文档库 最新最全的文档下载
当前位置:文档库 › 混沌系统的同步控制

混沌系统的同步控制

混沌系统的同步控制
混沌系统的同步控制

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

混沌与分数阶混沌系统同步控制研究及其电路仿真

混沌与分数阶混沌系统同步控制研究及其电路仿真 文章来源:伟智论文服务中心 [打印] 【摘要】混沌作为一种复杂的非线性运动行为,在物理学、化学、信息技术以及工程学等领域得到了广泛的研究。由于混沌对初值的极端敏感性、内在的随机性、连续宽谱等特点,使其特别适用于保密通信、信号处理、图象加密等领域,因此,混沌同步成为混沌应用的关键技术。在参阅大量文献的基础上,本文利用理论证明,数值模拟以及电路仿真相结合的方法,对混沌系统同步、分数阶超混沌系统同步、以及非自治超混沌系统进行了研究。本文的主要研究内容如下:1.基于Lyapunov稳定性理论,利用自适应控制方法,以不确定单模激光Lorenz系统作为驱动系统,将不确定单涡旋混沌系统作为响应系统,设计了非线性反馈控制器及参数识别器,使响应系统的所有状态变量严格地按函数比例跟踪驱动系统的混沌轨迹,并辨识出包括非线性项在内的驱动系统和响应系统的不确定参数,利用四阶龙格库塔仿真模拟,结果表明了该方法的有效性。2.应用驱动-响应方法、反馈线性化方法以及基于Lyapunov方程的Backstepping 控制方法,研究了分数阶超混沌L(u|¨)系统同步问题。其次,针对上述分数阶混沌系统同步方法中存在的不足,基于分数阶系统的稳定性理论,提出了分数 阶超混沌系...更多统的自适应同步方法,用两个控制器与两个驱动变量实现 了不确定分数阶超混沌L(u|¨)系统的自适应同步,给出了自适应同步控制器和参数自适应率,辨识出系统的不确定参数。最后,结合Active控制技术,实现了异结构分数阶超混沌系统的同步。理论证明、数值模拟以及电路仿真证实了上述同步方法的有效性和可行性。3.采用调节连续信号频率的方法,将外界控制信号引入到超混沌系统中,设计了一个新四维非自治超混沌系统。通过精确地调节模拟输入信号的频率,观察和验证新系统的非线性动力学特性,具体为 周期轨、二维环面、混沌和超混沌现象。通过Lyapunov指数图,分岔图来解释系统的动力学特性,并且给出了设计的实验电路及其观测的结果,进一步从物 理实现上验证仿真结果的准确性。最后利用单变量耦合反馈控制方法,通过电路实验实现了非自治超混沌系统的同步。还原 【Abstract】 Chaotic systems are well known for their complex nonlinear systems, and have been intensively studied in various fields such as physics, chemistry, information technology and engineering. In virtue of its characteristics of chaos such as hyper sensitivity to initial conditions, high randomicity and board spectra for its Fourier transform, chaos can be especially applied to secure communications, signal processing and image encryption and so on. Thus chaos synchronization has become the key process in the application of chaos. The research has studied the relative problems of chaos synchronization, synchronization of fractional-order hyper-chaotic systems and analysis of a new four-dimensional non-autonomous hyper-chaotic system, using

实验报告:混沌同步控制与图像加密

混沌同步控制与图像加密 ――― 《混沌实验教学平台的设计与实现》中期期报告 (华南师范大学物理与电信工程学院指导老师:李军学生:王龙杰、张丹伟、杨土炎)摘要:基于混沌系统的某些独特性质,如初值敏感性,本文讨论了混沌理论的两个重要运用,即基于Lorenz 混沌系统的同步控制和基于Logistic 混沌映射的图像加密。在讨论与分析的基础上,利用MA TLAB 软件进行数值计算与模拟,得到较好的效果。 关键词:Lorenz 混沌系统;同步控制;Logistic 混沌映射;图像加密;MATLAB 基于Lorenz 混沌系统的同步控制 一.引言 混沌是自然界及人类社会中的一种普遍现象,至今为止,在学术界对“混沌”还没有统一的被普遍接受的定义。混沌运动是确定性和随机性的对立统一, 即它具有确定性和随机性, 所谓确定性是指混沌运动是在确定性系统中发生的,可以用动力学方程形式表述, 这与完全随机运动有着本质的区别; 所谓运动具有随机性, 是指不能像经典力学中的机械运动那样由某时刻状态可以预言以后任何时刻的运动状态, 混沌运动倒是像其他随机运动或噪声那样, 其运动状态是不可预言的, 换言之, 混沌运动在相空间中没有确定的轨道。混沌运动对初始状态(条件)具有敏感的依赖性, 只要对系统施加非常微小的扰动,就可能把系统从一个不稳定的周期运动转变到另一个不稳定的周期运动上去,也可能转变到另一稳定的运动状态上, 通 过这个特性, 我们可以利用混沌有意义的一面, 而避其有害的一面。Lorenz 系统作为第一个混沌模型,是混沌发展史上的一个里程碑, 具有举足轻重的地位。对Lorenz 系统的深入研究无疑已经极大地推动了混沌学的发展。 人们发现混沌控制在众多领域中有着广阔的应用前景, 尤其在电子学、电力系统、保密 通信和振荡发生器设计等领域有着巨大的应用前景, 因此引起了广泛的重视。由于混沌行为对初始状态的敏感依赖性, 受到噪声、干扰以及系统不稳定的影响, 特别是在混沌同步中, 实 际系统中很难观测到混沌同步。自从1990 年, Pecora 和Carroll 提出了混沌同步的概念和 方法以后,随着混沌同步研究的不断深入, 混沌控制与同步的研究工作得到了长足的发展, 并 逐渐成为混沌与控制领域研究的热点。对于相近的混沌轨道, 通过相同的非线性系统控制, 最终可能导致完全不相关的状态。但在实际应用中, 往往要求控制得到相关的状态或所需要的同步结果, 本文采用了加入反馈控制量的方法使其耦合, 最终达到所要求的同步。在计算机上的仿真结果显示, 能在短时间内实现耦合同步控制。

超混沌系统的函数投影同步在图像加密中的应用

第45卷第1期2019年1月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Vol.45No.1Jan.2019超混沌系统的函数投影同步在图像加密中的应用 李德奎 (甘肃中医药大学理科教学部,甘肃定西 743000) 摘 要:针对加密灰度图像安全级别低的问题,提出基于超混沌系统及其状态观测器实现函数投影同步的混沌时间序列,应用加取模像素扩散算法对灰度图像进行加密和解密.首先,利用超混沌系统的状态输出向量,构造其状态观测器系统,根据控制理论方法,给出超混沌系统及其状态观测器实现函数投影同步的充分条件;然后,基于函数投影同步的混沌时间序列,利用加取模像素扩散算法得到灰度图像的加密图像和解密图像.理论分析和数值仿真表明,构造的状态观测器系统是正确的,得出的函数投影同步的充分条件是有效的,密文图像分布与均匀分布没有显著差异.同时算法对密钥具有高度敏感性,有很强的抵御攻击的能力和精准的解密效果. 关键词:超混沌系统;状态观测器;函数投影同步;混沌时间序列;加取模像素扩散算法;加密和解密 中图分类号:O 415.5 文献标志码:A 文章编号:0254-0037(2019)01-0024-09 doi :10.11936/bjutxb2018020027收稿日期:2018-02-25 基金项目:甘肃省高等学校科研项目(2017A-155);甘肃省自然科学基金资助项目(1610RJZA080) 作者简介:李德奎(1979 ),男,副教授,主要从事混沌同步及应用方面的研究,E-mail:dkli2009@https://www.wendangku.net/doc/c91353815.html, Application for Function Projection Synchronization of the Hyper-chaotic System in Image Encryption LI Dekui (Department Teaching of Science,Gansu University of Chinese Medicine,Dingxi 743000,Gansu,China)Abstract :To solve the problem of low security level of encrypted gray image,based on chaotic time series from functional projective synchronization of the hyper-chaotic system and its state observer,the add modulus pixel diffusion algorithm was used to encrypt and decrypt gray image.The state observer of the hyper-chaotic system was constructed.First,the state observer of the hyper-chaotic system was conducted by using the state output vector of the hyper-chaotic system,and according to control theory method,the sufficient condition of function projective synchronization was given for the hyper-chaotic system and the state observer.Then,based on chaotic time series of functional projective synchronization,encrypted and decrypted images of gray image were obtained by using the add modulus pixel diffusion algorithm .Theoretical analysis and numerical simulation show the constructed state observer is correct,the sufficient condition of functional projection synchronization is effective,and there is no significant difference between the encrypted image distribution and the uniform distribution.At the same time,the algorithm is highly sensitive to the key,and has strong ability to resisting attack and has accurate decryption effect.Key words :hyper-chaotic system;state observer;function projective synchronization;chaotic time series;pixel diffusion algorithm;encryption and decryption 万方数据

非线性系统中混沌的控制及同步及其应用前景_一_

第1 6 卷第1 期物理学进展o l.16, N o. 1 V 1996 年 3 月PRO GR E S S I N PH Y S I C S M ac r ch , 1996 非线性系统中混沌的控制与同步 Ξ 及其应用前景(一) 方锦清 ( 中国原子能科学研究院, 北京102413) 提要 全文系统地综述了非线性科学中一个富有挑战性及具有巨大应用前景的重大课题——非线性系统中混沌的控制与同步及其应用的主要进展, 包括了作者关于超混沌同步及其控制等方面的研究成果。我们对现有的各种混沌的控制方法和混沌的同步原理提出了分类和评述。概述了实验与应用的现状, 指出了发展前景, 全文分为( 一) ( 二) 两篇, 第( 一) 篇以混沌控制的机理和方法为主要论题展开广泛的讨论; 第(二) 篇以混沌的同步、超混沌的同步及其控制为论题, 同时包括众多的实验应用的研究, 进行较详尽的综述和分析评论, 比较完整地概括了迄今国内外该课题的发展现状和主要趋势。 总论 混沌, 当今举世瞩目的前沿课题及学术热点, 它揭示了自然界及人类社会中普遍存在的复杂性, 有序与无序的统一, 确定性与随机性的统一, 大大拓广了人们的视野, 加深了对客观世界的认识。它在自然科学及社会科学等领域中, 覆盖面之大、跨学科之广、综合性之强, 发展前景及影响之深远都是空前的。国际上誉称混沌的发现, 乃是继本世纪相对论与量子力学问世以来的第三次物理学大革命, 这场革命正在冲击和改变着几乎所有科学和技术领域, 向我们提出了巨大的挑战ΞΞ。 混沌的发现已过而立之年。首要的问题是, 混沌究竟有什么应用和发展前景? 这是摆在人们面前的一个重大课题及普遍关注的问题。特别是, 在我国改革开放和振兴经济的大潮面前, 这类提问和呼声更为强烈, 这确实也是深入开展混沌研究的巨大推动力。由于混沌的奇异特性, 特别是对初始条件极其微小变化的高度敏感性及不稳定性, 所 谓“差之毫厘失之千里”的缘故, 长期以来有些人总觉得混沌是不可控的、不可靠的, 因而 Ξ 本课题是国家留学回国人员重大科技资助项目、国家核科学工业基金资助项目及I A EA 科研合同课题。 ΞΞ 混沌发现的重要性论述请参阅: 詹姆斯·格莱克著,“混沌开创新科学”( 张淑誉译, 郝柏林校) , 1990, 上海译文出版社。

典型混沌系统和混沌同步的简介

2典型混沌系统和混沌同步的简介 2.1典型混沌系统的介绍 混沌从表述形式上大体包括两大类:以微分方程表述的时间连续函数和以状态方程表述的时间离散函数。时间离散系统多用于扩频通信,而时间连续函数多见于保密通信之中。介于本文主要考虑连续系统在保密通信之中的应用,这里就重点介绍连续时间混沌系统中的典型模型:Lorenz 系统、蔡氏电路、统一混沌系统。 2.1.1 Lorenz 系统 混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz 方程组: () ??? ????----cz xy y xz bx y x y a x =z==。。 。 (2-1) 这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统 (2-1)的主要控制参数。k v a =是普朗特数(v 和k 分别为分子粘性系数和热传导系数),c 代表与对流纵横比有关的外形比,且a 和c 为无量纲常数。在参数范围为)1/()3(--++?>c a c a a b 时,Lorenz 系统均处于混沌态。 在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所示,二维吸引子如图2.3所示,图2.2所示分别为分量x 、y 随时间t 的变化情况。 图2.1 Lorenz 系统的吸引子

驱动和响应系统实现chen氏混沌同步

1、主函数 文件名:chen_main.m function chen_main % 耦合系数对同步的影响 global m n; format long; tspan=0:0.001:5; Y0=[3 4 20 4 5 21]; hold on m=0.5;n=0.5; [t,y]=ode45(@chen,tspan,Y0); plot(t,y(:,1)-y(:,4),'r') legend('m=n=0.5') 2、微分函数 函数名: 代码: chen.m function dy=chen(t,y) format long a=35;b=3;c=28; % dy=zeros(3,1); % dy(1)=a*(y(2)-y(1)); % dy(2)=(c-a)*y(1)-y(1)*y(3)+c*y(2); % dy(3)=y(1)*y(2)-b*y(3); % 同步 global m n; u=5; dy=zeros(6,1); D1=funD(y(1),y(2),y(3)); D2=funD(y(4),y(5),y(6)); % 驱动系统 dy(1)=a*(y(2)-y(1))+m*0; dy(2)=(c-a)*y(1)-y(1)*y(3)+c*y(2)+m*(D1(2,:)-D2(2,:)); dy(3)=y(1)*y(2)-b*y(3)+m*(D1(3,:)-D2(3,:)); % 响应系统 dy(4)=a*(y(5)-y(4))+n*0; dy(5)=(c-a)*y(4)-y(4)*y(6)+c*y(5)+n*(D2(2,:)-D1(2,:)); dy(6)=y(4)*y(5)-b*y(6)+n*(D2(3,:)-D1(3,:));

混沌通信实验

混沌通讯实验 实验一:非线性电阻的伏安特性实验 1.实验目的:测绘非线性电阻的伏安特性曲线 2.实验装置:混沌通信实验仪。 3.实验对象:非线性电阻模块。 4.实验原理框图: 图1 非线性电阻伏安特性原理框图 5.实验方法: 第一步:在混沌通信实验仪面板上插上跳线J01、J02,并将可调电压源处电位器旋钮逆时针旋转到头,在混沌单元1中插上非线性电阻NR1。 第二步:连接混沌通讯实验仪电源,打开机箱后侧的电源开关。面板上的电流表应有电流显示,电压表也应有显示值。 第三步:按顺时针方向慢慢旋转可调电压源上电位器,并观察混沌面板上的电压表上的读数,每隔0.2V记录面板上电压表和电流表上的读数,直到旋钮顺时针旋转到头。 第四步:以电压为横坐标、电流为纵坐标用第三步所记录的数据绘制非线性电阻的伏安特性曲线如图2所示。 第五步:找出曲线拐点,分别计算五个区间的等效电阻值 6.实验数据:

易知第一区间是(-13.41,-1.7)至(-10.4,4.9),等效电阻为456.1 第二区间是(-10.4,4.9)至(-1.6,1.2),等效电阻为2378.4 第三区间是(-1.6,1.2)至(1.6,-1.2),等效电阻为1333.3 第四区间是(1.6,-1.2)至(9.8,-4.6),等效电阻为2588.2 第五区间是(9.8,-4.6)至(13,1.7),等效电阻为523.8 实验二:混沌波形发生实验 1.实验目的:调节并观察非线性电路振荡周期分岔现象和混沌现象。 2.实验装置:混沌通信实验仪、数字示波器1台、电缆连接线2根。3.实验原理图: 4.实验方法:

第一步:拔除跳线J01、J02,在混沌通信实验仪面板的混沌单元1中插上电位器W1、电容C1、电容C2、非线性电阻NR1,并将电位器W1上的旋钮顺时针旋转到头。 第二步:用两根Q9线分别连接示波器的CH1和CH2端口到混沌通信实验仪面板上标号Q8和Q7处。打开机箱后侧的电源开关。 第三步:把示波器的时基档切换到X-Y。调节示波器通道CH1和CH2的电压档位使示波器显示屏上能显示整个波形,逆时针旋转电位器W1直到示波器上的混沌波形变为一个点,然后慢慢顺时针旋转电位器W1并观察示波器,示波器上应该逐次出现单周期分岔(见图4)、双周期分岔(见图5)、四周期分岔(见图6)、多周期分岔(见图7) 、单吸引子(见图8)、双吸引子(见图9)现象。 5.实验数据 单周期分岔双周期分岔 四周期分岔多周期分岔 单吸引子双吸引子

蔡氏电路混沌控制与同步实验研究_钟双英

蔡氏电路混沌控制与同步实验研究 钟双英,刘 崧,戚小平,李 鸿 (南昌大学理学院,江西南昌 330031 )摘 要:利用Multisim仿真软件研究了电路元件参数对称和不对称情况下蔡氏电路的混沌控制与同步。仿真结果综合表明:耦合电阻的大小及电路元件参数匹配对混沌信号控制与同步效果产生严重的影响。给出了混沌信号同步的耦合电阻参数范围,对进一步开展电路混沌创新性物理实验教学具有理论的指导意义。关键词:蔡氏电路;混沌控制;混沌同步;Multisim 中图分类号:G642.0 文献标志码:A 文章编号:1002- 4956(2012)11-0032-03Experimental study  on control and synchronization of chaos in Chua’s circuitZhong  Shuangying,Liu Song,Qi Xiaoping,Li Hong(School of Science,Nanchang University,Nanchang  330031,China)Abstract:This paper deals mainly with the experimental study on control and synchronization of chaos inChua’s circuit with the symmetry and dissymmetry circuit parameters by means of Multisim.The simulationresults indicate that the size of coupling resistance and the parameter matching of circuit have a great effect onsynchronization of chaos,and the parameter range of getting synchronization is given,which presents a theo-retical sig nificance for the future work.Key  words:Chua’s circuit;chaos control;chaes synchronization;Multisim收稿日期:2012-02-21 修改日期: 2012-04-26基金项目:江西省高等学校教学改革研究课题(JXJG-11-1- 29);南昌大学教学改革课题 作者简介:钟双英(1968—) ,女,江西广丰,博士,副教授,主要从事物理实验教学及非线性物理研究. zhongshuangying @ncu.edu.cn 混沌现象是自然界中普遍存在[1] 的非线性动力系 统的独特行为, 具有明显的不可预测性,对初始条件敏感,混沌同步现象广泛地应用于生物、医学、电子学和 保密通信等领域[2- 7]。在物理实验教学中,可以借助非 线性电路来模拟各种非线性动力系统,直观地观察到 非线性动力系统随时间演化的趋势[ 8- 13]。本文基于Multisim仿真软件研究参数对称和不对称的蔡氏电 路的双涡旋混沌信号的控制与同步,观察耦合电阻及电路参数对混沌信号同步效果的影响。 1 蔡氏仿真电路建模 蔡氏电路结构简单,是研究混沌现象的一种典型的非线性电路,非线性电阻(RN)可由二极管和运算放大器构成,如图1所示,RN的伏安特性测试曲线如图2所示 。 图1 非线性电阻RN 构造示意图 图2 非线性电阻RN伏安特性测试曲线 ISSN  1002-4956CN11-2034/T 实 验 技 术 与 管 理Experimental Technology  and Management 第29卷 第11期 2012年11月Vol.29 No.11 Nov.2012

混沌通信实验报告范文

混沌通信实验报告范文 篇一:混沌通信实验仪实验操作步骤 实验一:非线性电阻的伏安特性实验 1.实验目的:测绘非线性电阻的伏安特性曲线 2.实验装置:混沌通信实验仪。 3.实验对象:非线性电阻模块。 4.实验原理框图: 图1 非线性电阻伏安特性原理框图 5.实验方法: 第一步:在混沌通信实验仪面板上插上跳线J01、J02,并将可调电压源处电位器旋钮逆时针旋转到头,在混沌单元1中插上非线性电阻NR1。 第二步:连接混沌通讯实验仪电源,打开机箱后侧的电源开关。面板上的电流表应有电流显示,电压表也应有显示值。 第三步:按顺时针方向慢慢旋转可调电压源上电位器,并观察混沌面板上的电压表上的读数,每隔0.2V记录面板上电压表和电流表上的读数,直到旋钮顺时针旋转到头。 第四步:以电压为横坐标、电流为纵坐标用第三步所记录的数据绘制非线性电阻的伏安特性曲线如图2所示。 图2非线性电阻伏安特性曲线图 第五步:找出曲线拐点,分别计算五个区间的等效电阻值。

实验二:混沌波形发生实验 1.实验目的:调节并观察非线性电路振荡周期分岔现象和混沌现象。 2.实验装置:混沌通信实验仪、数字示波器1台、电缆连接线2根。 3.实验原理图: 图3 混沌波形发生实验原理框图 4.实验方法: 第一步:拔除跳线J01、J02,在混沌通信实验仪面板的混沌单元1中插上电位器W1、电容C1、电容C2、非线性电阻NR1,并将电位器W1上的旋钮顺时针旋转到头。 第二步:用两根Q9线分别连接示波器的CH1和CH2端口到混沌通信实验仪面板上标号Q8和Q7处。打开机箱后侧的电源开关。 第三步:把示波器的时基档切换到X-Y。调节示波器通道CH1和CH2的电压档位使示波器显示屏上能显示整个波形,逆时针旋转电位器W1直到示波器上的混沌波形变为一个点,然后慢慢顺时针旋转电位器W1并观察示波器,示波器上应该逐次出现单周期分岔(见图 4)、双周期分岔(见图5)、四周期分岔(见图6)、多周期分岔(见图7) 、单吸引子(见图8)、双吸引子(见图9)现象。 图4 单周期分岔

相关文档