文档库 最新最全的文档下载
当前位置:文档库 › 操作系统银行家算法实验报告

操作系统银行家算法实验报告

操作系统银行家算法实验报告
操作系统银行家算法实验报告

实验报告四

实验名称:一、编程实现银行家算法

二、测试算法

日期:2015-11-24 班级:13级计科学号:姓名:

一、实验目的

银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。

二、实验内容

用java语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。

程序能模拟多个进程共享多种资源的情形。进程可以动态地申请资源,系统按照各个进程的申请动态地分配资源。要求程序具有显示和打印各个进程的某一时刻的资源分配和安全序列;显示和打印各个进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。

三、项目要求与分析

1.要找出某一状态下所有的安全序列,程序该如何实现?

要找出这个状态下的所有的安全序列,前提是要使这个系统先处于安全状态,而系统的状态可以通过以下来描述:

(1)进程剩余申请数=最大申请数-占有数;

(2)可分配资源数=总数-占有数之和;

2.银行家算法的局限性有哪些?

银行家算法是一个最具有代表性的避免死锁的算法。银行家算法把操作系统看作

是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求

资源相当于用户向银行家贷款。当进程执行继续申请资源时,先测试该进程已占

用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求数。若

超过则拒绝分配资源,若没有超过则再检测系统现存的资源数能否满足该进程尚

需的最大资源数,若能满足则按当前的申请量分配资源,否则也要推迟分配。但

任何一种算法都存在其缺点,对各种进程的资源分配要求严格,经常使其处于不

安全状态,银行家算法的主要局限是过于谨慎和检查各申请者对各类资源的最大

需求量开销较大。

四、具体实现

1.资源类代码:

// 资源类假设一共三类资源;

class Sources {

private int A;

private int B;

private int C;

public Sources(int a, int b, int c) {

super();

this.B = b;

this.A = a;

this.C = c;

}

public Sources(Sources sources) {

super();

this.B = sources.getB();

this.A = sources.getA();

this.C = sources.getC();

}

public int getB() {

return B;

}

public void setB(int B) {

this.B = B;

}

public int getA() {

return A;

}

public void setA(int A) {

this.A = A;

}

public int getC() {

return C;

}

public void setC(int C) {

this.C = C;

}

2.进程类代码:

//进程类,包进程使用最大内存,当前已分配内存,和需要分配内存class Processor {

private String name;

private Sources maxSources;

private Sources allSources;

private Sources needSources;

public String getName() {

return name;

}

public void setName(String name) {

https://www.wendangku.net/doc/ca1268385.html, = name;

}

public Sources getMaxSources() {

return maxSources;

}

public void setMaxSources(Sources maxSources) {

this.maxSources = maxSources;

}

public Sources getNeedSources() {

return needSources;

}

public void setNeedSources(Sources needSources) {

this.needSources = needSources;

}

public Sources getAllSources() {

return allSources;

}

public void setAllSources(Sources allSources) {

this.allSources = allSources;

}

3.相关显示测试代码

// 显示当前系统和各个进程的资源使用情况

public void showdata(Processor[] processors) {

// 显示当前可用资源

System.out.print("当前系统可分配资源为:");

showSources(allSources);

System.out.println("-----------------进程状态-------------"); System.out.println("进程号 Max Allocation Need ");

System.out.println(" A B C A B C A B C");

for (int i = 0; i < processors.length; i++) {

System.out.print(processors[i].getName() + " "

+ processors[i].getMaxSources().getA() + " "

+ processors[i].getMaxSources().getB() + " "

+ processors[i].getMaxSources().getC() + " "); System.out.print(processors[i].getAllSources().getA() + " "

+ processors[i].getAllSources().getB() + " "

+ processors[i].getAllSources().getC() + " "); System.out.println(processors[i].getNeedSources().getA()

+ " "

+ processors[i].getNeedSources().getB() + " "

+ processors[i].getNeedSources().getC() + " ");

}

System.out.println("-----------------------------------");

}

4.运行结果:

五、所遇问题与解决方法

这个银行家算法只有申请资源的相应操作,没有其他的添加资源,删除资源等的操作,但由于水平有限,没来得及解决。

六、实验总结

通过本次银行家算法的实验,加深了我对银行家算法的了解,掌握了如何利用银行家算法避免死锁。操作系统是计算机系统中必不可少的系统软件。它是计算机系统中的各种资源的管理者和各种活动的组织者、指挥者。银行家算法是为了使系统保持安全状态。我们可以把操作系统看作是银行家,操作系统管理相当于银行家管理的资金,进程可以向操作系统请求分配资源相当于向银行家贷款。

操作系统-Linux课程实验报告

实验、 Linux Ubuntu的安装、创建新的虚拟机VMWare 实验 Shell编程 1.实验目的与内容 通过本实验,了解Linux系统的shell机制,掌握简单的shell编程技巧。 编制简单的Shell程序,该程序在用户登录时自动执行,显示某些提示信息,如“Welcome to Linux”, 并在命令提示符中包含当前时间、当前目录和当前用户名等基本信息。 2.程序源代码清单 #include<> #include int main(){ printf("Hello Linux\n"); int pid; int state; int pfd[2]; pipe(pfd); if (fork()==0){ printf("In the grep progress\n"); dup2(pfd[0],0); close(pfd[0]); close(pfd[1]); execlp("grep","grep","sh",0); perror("exelp grep error"); } esle if(fork()==0){ printf("In the ps progress\n"); dup2(pfd[1],1); close(pfd[0]); close(pfd[1]); execlp("ps","ps","-ef",0); perror("execlp ps -ef"); }

close(pfd[1]); close(pfd[0]); wait(&state); wait(&state); } 实验内核模块 实验步骤: (1).编写内核模块 文件中主要包含init_clock(),exit_clock(),read_clock()三个函数。其中init_clock(),exit_clock()负责将模块从系统中加载或卸载,以及增加或删除模块在/proc中的入口。read_clock()负责产生/proc/clock被读时的动作。 (2).编译内核模块Makefile文件 # Makefile under ifneq ($(KERNELRELEASE),) #kbuild syntax. dependency relationshsip of files and target modules are listed here. obj-m := else PWD := $(shell pwd) KVER ?= $(shell uname -r) KDIR := /lib/modules/$(KVER)/build all: $(MAKE) -C $(KDIR) M=$(PWD) modules clean: rm -rf .*.cmd *.o *. *.ko .tmp_versions *.symvers *.order endif 编译完成之后生成模块文件。 (3).内核模块源代码 #include #include #include #include #include #include #define MODULE #define MODULE_VERSION "" #define MODULE_NAME "clock" struct proc_dir_entry* my_clock; int read_clock(char* page, char** start, off_t off, int count, int* eof, void* data) { int len; struct timeval xtime;

银行家算法实验报告

操作系统 (实验报告) 银行家算法姓名:***** 学号:***** 专业班级:***** 学验日期:2011/11/22 指导老师:***

一、实验名称: 利用银行家算法避免死锁 二、实验内容: 需要利用到银行家算法,来模拟避免死锁:设计M个进程共享N类资源,M个进程可以动态的申请资源,并可以判断系统的安全性,进行打印出,相应的安全序列和分配表,以及最后可用的各资源的数量。 三、实验目的: 银行家算法是一种最有代表性的避免死锁的算法,在避免死锁的方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。 为实现银行家算法,系统必须设置若干数据结构,所以通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁,产生死锁的必要条件,安全状态等重要的概念,并掌握避免死锁的具体实施方法。 四、实验过程 1.基本思想: 我们可以把操作系统看成是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程申请到资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过再测试系统现资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 安全状态就是如果存在一个由系统中所有进程构成的安全序列P1……则系统处于安全状态。安全状态是没有死锁发生。而不安全状态则是不存在这样一个安全序列,从而一定会导致死锁。 2.主要数据结构: (1)可利用资源向量Available.这是一个含有m个元素的数组,其中的每一个 元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类的资源的分配和回收而动态地改变,如果Available[j]=K,则表示系统中现有Rj类资源K个。 (2)最大需求矩阵Max.这是一个n*m的矩阵,定义了系统中n 个进程中的每 一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K. (3)分配矩阵Allocation.这也是一个n*m的矩阵,它定义了系统中每一类资源

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

实验二 银行家算法报告

昆明理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第二学期) 一、实验目的和要求 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 二、实验内容 1.设计进程对各类资源最大申请表示及初值确定。 2.设定系统提供资源初始状况。 3.设定每次某个进程对各类资源的申请表示。 4.编制程序,依据银行家算法,决定其申请是否得到满足。 三、实验说明 1.数据结构 假设有M个进程N类资源,则有如下数据结构: MAX[M*N] M个进程对N类资源的最大需求量 AVAILABLE[N] 系统可用资源数 ALLOCATION[M*N] M个进程已经得到N类资源的资源量 NEED[M*N] M个进程还需要N类资源的资源量 2.银行家算法 设进程I提出请求Request[N],则银行家算法按如下规则进行判断。 (1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。 (2)如果Request[N]<=AVAILABLE,则转(3);否则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST

NEED=NEED-REQUEST (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。 3.安全性检查 (1)设置两个工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)从进程集合中找到一个满足下述条件的进程, FINISH[i]=FALSE NEED<=WORK 如找到,执行(3);否则,执行(4) (3)设进程获得资源,可顺利执行,直至完成,从而释放资源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。 四、程序流程图 初始化算法流程图:

计算机操作系统实验课实验报告

实验报告 实验课程: 计算机操作系统学生姓名:XXX 学号:XXXX 专业班级:软件 2014年12月25日

目录 实验一熟悉Windows XP中的进程和线程.. 3实验二进程调度 (7) 实验三死锁避免—银行家算法的实现 (18) 实验四存储管理 (24)

实验一熟悉Windows XP中的进程和线程 一、实验名称 熟悉Windows XP中的进程和线程 二、实验目的 1、熟悉Windows中任务管理器的使用。 2、通过任务管理器识别操作系统中的进程和线程的相关信息。 3、掌握利用spy++.exe来察看Windows中各个任务的更详细信息。 三、实验结果分析 1、启动操作系统自带的任务管理器: 方法:直接按组合键Ctrl+Alt+Del,或者是在点击任务条上的“开始”“运行”,并输入“taskmgr.exe”。

2、调整任务管理器的“查看”中的相关设置,显示关于进程的以下各项信息,并 完成下表: 表一:统计进程的各项主要信息 3、启动办公软件“Word”,在任务管理器中找到该软件的登记,并将其结束掉。再

从任务管理器中分别找到下列程序:winlogon.exe、lsass.exe、csrss.exe、smss.exe,试着结束它们,观察到的反应是任务管理器无法结束进程, 原因是该系统是系统进程。 4、在任务管理器中找到进程“explorer.exe”,将之结束掉,并将桌面上你打开的所 有窗口最小化,看看你的计算机系统起来什么样的变化桌面上图标菜单都消失了、得到的结论explorer.exe是管理桌面图标的文件(说出explorer.exe进程的作用)。 5、运行“spy++.exe”应用软件,点击按钮“”,切换到进程显示栏上,查看进 程“explorer.exe”的各项信息,并填写下表: 进程:explorer.exe 中的各个线程

银行家算法-实验报告

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理》 题目:银行家算法 班级: 学号: 姓名:

一、实验目的 银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验。 二、实验内容 用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。程序能模拟多个进程共享多种资源的情形。进程可动态地申请资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。 三、实验说明 实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。 四、实验步骤 1、理解本实验中关于两种调度算法的说明。 2、根据调度算法的说明,画出相应的程序流程图。 3、按照程序流程图,用C语言编程并实现。 五、分析与思考 1.要找出某一状态下所有可能的安全序列,程序该如何实现? 答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述: 进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和; 通过这个描述来算出系统是否安全,从而找出所有的安全序列。 2.银行家算法的局限性有哪些?

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

实时操作系统报告

实时操作系统课程实验报告 专业:通信1001 学号:3100601025 姓名:陈治州 完成时间:2013年6月11日

实验简易电饭煲的模拟 一.实验目的: 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,基于多任务的模式的编程方法。锻炼综合应用多任务机制,任务间的通信机制,内存管理等的能力。 二.实验要求: 1.按“S”开机,系统进入待机状态,时间区域显示当前北京时间,默认模式“煮饭”; 2.按“C”选择模式,即在“煮饭”、“煮粥”和“煮面”模式中循环选择; 3.按“B”开始执行模式命令,“开始”状态选中,时间区域开始倒计时,倒计时完成后进入“保温”状态,同时该状态显示选中,时间区域显示保温时间; 4.按“Q”取消当前工作状态,系统进入待机状态,时间区域显示北京时间,模式为当前模式; 5.按“X”退出系统,时间区域不显示。 6.煮饭时长为30,煮粥时长为50,煮面时长为40. 三.实验设计: 1.设计思路: 以老师所给的五个程序为基础,看懂每个实验之后,对borlandc的操作有了大概的认识,重点以第五个实验Task_EX为框架,利用其中界面显示与按键扫描以及做出相应的响应,对应实现此次实验所需要的功能。 本次实验分为界面显示、按键查询与响应、切换功能、时钟显示与倒计时模块,综合在一起实验所需功能。 2.模块划分图: (1)界面显示: Main() Taskstart() Taskstartdispinit() 在TaskStartDispInit()函数中,使用PC_DispStr()函数画出界面。

(2)按键查询与响应: Main() Taskstart() 在TaskStart()函数中,用if (PC_GetKey(&key) == TRUE)判断是否有按键输入。然后根据key 的值,判断输入的按键是哪一个;在响应中用switch语句来执行对应按键的响应。 (3)切换功能: l计数“C”按 键的次数 M=l%3 Switch(m) M=0,1,2对应于煮饭,煮粥,煮面,然后使用PC_DispStr()函数在选择的选项前画上“@”指示,同时,在其余两项钱画上“”以“擦出”之前画下的“@”,注意l自增。 四.主要代码: #include "stdio.h" #include "includes.h" #include "time.h" #include "dos.h" #include "sys/types.h" #include "stdlib.h" #define TASK_STK_SIZE 512 #define N_TASKS 2 OS_STK TaskStk[N_TASKS][TASK_STK_SIZE]; OS_STK TaskStartStk[TASK_STK_SIZE]; INT8U TaskData[N_TASKS];

银行家算法_实验报告

课程设计报告课程设计名称共享资源分配与银行家算法 系(部) 专业班级 姓名 学号 指导教师 年月日

目录 一、课程设计目的和意义 (3) 二、方案设计及开发过程 (3) 1.课题设计背景 (3) 2.算法描述 (3) 3.数据结构 (4) 4.主要函数说明 (4) 5.算法流程图 (5) 三、调试记录与分析 四、运行结果及说明 (6) 1.执行结果 (6) 2.结果分析 (7) 五、课程设计总结 (8)

一、程设计目的和意义 计算机科学与技术专业学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,其目的在于加深催操作系统基础理论和基本知识的理解,加强学生的动手能力.银行家算法是避免死锁的一种重要方法。通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁、产生死锁的必要条件、安全状态等重要概念,并掌握避免死锁的具体实施方法 二、方案设计及开发过程 1.课题设计背景 银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。这时系统将该进程从进程集合中将其清除。此时系统中的资源就更多了。反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。请进程等待 2.算法描述 1)如果Request[i] 是进程Pi的请求向量,如果Request[i,j]=K,表示进程Pi 需要K个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: 如果Requesti[j]<= Need[i,j],便转向步骤2;否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。 2)如果Requesti[j]<=Available[j],便转向步骤3,否则,表示尚无足够资源,进程Pi须等待。 3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j];

银行家算法实验报告

计算机操作系统实验报告 一、实验名称:银行家算法 二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简 单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 三、问题分析与设计: 1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是 否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安 全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2); 否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的 数值: Available=Available-Request[i]; Allocation=Allocation+Request; Need=Need-Request;

(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状 态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令 Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

操作系统课程设计实验报告

河北大学工商学院 课程设计 题目:操作系统课程设计 学部信息学部 学科门类电气信息 专业计算机 学号2011482370 姓名耿雪涛 指导教师朱亮 2013 年6月19日

主要内容 一、设计目的 通过模拟操作系统的实现,加深对操作系统工作原理理解,进一步了解操作系统的实现方法,并可练习合作完成系统的团队精神和提高程序设计能力。 二、设计思想 实现一个模拟操作系统,使用VB、VC、CB等windows环境下的程序设计语言,以借助这些语言环境来模拟硬件的一些并行工作。模拟采用多道程序设计方法的单用户操作系统,该操作系统包括进程管理、存储管理、设备管理、文件管理和用户接口四部分。 设计模板如下图: 注:本人主要涉及设备管理模块

三、设计要求 设备管理主要包括设备的分配和回收。 ⑴模拟系统中有A、B、C三种独占型设备,A设备1个,B设备2个,C设备2个。 ⑵采用死锁的预防方法来处理申请独占设备可能造成的死锁。 ⑶屏幕显示 注:屏幕显示要求包括:每个设备是否被使用,哪个进程在使用该设备,哪些进程在等待使用该设备。 设备管理模块详细设计 一、设备管理的任务 I/O设备是按照用户的请求,控制设备的各种操作,用于完成I/O 设备与内存之间的数据交换(包括设备的分配与回收,设备的驱动管理等),最终完成用户的I/O请求,并且I/O设备为用户提供了使用外部设备的接口,可以满足用户的需求。 二、设备管理函数的详细描述 1、检查设备是否可用(主要代码) public bool JudgeDevice(DeviceType type) { bool str = false; switch (type) { case DeviceType.a: {

嵌入式实时操作系统实验报告

嵌入式实时操作系统实验报告 任务间通信机制的建立 系别计算机与电子系 专业班级***** 学生姓名****** 指导教师 ****** 提交日期 2012 年 4 月 1 日

一、实验目的 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,任务使用信号量的一般原理。掌握在基于优先级的可抢占嵌入式实时操作系统的应用中,出现优先级反转现象的原理及解决优先级反转的策略——优先级继承的原理。 二、实验内容 1.建立并熟悉Borland C 编译及调试环境。 2.使用课本配套光盘中第五章的例程运行(例5-4,例5-5,例5-6),观察运行结果,掌握信号量的基本原理及使用方法,理解出现优先级反转现象的根本原因并提出解决方案。 3.试编写一个应用程序,采用计数器型信号量(初值为2),有3个用户任务需要此信号量,它们轮流使用此信号量,在同一时刻只有两个任务能使用信号量,当其中一个任务获得信号量时向屏幕打印“TASK N get the signal”。观察程序运行结果并记录。 4. 试编写一个应用程序实现例5-7的内容,即用优先级继承的方法解决优先级反转的问题,观察程序运行结果并记录。 5.在例5-8基础上修改程序增加一个任务HerTask,它和YouTask一样从邮箱Str_Box里取消息并打印出来,打印信息中增加任务标识,即由哪个任务打印的;MyTask发送消息改为当Times为5的倍数时才发送,HerTask接收消息采用无等待方式,如果邮箱为空,则输出“The mailbox is empty”, 观察程序运行结果并记录。 三、实验原理 1. 信号量 μC/OS-II中的信号量由两部分组成:一个是信号量的计数值,它是一个16位的无符号整数(0 到65,535之间);另一个是由等待该信号量的任务组成的等待任务表。用户要在OS_CFG.H中将OS_SEM_EN开关量常数置成1,这样μC/OS-II 才能支持信号量。

操作系统实验报告

操作系统教程 实 验 指 导 书 姓名: 学号: 班级:软124班 指导老师:郭玉华 2014年12月10日

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序: E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 有可能是因为DOS下路径的问题 (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 因为程序是个死循环程序 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环: 屏蔽j循环: _______________________________________________________________________________调整循环变量i的循环次数:

操作系统实验报告

实验报告 实验课程名称:操作系统 实验地点:南主楼七楼机房 2018—2019学年(一)学期 2018年 9月至 2019 年 1 月 专业: 班级: 学号: 姓名: 指导老师:刘一男

实验一 实验项目:分时系统模拟 实验学时:2实验日期: 2018-10-25 成绩: 实验目的利用程序设计语言模拟分时系统中多个进程按时间片轮转调度算法进行进程调度的过程; 假设有五个进程A,B,C,D,E,它们的到达时间及要求服务的时间分别为:进程名 A B C D E 到达时间0 1 2 3 4 服务时间 4 3 4 2 4 时间片大小为1,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间。 执行过程并计算各进程的周转时间及带权周转时间。 轮转调度:BDACE

(1)修改时间片大小为2,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间。 轮转调度:ADBCE (2)修改时间片大小为4,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间.

顺序:ABCDE 1、思考 时间片的大小对调度算法产生什么影响?对计算机的性能产生什么影响?答:通过对时间片轮转调度算法中进程最后一次执行时间片分配的优化,提出了一种改进的时间片轮转调度算法,该算法具有更好的实时性,同时减少了任务调度次数和进程切换次数,降低了系统开销,提升了CPU的运行效率,使操作系统的性能得到了一定的提高。 A B C D E 时间片为1 周转时间12 9 14 8 13 3 3 3.5 4 3.25 带权周转 时间 时间片为2 周转时间8 12 13 7 13 2 4 3.25 3.5 3.25 带权周转 时间 时间片为4 周转时间 4 6 9 10 13 1 2 2.25 5 3.25 带权周转 时间

操作系统实验报告心得体会

操作系统实验报告心得体会 每一次课程设计度让我学到了在平时课堂不可能学到的东西。所以我对每一次课程设计的机会都非常珍惜。不一定我的课程设计能够完成得有多么完美,但是我总是很投入的去研究去学习。所以在这两周的课设中,熬了2个通宵,生物钟也严重错乱了。但是每完成一个任务我都兴奋不已。一开始任务是任务,到后面任务就成了自己的作品了。总体而言我的课设算是达到了老师的基本要求。总结一下有以下体会。 1、网络真的很强大,用在学习上将是一个非常高效的助手。几乎所有的资料都能够在网上找到。从linux虚拟机的安装,到linux的各种基本命令操作,再到gtk的图形函数,最后到文件系统的详细解析。这些都能在网上找到。也因为这样,整个课程设计下来,我浏览的相关网页已经超过了100个(不完全统计)。当然网上的东西很乱很杂,自己要能够学会筛选。 不能决定对或错的,有个很简单的方法就是去尝试。就拿第二个实验来说,编译内核有很多项小操作,这些小操作错了一项就可能会导致编译的失败,而这又是非常要花时间的,我用的虚拟机,编译一次接近3小时。所以要非常的谨慎,尽量少出差错,节省时间。多找个几个参照资料,相互比较,

慢慢研究,最后才能事半功倍。 2、同学间的讨论,这是很重要的。老师毕竟比较忙。对于课程设计最大的讨论伴侣应该是同学了。能和学长学姐讨论当然再好不过了,没有这个机会的话,和自己班上同学讨论也是能够受益匪浅的。大家都在研究同样的问题,讨论起来,更能够把思路理清楚,相互帮助,可以大大提高效率。 3、敢于攻坚,越是难的问题,越是要有挑战的心理。这样就能够达到废寝忘食的境界。当然这也是不提倡熬夜的,毕竟有了精力才能够打持久战。但是做课设一定要有状态,能够在吃饭,睡觉,上厕所都想着要解决的问题,这样你不成功都难。 4、最好在做课设的过程中能够有记录的习惯,这样在写实验报告时能够比较完整的回忆起中间遇到的各种问题。比如当时我遇到我以前从未遇到的段错误的问题,让我都不知道从何下手。在经过大量的资料查阅之后,我对段错误有了一定的了解,并且能够用相应的办法来解决。 在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的 1)访问系统数据区,尤其是往系统保护的内存地址写数据,最常见就是给一个指针以0地址 2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域

实时操作系统实验报告2

实时操作系统实验报告 专业:11通信工程 学号:20110306136 姓名: 王帅 指导老师:申屠浩

实验二 任务管理实验 实验目的: 1、理解任务管理的基本原理,了解任务的各个基本状态及其变迁过程; 2、掌握μC/OS -II 中任务管理的基本方法(挂起、解挂); 3、熟练使用μC/OS -II 任务管理的基本系统调用。 实验要求与思路: 为了体现任务的各个基本状态及其变迁过程,本实验设计了T0、T1和T3三个任务,它们交替运行,如图2-2所示。 T0 T1 T2 T3 T4 T5 T6 T7 T8 图2-2 注意: 图中的栅格并不代表严格的时间刻度,而仅仅表现各任务启动和执行的相对先后关系。 说明: 在系统完成初始化后,可以先创建并启动优先级最低的TaskStart ,由它创建其他3个应用任务T0、T1和T2,之后整个系 T0 T2 T1 T0 T1 T2 T1 T0

统的运行流程如下: 1)优先级最高的T0开始执行,之后T0挂起自己; 2)然后系统调度选中T1开始执行,之后T1挂起自己; 3)接着系统调度选中T2,之后唤醒T0; 4)如此循环 实现提示: 在启动任务中创建三个任务后,应挂起任务1和任务2。 在每个任务恢复其它任务并挂起自己之前,显示当前三个任务的状态,并延时1秒。 函数说明: void PC_GetDateTime (char *s); 获取"YYYY-MM-DD HH:MM:SS"格式的时间字串存放在字符串s中,s的长度最少为21字节。 void PC_DispStr (INT8U x, INT8U y, INT8U *s, INT8U color); 在y行x列以color颜色值显示字串s,注意color由背景色和前景色两种颜色构成。 INT8U OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT16U milli); 按时、分、秒、毫秒设置进行延时。 void OSTimeDly (INT16U ticks) 按ticks值进行延时,1 ticks一般为10ms。 INT32U OSTimeGet (void)

操作系统课程设计实验报告用C实现银行家算法

操作系统课程设计实验报告用C实现银行家算 法 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

操作系统 实 验 报 告 (2) 学院:计算机科学与技术学院 班级:计091 学号:姓名:

时间:2011/12/30 目录 1.实验名称 (3) 2.实验目的 (3) 3.实验内容 (3) 4.实验要求 (3) 5.实验原理 (3) 6.实验环境 (4) 7.实验设计 (4) 数据结构设计 (4) 算法设计 (6) 功能模块设计 (7) 8.实验运行结果 (8) 9.实验心得 (9) 附录:源代码(部分) (9) 一、实验名称: 用C++实现银行家算法 二、实验目的: 通过自己编程来实现银行家算法,进一步理解银行家算法的概念及含义,提高对银行家算法的认识,同时提高自己的动手实践能力。 各种死锁防止方法能够阻止发生死锁,但必然会降低系统的并发性并导致低效的资源利用率。死锁避免却与此相反,通过合适的资源分配算法确保不会出现进程循环等

待链,从而避免死锁。本实验旨在了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生。 三、实验内容: 利用C++,实现银行家算法 四、实验要求: 1.完成银行家算法的设计 2.设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。 五、实验原理: 系统中的所有进程放入进程集合,在安全状态下系统收到进程的资源请求后,先把资源试探性的分配给它。之后,系统将剩下的可用资源和进程集合中的其他进程还需要的资源数作比较,找出剩余资源能够满足的最大需求量的进程,从而保证进程运行完毕并归还全部资源。这时,把这个进程从进程集合中删除,归还其所占用的所有资源,系统的剩余资源则更多,反复执行上述步骤。最后,检查进程集合,若为空则表明本次申请可行,系统处于安全状态,可以真正执行本次分配,否则,本次资源分配暂不实施,让申请资源的进程等待。 银行家算法是一种最有代表性的避免的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置若干。要解释银行家算法,必须先解释操作系统安全状态和不安全状态。安全序列是指一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。

相关文档
相关文档 最新文档