ) B. 增函数且最大值为—5 减函数且最大值为-5 D. 于( )A. B. {(2,3)} C. (2,3) 如果0是第二象限的角,且满足 cos - 0 ------ sin - 2 A.第- 象限角 B.第三象限角 C. 可能第一 设全集 I = {(x,y)|x,y € R},集合 M= {(x,y)| D. {(x,y)|y 6. 已知集合 E = { 0 |cos 0

江苏高考数学应用题题型归纳

应用题题型归纳 在备考中,需要重点关注以下几方面问题: 1、掌握常见函数如二次函数、三次函数、有理分式函数(尤其二次分式函数 、无理函数等最值的求法,用导数求函数最值要引起重视; 2、加强阅读理解能力的培养,对图形的辨认、识别、分析寻找等量关系式的训练要加强; 3、对于由图标(尤其表格)给出的函数应用题的训练要重视; 4、应用题的背景图形可能由平面多边形、空间多面体转为由平面曲线,如圆,抛物线等围成的图形;空间旋转体等的面积、体积的最值问题 5、熟悉应用题的解题过程:读题、建模、求解、评价、作答、 一、利润问题 1、某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元? (2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新与 营销策略改革,并提高定价到.x 元.公司拟投入21(600)6 x -万元作为技改费用,投入50万元作为固定宣传费用,投入15 x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入...与总投入... 之与?并求出此时商品的每件定价. 2某小商品2012年的价格为8元/件,年销量为a 件,现经销商计划在2013年将该商品的价格降至5、5元/件到7、5元/件之间,经调查,顾客的期望价格为4元/件,经测算,该商品的价格下降后新增的年销量与实际价格与顾客期望价格的差成反比,比例系数为k ,该商品的成本价格为3元/件。 (1)写出该商品价格下降后,经销商的年收益y 与实际价格x 的函数关系式。 (2)设2k a =,当实际价格最低定为多少时,仍然可以保证经销商2013年的收益比2012年至少增长20%? 3、近年来,某企业每年消耗电费约24万元, 为了节能减排, 决定安装一个可使用15年 的太阳能供电设备接入本企业电网, 安装这种供电设备的工本费(单位: 万元)与太阳能电池板的面积(单位: 平方米)成正比, 比例系数约为0、5、 为了保证正常用电, 安装后采用太阳能与电能互补供电的模式、 假设在此模式下, 安装后该企业每年消耗的电费C (与安装的这种太阳能电池板的面积x (单位:平方米)之间的 函数关系就是 ()(0,20100k C x x k x = ≥+)、 记F 为该村安装这种太阳能供 电设备的费用与该村15年共将消耗的电费之与、 (1)试解释(0)C 的实际意义, 并建立F 关于x 的函数关系式; (2)当x 为多少平方米时, F 取得最小值?最小值就是多少万元? 4、某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交(13)a a ≤≤元的管理费,预计当每件商品的售价为(79)x x ≤≤元时,一年的销售量为2(10)x -万件. (I)求该连锁分店一年的利润L (万元)与每件商品的售价x 的函数关系式()L x ;

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

《小学数学教学中数形结合思想方法的实践研究》

《小学数学教学中数形结合思想方法的实践研究》 课题结题报告 课题类别:晋江市教育科学‘十二五’规划(第一批)立项课题课题编号:JG1251-067 课题负责人:黄阳斌 课题负责单位:深沪镇狮峰中心小学 结题时间:2013年6月

《<小学数学教学中数形结合思想方法的实践研究>课题结题报告》数学以是现实世界的空间形式和数量关系作为自己特定的研究对象,也可以说数学是研究“数”与“形”及其相互关系的一门科学,而在数学教学中把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。可以说,数形结合是小学数学范围里最基本、最重要的思想。源于在数学教学世界越来越重视数学思想的渗透与应用,我们决定以数形结合思想为研究方向,让其成为我们学校提升教师素质和教学行为以及培养学生的数学素养的重要媒介。于是,课题《小学数学教学中数形结合思想方法的实践研究》油然而生。 课题《小学数学教学中数形结合思想方法的实践研究》为晋江市教育科学‘十二五’规划(第一批)立项课题,研究时间为2011年5月至2013年6月,历时2年。 回顾课题研究以来,课题组成员在研究过程中求真务实,尽职尽责,认真学习相关资料,积极参加课题研究各项活动且能及时将研究收获撰写成文。研究近两年,有多篇论文在省、市等各级各类中获奖或汇编,指导学生参加各级各类数学比赛成绩优异。随着研究的进行,教师的数学课堂有着本质性的变化,更加注重于数学思想的渗透与应用,善于挖掘教材中蕴含数形结合思想方法的内容,探索渗透数形结合思想方法的教学途径,课堂中有了更浓厚的数学味。同时对于学生而言,也能逐步地去应用数形结合去观察、分析和解决问题。 一、课题研究背景 “数形结合”可以看成是数学的本质牲特征。“数形结合”是借助简单的图形、符号和文字所作的示意图,可促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。华罗庚先生说过:“数缺形时少直观,形缺数时难入微”,从这句话中可体现出数形结合对数学教学起着很主要的作用,把数形结合思想贯穿在学习数学过程的始终,是学好数学的关键。在我们的教学实践当中,教师对数形结合不够重视,关于数形结合教学理论缺乏,大部分学生了解数形结合,但未能充分、广泛运用数形结合去解决问题,这是值得我们去研究的问题。 二、课题研究目标 1、促进教师教学意识及行为的转变,使教师们对数形结合思想方法有系统的认识,明确地位、作用。 2、根据不同学段学生的认知规律,形成适合不同学段进行的以数形结合思想方法指导教学的教学策略。 3、帮助学生树立数形结合的观点,善于运用数形结合思想方法观察、分析、解决问题,

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

【创新方案】高考数学(理)一轮突破热点题型:第3章 第7节 解3角形应用举例

第七节解三角形应用举例 高频考点考点一测量距离问题 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. [例1](1)(2011·上海高考)在相距2千米的A,B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离是________千米. (2)(2013·江苏高考) 如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山 路AC长为1 260 m,经测量,cos A= 12 13,cos C= 3 5. ①求索道AB的长; ②问乙出发多少分钟后,乙在缆车上与甲的距离最短? ③为使两位游客在C处互相等待的时间不超过3 min,乙步行的速度应控制在什么范围内? [自主解答](1)如图,∠C=180°-60°-75°=45°. 由正弦定理 AC sin B= AB sin C,得AC=AB· sin B sin C=2× 3 2 2 2 = 6 千米. (2)①在△ABC中,因为cos A= 12 13,cos C= 3 5,所以sin A= 5 13,sin C= 4 5. 从而sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C= 5 13× 3 5+ 12 13× 4 5= 63 65. 由正弦定理 AB sin C= AC sin B,得AB= AC sin B×sin C= 1 260 63 65 × 4 5=1 040 m. 所以索道AB的长为1 040 m. ②假设乙出发t min后,甲、乙两游客距离为d,此时,甲行走了(100+50t) m,乙距离A处130t m,所以由余弦定理得

浅谈数形结合思想方法的渗透

浅谈数形结合思想方法的渗透 数形结合思想是数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法,数形结合思想是数学中最重要、最基本的思想,是解决许多数学问题的有效思想,利用数形结合能使“数”和“形”统一起来。以形助数,以数辅形,可以使许多数学问题变得简易化。华罗庚教授对此有精辟概述:“数无形,少直观;形无数,难入微”。那么如何在教学中渗透数形结合的思想。下面谈谈自己的看法: 一、教师要深入研究教材,有效渗透数形结合 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法①?在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、对比、分析、抽象、概括的过程中看到数学知识蕴涵的思想。如一年级下册“两位数加减一位数和整十数“35-2和35-20内容时,教师可提出问题,这两题怎么计算?让学生说出算法,再根据学生的回答分别写出支形图,并写出想的过程,然后进一步追问:“有没有不同的算法?”激发学生思考,开拓学生的学习思维。最后进一步问:计算35-2,能不能先用十位上的3减2等于1,结果35-2等于15对吗?让学生思考讨论,产生思维的碰撞,让学生的思维碰撞出智慧的火花。接下来让学生用摆小棒验证,教师可充分利摆小棒,使学生明白:因为35中的3表示3个十,5表示5个1,计数单位不同,所以不能用十位上的3减2,可以用5个1减2个1等于3个1,它们的计数单位都是1,再和3个十合并起来等33。通过摆小棒有效地渗透数形结合,使问题简明直观。教师要深入研究教材,弄清编排的意图,吃透教材,才能用好教材,有效渗透数形结合思想,彰显了数学学习的价值,通过摆小棒这个活动让学生感受到简单推理的过程,获得一些简单推理的经验就可以了。在教师的引导下,让学生明白这两题是把相同数位相加减的算理,这是教材编排的意图,也是本节课的重点。学生不明白道理又怎么能更好的掌握计算方法?在教学时,应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然”。渗透数学思想,路漫漫兮,任重而道远,作为孩子们的导师,我们应该充分根据孩子们的发展规律,适当地利用教材,在教学过程中巧妙地渗透思想,培

数形结合的思想方法

数形结合的思想方法 每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 一、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为 勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关 系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们 相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状, 分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 二、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题

高考数学-应用题专题

1 高考数学-应用题 应用题类型: 1.代数型(1)函数型(2)不等式型(3)数列型(4)概率统计型 2.几何型(1)三角型(2)解析几何型(3)立体几何型 1. 某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利? (2)若干年后,有两种处理方案: 方案一:年平均获利最大时,以26万元出售该渔船 方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算. 解析. (1)由题意知,每年的费用以12为首项,4为公差的等差数列. 设纯收入与年数n 的关系为f (n ),则 ++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n . 由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<

2 2. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当2000≤≤x 时,求函数()x v 的表达式; (Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ?=可以达到最大,并求出最大值.(精确到1辆/小时) 解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然 ()b ax x v +=在[]200,20是减函数,由已知得???=+=+60200200b a b a ,解得??? ????=-=320031b a 故函数()x v 的表达式为()x v =()?? ???≤≤-<≤.20020,20031,200,60x x x (Ⅱ)依题意并由(Ⅰ)可得()=x f ()?????≤≤-<≤.20020,2003 1,200,60x x x x x 当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=?; 当20020≤≤x 时,()()()310000220031200312 =??????-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立. 所以,当100=x 时,()x f 在区间[]200,20上取得最大值 3 10000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.

数形结合思想的含义数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想, 让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨着,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。

利用数形结合思想方法解题

目录 目录..................................................... I 摘要. (Ⅱ) 引言 (Ⅲ) 1.数形结合思想方法概述 (1) 1.1 数形结合的思想方法 (1) 1.2 数形结合思想的价值 (1) 2.数形结合在中学数学解题中的应用 (3) 2.1 利用数形结合解决集合问题 (3) 2.1.1利用韦恩图解决集合题目 (3) 2.1.2 利用数轴来解决集合问题 (3) 2.2利用数形结合解决方程问题 (3) 2.2.1 数形结合在含有一次、二次式的方程中的应用 (3) 2.2.2数形结合在含对数、指数的方程的应用 (5) 2.3 数形结合在求不等式问题中的应用 (7) 2.3.1构造适当的平面图形,利用三角形三边的关系来证明不等式 (8) 2.3.2 构造适当的函数,利用函数图象性质证明不等式 (8) 2.4数形结合在解决三角函数问题中的应用 (9) 2.5 数形结合在求解极值问题中的应用 (11) 2.5.1 数形结合在几何极值问题中的应用 (11) 2.5.2 数形结合在函数极值问题中的应用 (12) 2.6 数学结合在解决线性规划问题中的应用 (12) 2.7 数形结合在复数中的应用 (14) 结语 (16) 参考文献 (18)

利用数形结合思想方法解题 摘要 数形结合思想是一种非常重要的数学解题方法,是数学学习普遍适用的方法,把知识的学习、能力的提升和智力的发展有效结合。形与数常常结合在一起,在内容上相互联系,在方法上互相渗透,在一定条件下互相转化。本文在概述数形结合思想的基础上,分析了数形结合在中学数学解题中的应用,主要体现在处理集合问题、方程根的存在性问题、不等式问题、三角函数问题、求极值问题、线性规划问题和复数问题等,并针对解决不同类型的数学题目给出了详细的例题分析,最终给出了在培养学生利用数形结合思想时需注意的问题,以激发学生的学习兴趣,提高学生的解题能力和思维能力。 关键词:数形结合;集合;方程;极值 The combination of number and shape in the problem solving application Abstract:The number shape union thinking is a very important mathematical method of solving problems, is a generally applicable method of mathematics learning, to enhance the development of effective combination of intelligence and knowledge learning, ability. Form and number often together, communicate with each other in the content, permeate each other in method, transform each other under certain conditions. In this paper, based on the number and shape of thought, analysis the number shape union application in middle school mathematics, mainly set problem, in dealing with the existence of root of an equation, inequality, triangle function extremum problems, problems, linear programming problems and complex problems, and to solve different types of mathematics the title gives a detailed analysis of the example, the need to pay attention to combine ideas in training students to use number shape when the problem is given, to stimulate students' interest in learning, improve student's problem solving ability and thinking ability. Key words: The combination of number and shape,set, equation, extrem

相关文档