文档库 最新最全的文档下载
当前位置:文档库 › Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals

Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals

Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals
Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals

Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength

Huanjun Chen,Lei Shao,Kat Choi Woo,Tian Ming,Hai-Qing Lin,and Jianfang Wang*

Department of Physics,The Chinese Uni V ersity of Hong Kong,Shatin,Hong Kong SAR,China

Recei V ed:August1,2009;Re V ised Manuscript Recei V ed:August25,2009

Gold nanocrystals in seven different shapes were prepared,including large nanorods,nanobipyramids,oxidized

nanobipyramids,oxidized nanorods,dog-bone-like nanorods,peanut-like nanorods,and small nanorods.Their

longitudinal plasmon resonance wavelengths were all synthetically controlled to be around730nm.Their

refractive index sensitivities were measured by dispersing them in water-glycerol mixtures of varying

compositions.The index sensitivities were found to be dependent on the shapes of the gold nanocrystals,

with the large nanorods exhibiting the highest index sensitivity of326nm/RIU(refractive index unit)and the

small nanorods exhibiting the lowest sensitivity of156nm/RIU.Finite-difference time-domain calculations

were performed to obtain the electric?eld intensity enhancement contours around these gold nanocrystals.

The index sensitivity was found to exhibit an approximately linear dependence on the product of the nanocrystal

polarizability and end curvature.

1.Introduction

Noble metal nanocrystals exhibit rich plasmonic properties. Their localized surface plasmon resonances are highly dependent on the refractive index of the surrounding medium and generally shift toward the longer wavelengths as the index is increased.1 This fascinating dependence makes noble metal nanocrystals ideal transducers that convert changes in the local refractive index into spectral shifts in the bright extinction and scattering spectra.2-4Most organic and biological molecules possess higher refractive indices than aqueous buffer solutions.Their binding to the surfaces of metal nanocrystals causes the local refractive index to increase and thus the surface plasmon resonance peaks to red shift.The plasmon shifts indicate the presence of speci?c molecules.In addition,molecular binding and unbinding can also be monitored in real time with high sensitivity by measuring the plasmon shift continuously.Two methods are often em-ployed to measure the plasmon shift.5-24One is transmission spectrometry,which measures extinction,the sum of absorption, and scattering.5-10,12,14,15,17-24This method is simple and inex-pensive.It is suitable for ensemble metal nanocrystals dispersed in solutions or deposited on planar substrates.The other one is single-particle dark-?eld scattering,which measures scattering only.11,13,16Single-particle measurements offer improved absolute detection limits and enable higher spatial resolution in multi-plexed assays.

The index change-based sensing capability of noble metal nanocrystals has been unambiguously demonstrated in a number of studies.For example,lithographically fabricated Ag nano-crystal arrays have index sensitivities of~200nm/RIU.5-7Their plasmon resonance peaks red shift by3nm per CH2unit when alkanethiol monolayers are formed on the metal surface.8-10The use of single Ag triangular nanoprisms further improves the sensitivity to4.4nm per CH2unit for self-assembled alkanethiol monolayers.11Such high sensitivities of noble metal nanocrystals have allowed for the fabrication of optical biosensors for detecting proteins,12-16antigens,17-22and the biomarker for Alzheimer’s disease,23,24and for monitoring their binding interactions.

The refractive index sensitivity of noble metal nanocrystals is a key factor in determining the detection sensitivity of metal nanocrystal-based biosensors and realizing their practical ap-plications.Further improvement of the index sensitivities of metal nanocrystals requires the identi?cation of pivotal structural and plasmonic parameters for index sensitivities.Such funda-mental understanding can allow us to judiciously design metal nanocrystals with superior index sensitivities.A number of experimental and theoretical studies have been devoted to the measurement of refractive index sensitivities of metal nano-crystals both on the ensemble25-28and single-particle levels.29-35 The shapes of metal nanocrystals that have been investigated include spheres,rods,cubes,plates,core-shell structures,and asymmetric particles.Most of these previous investigations have focused on metal nanocrystals with one particular shape in one study.Systematic studies,where the refractive index sensitivities of metal nanocrystals with different shapes,sizes,and plasmon resonance wavelengths are measured under well-controlled conditions and compared carefully,have remained limited. We have recently measured the index sensitivities of Au nanospheres,nanocubes,nanobranches,nanorods,and nanobi-pyramids that exhibit different plasmon resonance wave-lengths.36By combining our results together with previous ones, we?nd that the index sensitivity generally increases both as the plasmon resonance wavelength for a?xed nanocrystal shape becomes longer and as the curvature of metal nanocrystals gets larger.For example,the index sensitivities of Au nanorods with longitudinal plasmon wavelengths of653,728,and846nm are 195,224,and288nm/RIU,respectively.36Au nanospheres of plasmon wavelengths at530nm exhibit the smallest index sensitivities around40nm/RIU,36while the index sensitivities of Au nanobranches of plasmon wavelengths at1140nm and nanocrescents of plasmon wavelengths at2640nm reach700 and880nm/RIU,respectively.34,36However,because the relationship between the plasmon resonance wavelength and the nanocrystal shape is very complex,it has remained dif?cult to

*To whom correspondence should be addressed.Phone:+8523163

4167.Fax:+852********.E-mail:jfwang@https://www.wendangku.net/doc/c21403547.html,.hk.

J.Phys.Chem.C2009,113,17691–1769717691

10.1021/jp907413n CCC:$40.75 2009American Chemical Society

Published on Web09/11/2009

differentiate between the effects of the plasmon resonance wavelength and the nanocrystal shape on the index sensitivity. The question of how the refractive index sensitivities of metal nanocrystals depend speci?cally on their shapes has remained unanswered.Here we report our studies on the refractive index sensitivities of Au nanocrystals that exhibit seven different shapes but have the same longitudinal plasmon wavelength at 730nm.The Au nanocrystals are large nanorods(NRs), nanobipyramids(NBPs),oxidized NBPs,oxidized NRs,dog-bone-like NRs,peanut-like NRs,and small NRs.The measured index sensitivities range from156to326nm/RIU,with the large NRs exhibiting the highest index sensitivity and the small NRs exhibiting the lowest one.Finite-difference time-domain(FDTD) calculations have been carried out to investigate the effects of plasmon-related parameters on the refractive index sensitivities of metal nanocrystals.

2.Experimental Section

Growth of Gold Nanocrystals.Gold chloride trihydrate (HAuCl4·3H2O),sodium borohydride(NaBH4),silver nitrate (AgNO3),cetyltrimethylammonium bromide(CTAB),sodium citrate dihydrate,ascorbic acid,hydrochloric acid(HCl),and glutathione were purchased from Sigma-Aldrich.Cetyltributy-lammonium bromide(CTBAB)was prepared according to a reported procedure.37Deionized water was used throughout all of the preparations.

Gold nanocrystals in seven different shapes were grown by using a seed-mediated method together with anisotropic oxida-tion and transverse https://www.wendangku.net/doc/c21403547.html,rge NRs were prepared following a reported procedure.38Speci?cally,the seed solution was prepared by the addition of a freshly prepared,ice-cold aqueous NaBH4solution(0.01M,0.6mL)into an aqueous mixture composed of HAuCl4(0.01M,0.25mL)and CTAB (0.1M,9.75mL),followed by rapid inversion mixing for2 min.The resulting seed solution was kept at room temperature for2h before use.The growth solution was made by the sequential addition of aqueous HAuCl4(0.01M,2mL),AgNO3 (0.01M,0.6mL),HCl(1.0M,0.8mL),and ascorbic acid(0.1 M,0.32mL)solutions into an aqueous CTAB(0.1M,40mL) solution.The resulting solution was mixed by swirling for30s. The CTAB-stabilized seed solution was diluted by10times with water and100μL of the diluted seed solution was added into the growth solution.The resulting solution was gently inversion-mixed for2min and then left undisturbed overnight.The longitudinal plasmon wavelength of the large NRs is732nm. The above procedure was also employed to prepare Au NRs with a longitudinal plasmon wavelength of955nm by adding the original,undiluted seed solution(300μL)in the growth solution.The obtained NRs were subjected to anisotropic oxidation39by adding HCl(1.0M,0.2mL)in the as-prepared NR solution(10mL),followed by bubbling O2into the mixture for10min.The plastic tube containing the mixture was kept uncapped and transferred in an isothermal oven at65°C to start oxidation.Extinction spectra of the NR solution were measured from time to time to monitor the oxidation process.When the desired longitudinal plasmon wavelength was obtained,the NRs were washed by two cycles of centrifugation(8000×g,10 min)and redispersion in0.1M CTAB solutions to remove HCl. The resulting NRs are named oxidized NRs.They have a longitudinal plasmon wavelength at733nm.

For the preparation of small NRs,a previously reported seed-mediated procedure40was modi?ed to?rst grow Au NRs with a longitudinal plasmon wavelength of810nm.Brie?y,the seed solution was prepared by the addition of NaBH4(0.01M,0.3mL)into an aqueous mixture composed of HAuCl4(0.01M, 0.125mL)and CTAB(0.1M,3.75mL).The growth solution was made by the sequential addition of HAuCl4(0.01M,1.8 mL),AgNO3(0.01M,0.27mL),and ascorbic acid(0.1M,0.288 mL)into CTAB(0.1M,42.75mL).Then250μL of the seed solution was added.The obtained Au NRs were subjected to anisotropic oxidation to give small NRs with a longitudinal plasmon wavelength of733nm.

The preparation of dog-bone-like NRs was similar to that of the NRs with a longitudinal plasmon wavelength of810nm, except that the amount of the seed solution was changed from 250to150μL.

Peanut-like NRs were prepared by transverse overgrowth41 on pregrown Au NRs.The pregrown NRs have a longitudinal plasmon wavelength of855nm.Their growth procedure was similar to that of the NRs with a longitudinal plasmon wavelength of955nm,except that the amount of the seed solution was changed from300to200μL.The stock solution for overgrowth was made by mixing together CTAB(0.1M, 42.75mL),HAuCl4(0.01M,1.8mL),AgNO3(0.01M,0.27 mL),and ascorbic acid(0.1M,0.288mL).Before overgrowth, a glutathione solution(0.01M,150μL)was added into15mL of the pregrown NR solution.After the resulting mixture was kept at room temperature for2h,25mL of the stock solution was added to start overgrowth.Extinction spectra were taken consecutively to monitor the overgrowth process.When the desired longitudinal plasmon wavelength was reached,the produced NRs were washed by centrifugation and redispersed in0.1M CTAB solutions.

Two Au NBP samples with longitudinal plasmon wavelengths of729and886nm were grown according to a reported seed-mediated procedure,using citrate-stabilized Au nanoparticles as seeds.42For the preparation of seeds,aqueous solutions of HAuCl4(0.01M,0.125mL)and sodium citrate(0.01M,0.25 mL)were?rst added to water(9.625mL),and then a freshly prepared,ice-cold solution of NaBH4(0.01M,0.15mL)was added under vigorous stirring.The resulting citrate-stabilized seed solution was kept at room temperature for2h before use. The growth solution was made by the sequential addition of HAuCl4(0.01M,1.2mL),ascorbic acid(0.1M,0.402mL), and AgNO3(0.01M,0.06mL)into CTBAB(0.01M,28.5mL). Then0.45mL of the seed solution was added to the growth solution,followed by gentle inversion mixing for10s.The resulting solution was left undisturbed overnight in an isothermal oven at65°C.The obtained Au NBPs have a longitudinal plasmon wavelength of729nm.The growth of the NBPs with a longitudinal plasmon wavelength of886nm was carried out by changing the citrate-stabilized seed solution from0.45to 0.20mL.Anisotropic oxidation was performed on this NBP sample to produce oxidized NBPs with a longitudinal plasmon wavelength of729nm.

Instrumentation.Extinction spectra were measured with a Hitachi U-3501UV-visible/NIR spectrophotometer.Scanning electron microscopy(SEM)images were acquired on a FEI Quanta400FEG microscope.Transmission electron microscopy (TEM)images were acquired with a FEI CM120microscope at120kV.Nanocrystal sizes were measured on TEM images, with~200particles measured per sample.For TEM charac-terization,as-prepared Au nanocrystal solutions(1mL for each) were centrifuged at12000×g for10min.The precipitates were redispersed in water(1mL for each),centrifuged again at 12000×g for6min,and?nally redispersed in water(0.1mL for each).The resulting nanocrystal dispersions(0.01mL for each)were drop-cast carefully on a lacey-Formvar copper grid

17692J.Phys.Chem.C,Vol.113,No.41,2009Chen et al.

stabilized with a thin layer of carbon and allowed to dry in air overnight before TEM imaging.

Refractive Index Sensitivity Measurement.Water-glycerol mixtures of varying volume ratios were used to change the refractive index of the surrounding medium of Au nanocrystals. The volume percentage of glycerol in the liquid mixture was varied from0%to90%at a step of10%.As-prepared Au nanocrystals were?rst centrifuged at12000×g for6min and then redispersed in the water-glycerol mixtures.Extinction spectra of the resulting dispersion solutions of Au nanocrystals were measured.The plasmon shift was plotted as a function of the refractive index,and the refractive index sensitivity was determined by linear?tting.The?gure of merit was the index sensitivity divided by the full width at half-maximum of the extinctionpeaktakenfromaqueousdispersionsofAunanocrystals. FDTD Calculations.FDTD calculations were performed with FDTD Solutions 6.0,which was developed by Lumerical Solutions,Inc.The dielectric function of gold was formulated with the Drude model with parameters chosen to match the experimental dielectric data as close as possible.In calculation, an electromagnetic pulse with its wavelength ranging from600 to900nm was launched into a box containing the target Au nanocrystal to simulate a propagating plane wave interacting with the nanocrystal.The Au nanocrystal and its surrounding medium inside the box were divided into0.5nm meshes.The electric?eld of the pulse was set along the length axis of the nanocrystal.The surrounding medium was taken as water with a refractive index of1.333.The sizes and shapes of the Au nanocrystals in calculation were set to be as close as possible to those measured from TEM images.Speci?cally,oxidized and small NRs were modeled as cylinders capped with two half spheres at both ends.Peanut-like NRs were modeled as a cylinder at the middle waist and two larger spheres at both ends. The larger spheres were cut to form four facets symmetrically relative to the length axis.Dog-bone-like NRs were also modeled as a cylinder at the middle waist and two larger spheres at both ends.The larger spheres were faceted only at the end. Large NRs were modeled as an octagonal prism at the middle waist and two octagonal pyramids at both ends.Oxidized and unoxidized NBPs were modeled as two pentagonal pyramids with?ve faceted surfaces in the middle region and their apexes were modeled as spherical caps with?ve cut facets.

3.Results and Discussion

Gold nanocrystals were prepared by using a seed-mediated growth method in the presence of cationic ammonium surfac-tants as stabilizing agents.38,40,42The obtained nanocrystals are encapsulated with the surfactants and positively charged.

Anisotropic oxidation with O2as an oxidizing agent39and transverse overgrowth41were employed to precisely tune the longitudinal plasmon wavelengths of the nanocrystals.Oxidation of CTAB-stabilized Au nanocrystals with O2produces water-dissolvable AuBr2-ions,which were removed by centrifugation in our experiments.Figure1shows the representative SEM and TEM images of the nanocrystals in seven different shapes, including large NRs,NBPs,oxidized NBPs,oxidized NRs,dog-bone-like NRs,peanut-like NRs,and small NRs.The oxidized (Figure1e)and small NRs(Figure1h)are cylindrical in the middle section and capped with two half spheres at both ends. The large NRs are faceted at the side,as revealed by SEM imaging(Figure1a).The cross section of the large NRs in the middle section is believed to be octagonal,according to previous high-resolution TEM characterizations.37The NBPs(Figure1c) and oxidized NBPs(Figure1d)possess ten side surfaces per particle and their ends are rounded.The dog-bone-like NRs have two fatter ends and a thinner middle section(Figure1f).The peanut-like NRs are similar to the dog-bone-like NRs in geometry,except that the fatter ends of the peanut-like NRs are more rounded(Figure1g).The yields of the large,oxidized, small,dog-bone-like,and peanut-like NRs in terms of the particle number are~90%,and those of the oxidized and unoxidized NBPs are~60%.The sizes of these nanocrystals measured from their TEM images are listed in Table1.The length was measured between the two farthest ends,and the diameter was measured at the middle waist.The sizes of these nanocrystals are relatively uniform.The percent errors,which are standard deviations divided by average values,are in the ranges of4-10%,6-15%,and4-14%for the diameter,length, and aspect ratio,respectively.The particle volume ranges from 2000to157000nm3and increases in the order of the

small Figure1.(a)SEM image of the large Au NRs.(b)TEM image of the large Au NRs.(c-h)TEM images of the NBPs,oxidized NBPs, oxidized NRs,dog-bone-like NRs,peanut-like NRs,and small NRs, respectively.

Refractive Index Sensitivities of Gold Nanocrystals J.Phys.Chem.C,Vol.113,No.41,200917693

NRs,peanut-like NRs,NBPs,oxidized NBPs,oxidized NRs,dog-bone-like NRs,and large NRs.Because it is well-known that the maximum local electric ?eld enhancement of metal nanocrystals depends strongly on the local curvature,the average local curvatures of the nanocrystals were also measured and included in Table 1.The curvature of each nanocrystal sample was measured at its sharpest points,which were assumed to be spherically truncated.Spherical crowns were ?rst drawn on the TEM images of the Au nanocrystals to model the shapes and sizes of their sharpest points (Figure S1,Supporting Informa-tion).The base radius a and height h of each crown were then measured.The curvature was calculated according to σ)2h /(a 2+h 2).The sharpest points of the dog-bone-like NRs are located at the circular edge at the end,while those of the other nanocrystals are located at both apexes.

Figure 2a shows the normalized extinction spectra of seven differently shaped Au nanocrystal samples that are dispersed in aqueous solutions.All of the nanocrystals exhibit two surface plasmon resonance peaks.The higher energy one is contributed by both the transverse plasmon resonance of the elongated Au nanocrystals and the plasmon resonance of the spherical Au nanocrystals that are present in the samples.The lower energy one arises from the longitudinal plasmon resonance of the elongated Au nanocrystals.In this study,we focus on the longitudinal surface plasmon resonance mode.Their longitudinal plasmon resonance wavelengths measured from the extinction peaks range from 729to 734nm and are very close to each other (Table 1).The full widths at the half maxima of the longitudinal extinction peaks are in the range of 60-125nm,with the oxidized NBPs exhibiting the smallest peak width and the dog-bone-like NRs exhibiting the largest one.The difference in the peak width is mainly caused by the extent of the inhomogeneous size distribution,which varies among the Au nanocrystal samples because they were prepared under different conditions.The presence of the spherical Au nanocrystals does not interfere in the measurement of the refractive index sensitivities of the longitudinal plasmon resonances of the elongated Au nanocrystal samples because of the large separa-tion between the higher and lower energy plasmon resonance peaks.

The Au nanocrystals were dispersed in water -glycerol mixtures to measure the refractive index sensitivities of their longitudinal plasmon resonance peaks.The refractive indices of the liquid mixtures were tuned by varying the volume percentage of glycerol (Table S1,Supporting Information).In our experiments,the highest volume percentage of glycerol that was used is 90%,because pure glycerol is too viscous.Panels b and c of Figure 2show the extinction spectra of the large and small NR samples dispersed in the liquid mixtures of increasing volume percentage of glycerol as two representative examples.As the refractive index of the liquid mixture is increased,the

longitudinal plasmon resonance peaks of the nanocrystals shift toward longer wavelengths.The peak wavelengths in different liquid mixtures were measured and the longitudinal plasmon shifts were calculated by taking the difference relative to the longitudinal plasmon resonance wavelengths obtained in water.When the longitudinal plasmon shifts are plotted as a function of the refractive index of the liquid mixtures,an approximately linear dependence is observed (Figure 2d).Both plots can be

TABLE 1:Sizes and Plasmon Resonance Wavelengths of the Gold Nanocrystals

Au nanocrystals diameter a (nm)length (nm)aspect ratio vol (nm 3)curvature (10-3nm -1)LPRW b (nm)fwhm c (nm)large NRs 44(2)108(7) 2.5(0.2)15700042(4)732116NBPs

19(1)55(5) 2.9(0.2)11000200(10)72991oxidized NBPs 24(1)67(4) 2.8(0.1)17000125(5)72961oxidized NRs

20(1)61(5) 3.1(0.3)1800087(3)73394dog-bone-like NRs 20(2)56(5) 2.8(0.4)21000100(9)732125peanut-like NRs 14(1)43(4) 3.2(0.4)7000160(15)734116small NRs

10(1)

26(4)

2.6(0.3)

2000

122(7)

733

98

a

The numbers in parentheses are standard deviations.The dimensions of the Au nanocrystals,including their diameter,length,aspect ratio,and curvature,were averaged over ~250nanocrystals per sample.b LPRW represents the longitudinal plasmon resonance wavelength.c fwhm represents the full width at the half-maximum of the longitudinal plasmon resonance

peak.

Figure 2.(a)Normalized extinction spectra of differently shaped Au nanocrystals dispersed in water.(b)Normalized extinction spectra of the large NRs dispersed in water -glycerol mixtures of varying compositions.(c)Normalized extinction spectra of the small NRs dispersed in water -glycerol mixtures of varying compositions.The arrows indicate the direction of increasing volume percentage of glycerol.(d)Dependence of the longitudinal plasmon shift on the refractive index of the liquid mixture for the large and small NR samples.The plasmon shift is relative to the longitudinal plasmon resonance wavelength measured when Au nanocrystals are dispersed in water.The lines are linear ?ts.

17694J.Phys.Chem.C,Vol.113,No.41,2009Chen et al.

?tted well with lines.The slopes of the lines are the refractive index sensitivities.The index sensitivities of the large and small NR samples are determined in this way to be326and156nm/ RIU,respectively.This procedure was also followed to deter-mine the refractive index sensitivities of other Au nanocrystal samples(Figure S2,Supporting Information).The determined index sensitivities as well as the?gures of merit are given in Table2for all of the nanocrystal samples.

Table2shows that the Au nanocrystals in different shapes exhibit different refractive index sensitivities even though their longitudinal plasmon wavelengths are all around730nm.The index sensitivities range from156to326nm/RIU and increase in the order of the small NRs,peanut-like NRs,dog-bone-like NRs,oxidized NRs,oxidized NBPs,NBPs,and large NRs.The highest index sensitivity is more than twice larger than the lowest one.These results suggest that the refractive index sensitivities of noble metal nanocrystals are highly dependent on their shapes and sizes even though their plasmon resonance wavelengths are the same.In a previous theoretical study,the index sensitivity has been found to be dependent solely on the plasmon resonance wavelength and independent of the shape and size for single-component noble metal nanocrystals.43In that study,metal nanocrystals in the shapes of highly regular cylinders,disks,and spherical shells are considered.They have either circular or spherical symmetries.The plasmon resonance condition is determined by the depolarization parameter,the real dielectric function of the metal,and the refractive index of the surrounding medium.This resonance condition leads to the exclusive dependence of the index sensitivity on the refractive index of the medium and the real dielectric function of the metal. In our studies,the Au nanocrystals are truncated and have more complex geometries.Their longitudinal plasmon resonance wavelengths are dependent not only on the aspect ratio,but also on the speci?c shape(Table1).The resonance condition of these nanocrystals is much more complicated and cannot be described with a simple relationship.It is therefore very important to investigate and identify the determining factors for the refractive index sensitivity of noble metal nanocrystals that have different shapes but the same plasmon resonance wavelengths.

The refractive index sensitivities of noble metal nanocrystals are fundamentally determined by how easily the free electron cloud in metal nanocrystals is displaced relative to the positive atomic lattice by light.44,45In physical terms,an increase in the medium dielectric constant,which is equal to the square of the refractive index for media with little absorption at the plasmon resonance wavelength,leads to more screening of the Coulombic restoring force acting on the free electrons in metal nanocrystals. The reduced restoring force thus results in a decrease in the plasmon resonance energy,which corresponds to a red shift in the plasmon resonance peak.The easier it is to displace the free electron cloud in metal nanocrystals,the more severe the index increase-caused screening of the Coulombic restoring force becomes.The displacement pattern of the free electron cloud in metal nanocrystals depends not only on the net polarizability but also on the speci?c shape.Metal nanocrystals of complex shapes usually exhibit much higher charge densities in the surface regions with sharp curvatures.Because there are no analytic solutions for the polarizabilities of metal nanocrystals with complex shapes,we performed FDTD calculations to obtain the polarizabilities of the Au nanocrystals and investigated the effects of different factors on the refractive index sensitivity by taking into account the geometrical shape as well. Figure3shows the electric?eld intensity enhancement contours and the extinction spectra obtained from FDTD calculations on the Au nanocrystals with seven different shapes. To better illustrate the shapes of the nanocrystals,the TEM images with each image containing a single nanocrystal are also provided.During FDTD calculation,the electric?eld is set to be polarized along the length axis.Therefore only the longitu-dinal plasmon resonance of the nanocrystals is calculated.The shape and size of each nanocrystal sample are adjusted to be as close as possible to the average experimental ones(Table1), and the longitudinal plasmon wavelength is kept around730 nm.The electric?eld intensity enhancement is nonuniform around each nanocrystal.The enhancement at the end surfaces is generally much larger than that at the side surfaces.For the dog-bone-like NR,the maximum enhancement is along the circular edge at the end,while for all of the other nanocrystals, the maximum enhancement is at the apex.The intensity enhancement decays rapidly away from the metal surface.From the?eld intensity enhancement contours,the maximum?eld intensity enhancement and the corresponding decay length of the enhancement are obtained and listed in Table2.In addition, FDTD calculations also give the scattering cross sections of the metal nanocrystals at their longitudinal plasmon resonance wavelengths.From the scattering cross sections,the polariz-abilities are obtained and also included in Table2.

We plot the refractive index sensitivity as functions of different parameters of the Au nanocrystals in order to?nd out their effects on the index sensitivity.We?rst look at the geometrical parameters of the metal nanocrystals,including the particle volume and the local curvature,because in general, larger particle volumes lead to higher scattering cross sections and sharper local curvatures give larger local electric?eld enhancement.From the plots of the index sensitivity versus the particle volume(Figure4a),no clear relationship is found.As the particle volume is increased from2000to20000nm3,the index sensitivity varies between150and300nm/RIU without showing a positive correlation.The particle volume of the large NRs is14times that of the NBPs,but the index sensitivity increases only from301to326nm/RIU.The particle volume of the NBPs is smaller than that of the dog-bone-like NRs,but

TABLE2:Refractive Index Sensitivities,Figures of Merit,and Plasmonic Properties of the Gold Nanocrystals Au nanocrystals sensitivity(nm/RIU)?gure of merit intensity enhancement a decay length b(nm)polarizability c(106nm) large NRs326 2.8840 2.814.5

NBPs301 3.35200 2.3 2.5

oxidized NBPs264 4.33500 3.2 3.9

oxidized NRs244 2.61600 4.3 5.3

dog-bone-like NRs238 1.91900 3.6 3.0

peanut-like NRs220 1.9940 3.8 1.6

small NRs156 1.61300 4.30.7

a The maximum electric?eld intensity enhancement.

b The length where the electric?eld intensity enhancement falls to1/e of the maximum value along the direction perpendicular to the nanocrystal surface.

c Polarizability|R|)(6πC scat)1/2/k2,with C scat being the scattering cross section obtaine

d from FDTD calculations and k being th

e wavevector.Both C scat and k values at the longitudinal plasmon resonance wavelength are used.The resulting polarizability therefore also refers to the value at this wavelength.

Refractive Index Sensitivities of Gold Nanocrystals J.Phys.Chem.C,Vol.113,No.41,200917695

the index sensitivity of the NBPs is larger than that of the dog-bone-like NRs.There is no positive correlation between the index sensitivity and the local curvature either (Figure 4b).The effects of parameters beyond the simple geometrical consider-ation on the index sensitivity need therefore to be further taken into account.

We next look at the plasmon resonance-related properties,including the maximum electric ?eld intensity enhancement,the product of the maximum ?eld enhancement and the decay length,and the polarizability.Figure 4c shows the plot of the index sensitivity versus the maximum electric ?eld intensity enhancement.It is postulated that larger electric ?eld enhance-ments lead to higher polarization of the molecules in the surrounding medium.The polarized medium can partially neutralize the charge density at the metal surface and thus reduce the plasmon resonance energy.However,no positive correlation is observed between the index sensitivity and the maximum electric ?eld intensity enhancement.In particular,the large NRs possess the largest sensitivity but their ?eld intensity enhance-ment is the smallest.The electric ?eld intensity enhancement is usually the largest in the region adjacent to the metal surface.It decays rapidly away from the metal surface.Previous experiments on index change-based sensing have shown that the region within the range of 10-20nm on the metal surface is the most sensitive.10,14We therefore consider the product between the maximum ?eld enhancement and the decay length.Figure 4d shows the plot of the index sensitivity versus this product.Again,no positive correlation is found.

As mentioned above,the polarizability of metal nanocrystals plays an important role in the refractive index sensitivity.The index sensitivity is therefore plotted as a function of the polarizability,as shown in Figure 4e.There is no simple correlation between the index sensitivity and the polarizability,suggesting that there are also other factors taking effect on

the

Figure 3.Electric ?eld intensity enhancement contours (colored)and TEM images (gray)of differently shaped Au nanocrystals:(a,b)Large NRs;(c,d)NBPs;(e,f)oxidized NBPs;(g,h)oxidized NRs;(i,j)dog-bone-like NRs;(k,l)peanut-like NRs;and (m,n)small NRs.(o)Calculated extinction spectra of Au nanocrystals embedded in water.Curves 1to 7represent the large NRs,NBPs,oxidized NBPs,oxidized NRs,dog-bone-like NRs,peanut-like NRs,and small NRs,respectively.The ?eld intensity enhancement is at the logarithmic

scale.

Figure 4.Relationship between the refractive index sensitivity and different parameters of the Au nanocrystals:(a)nanocrystal volume;(b)end curvature;(c)maximum electric ?eld intensity enhancement;(d)product of the maximum ?eld enhancement and the decay length of the ?eld intensity enhancement along the central length axis of the Au nanocrystals;(e)polarizability;and (f)product of the polarizability and the end curvature.

17696J.Phys.Chem.C,Vol.113,No.41,2009Chen et al.

index sensitivity.We therefore plot the index sensitivity as a function of the product between the nanocrystal polarizability and the local curvature(Figure4f).An approximate linear relationship is obtained.The index sensitivity increases as the polarizability-curvature product is increased,which is consistent with the above argument that both the polarizability and shape of metal nanocrystals play important roles on the index sensitivity.

4.Conclusions

In summary,we have prepared Au nanocrystals that exhibit seven different shapes but have the same longitudinal plasmon resonance wavelength at730nm.The refractive index sensitivi-ties of these Au nanocrystals have been measured.They are in the range of156and326nm/RIU and increase in the order of small nanorods,peanut-like nanorods,dog-bone-like nanorods, oxidized nanorods,oxidized nanobipyramids,nanobipyramids, and large nanorods.Finite-difference time-domain calculations have been performed on these Au nanocrystals to obtain plasmon resonance-related properties.The index sensitivities have been plotted as functions of the plasmon resonance-related properties as well as the geometrical parameters of the nanocrystals.A linear relationship is found between the index sensitivity and the product between the polarizability and the curvature.These results are important not only for understanding the fundamental aspects of the refractive index sensitivity of noble metal nanocrystals but also for designing and developing ultrasensitive noble metal nanocrystal-based sensing devices. Acknowledgment..

This work was supported by CUHK Research Excellence Award2008-2009(Project Code4411435),RGC Research Grant Direct Allocation(Project Code2060358),and National Natural Science Foundation of China(Project Code20828001). Supporting Information Available:Spherical crowns drawn on the TEM images of the Au nanocrystals,extinction spectra of other Au nanocrystals dispersed in water-glycerol mixtures of varying compositions,dependence of the plasmon shift on the refractive index of the liquid mixture for other Au nano-crystals,and refractive indices of water-glycerol mixtures of varying compositions.This material is available free of charge via the Internet at https://www.wendangku.net/doc/c21403547.html,.

References and Notes

(1)Link,S.;El-Sayed,M.A.J.Phys.Chem.B1999,103,8410.

(2)Willets,K.A.;Van Duyne,R.P.Annu.Re V.Phys.Chem.2007, 58,267.

(3)Murphy,C.J.;Gole,A.M.;Hunyadi,S.E.;Stone,J.W.;Sisco, P.N.;Alkilany,A.;Kinard,B.E.;Hankins,https://www.wendangku.net/doc/c21403547.html,mun.2008,544.

(4)Anker,J.N.;Hall,W.P.;Lyandres,O.;Shan,N.C.;Zhao,J.; Van Duyne,R.P.Nat.Mater.2008,7,442.

(5)Jensen,T.R.;Duval,M.L.;Kelly,K.L.;Lazarides,A.A.;Schatz,

G.C.;Van Duyne,R.P.J.Phys.Chem.B1999,103,9846.

(6)Malinsky,M.D.;Kelly,K.L.;Schatz,G.C.;Van Duyne,R.P.J. Phys.Chem.B2001,105,2343.

(7)Haes,A.J.;Zou,S.L.;Schatz,G.C.;Van Duyne,R.P.J.Phys. Chem.B2004,108,109.

(8)Malinsky,M.D.;Kelly,K.L.;Schatz,G.C.;Van Duyne,R.P. J.Am.Chem.Soc.2001,123,1471.

(9)Haes,A.J.;Zou,S.L.;Schatz,G.C.;Van Duyne,R.P.J.Phys. Chem.B2004,108,6961.

(10)Whitney,A.V.;Elam,J.W.;Zou,S.L.;Zinovev,A.V.;Stair, P.C.;Schatz,G.C.;Van Duyne,R.P.J.Phys.Chem.B2005,109,20522.

(11)Sherry,L.J.;Jin,R.C.;Mirkin,C.A.;Schatz,G.C.;Van Duyne, R.P.Nano Lett.2006,6,2060.

(12)Haes,A.J.;Van Duyne,R.P.J.Am.Chem.Soc.2002,124,10596.

(13)Raschke,G.;Kowarik,S.;Franzl,T.;So¨nnichsen,C.;Klar,T.A.; Feldmann,J.;Nichtl,A.;Ku¨rzinger,K.Nano Lett.2003,3,935.

(14)Marinakos,S.M.;Chen,S.H.;Chilkoti,A.Anal.Chem.2007,79, 5278.

(15)Chen,C.-D.;Cheng,S.-F.;Chau,L.-K.;Wang,C.R.C.Biosens. Bioelectron.2007,22,926.

(16)Nusz,G.J.;Marinakos,S.M.;Curry,A.C.;Dahlin,A.;Ho¨o¨k,F.; Wax,A.;Chilkoti,A.Anal.Chem.2008,80,984.

(17)Ribon,J.C.;Haes,A.J.;McFarland,A.D.;Yonzon,C.R.;Van Duyne,R.P.J.Phys.Chem.B2003,107,1772.

(18)Wang,C.G.;Ma,Z.F.;Wang,T.T.;Su,Z.M.Ad V.Funct.Mater. 2006,16,1673.

(19)Yu,C.X.;Irudayaraj,J.Anal.Chem.2007,79,572.

(20)Gish,D.A.;Nsiah,F.;McDermott,M.T.;Brett,M.J.Anal.Chem. 2007,79,4228.

(21)Yu,C.X.;Irudayaraj,J.Biophys.J.2007,93,3684.

(22)Mayer,K.M.;Lee,S.;Liao,H.W.;Rostro,B.C.;Fuentes,A.; Scully,P.T.;Nehl,C.L.;Hafner,J.H.ACS Nano2008,2,687.

(23)Haes,A.J.;Hall,W.P.;Chang,L.;Klein,W.L.;Van Duyne, R.P.Nano Lett.2004,4,1029.

(24)Haes,A.J.;Chang,L.;Klein,W.L.;Van Duyne,R.P.J.Am. Chem.Soc.2005,127,2264.

(25)Yang,J.;Wu,J.-C.;Wu,Y.-C.;Wang,J.-K.;Chen,C.-C.Chem. Phys.Lett.2005,416,215.

(26)Khlebtsov,N.G.;Trachuk,L.A.;Mel’nikov,A.G.Opt.Spectrosc. 2005,98,77.

(27)Khlebtsov,B.N.;Khlebtsov,N.G.J.Quant.Spectrosc.Radiat. Transfer2007,106,154.

(28)Wu,C.L.;Xu,https://www.wendangku.net/doc/c21403547.html,ngmuir2009,25,9441.

(29)Mock,J.J.;Smith,D.R.;Schultz,S.Nano Lett.2003,3,485.

(30)McFarland,A.D.;Van Duyne,R.P.Nano Lett.2003,3,1057.

(31)Raschke,G.;Brogl,S.;Sucha,A.S.;Rogach,A.L.;Klar,T.A.; Feldmann,J.;Fieres,B.;Petkov,N.;Bein,T.;Nichtl,A.;Ku¨rzinger,K. Nano Lett.2004,4,1853.

(32)Sherry,L.J.;Chang,S.-H.;Schatz,G.C.;Van Duyne,R.P.;Wiley,

B.J.;Xia,Y.N.Nano Lett.2005,5,2034.

(33)Lee,K.-S.;El-Sayed,M.A.J.Phys.Chem.B2006,110,19220.

(34)Bukasov,R.;Shumaker-Parry,J.S.Nano Lett.2007,7,1113.

(35)Ni,W.H.;Chen,H.J.;Kou,X.S.;Yeung,M.H.;Wang,J.F.J. Phys.Chem.C2008,112,8105.

(36)Chen,H.J.;Kou,X.S.;Yang,Z.;Ni,W.H.;Wang,https://www.wendangku.net/doc/c21403547.html,ngmuir 2008,24,5233.

(37)Kou,X.S.;Zhang,S.Z.;Tsung,C.-K.;Yang,Z.;Yeung,M.H.; Stucky,G.D.;Sun,L.D.;Wang,J.F.;Yan,C.H.Chem.s Eur.J.2007, 13,2929.

(38)Ni,W.H.;Kou,X.S.;Yang,Z.;Wang,J.F.ACS Nano2008,2, 677.

(39)Tsung,C.-K.;Kou,X.S.;Shi,Q.H.;Zhang,J.P.;Yeung,M.H.; Wang,J.F.;Stucky,G.D.J.Am.Chem.Soc.2006,128,5352.

(40)Sau,T.K.;Murphy,https://www.wendangku.net/doc/c21403547.html,ngmuir2004,20,6414.

(41)Kou,X.S.;Zhang,S.Z.;Yang,Z.;Tsung,C.-K.;Stucky,G.D.; Sun,L.D.;Wang,J.F.;Yan,C.H.J.Am.Chem.Soc.2007,129,6402.

(42)Kou,X.S.;Ni,W.H.;Tsung,C.-K.;Chan,K.;Lin,H.-Q.;Stucky,

G.D.;Wang,J.F.Small2007,3,2103.

(43)Miller,M.M.;Lazarides,A.A.J.Phys.Chem.B2005,109,21556.

(44)Jain,P.K.;El-Sayed,M.A.J.Phys.Chem.C2007,111,17451.

(45)Jain,P.K.;El-Sayed,M.A.Nano Lett.2008,8,4347.

JP907413N

Refractive Index Sensitivities of Gold Nanocrystals J.Phys.Chem.C,Vol.113,No.41,200917697

世界各国色卡标准

国内标准色卡1、纺织服装行业、国家标准色卡——CNCS色卡目前已被确立为国家标准和纺织行业标准的CNCS简介:2001年开始,中国纺织信息中心承担了科技部“中国应用色彩研究项目”,建立了CNCS颜色体系。之后,广泛进行色彩调研,通过中心所属趋势研究部门、中国流行色协会、国外合作伙伴、采购商、设计师等途径收集色彩资讯,开展市场调查。经过几年的努力,研发第一版颜色体系,并确定了所用材料及工艺。2006年,中国纺织信息中心根据合作伙伴、市场相关方、色彩专家等各方意见调整体系,完成第二版颜色体系的试制,并携手浙江龙盛控股有限公司、德塔颜色科技有限公司(DATACOLOR)等一起正式开始CNCS纺织颜色体系标准的生产制作,同时,开展了数字化色彩和数字化流行色彩的研究,将CNCS颜色系统同数字化色彩接轨。在此基础上,完成了CNCS纺织颜色标准的制作。 2、建筑行业、国家标准色卡——GB/T15608-2006《中国颜色体系》、GSB 16-2062-2007《中国颜色体系标准样册》和GB/T

18922-2002《建筑颜色的表示方法》、 G S B16-1517-2002《中国建筑色卡》。 3、漆膜颜色标准样卡——全国涂料和颜料标准话技术委员会 4、蒙赛尔明度精选色卡,是国际通用色卡,广泛用于纺织,服装,摄影,印刷,包装行业编辑本段国际标准色卡 1、美国P a n t o n e色卡提供平面设计、服装家居、涂料、印刷等行业专色色卡,是目前国际上广泛应用的色卡。总部位于美国新泽西州卡尔士达特市(Carlstadt, NJ)的Pantone 公司.是一家专门开发和研究色彩而闻名全球的权威机构,也是色彩系统和领先技术的供货商,提供许多行业专业的色彩选择和精确的交流语言。彩通? (PANTONE?)这一名字已成为设计师、制造商、零售商和客户之间色彩交流的国际标准语言而享誉全球。1963年,Pantone 公司的创始人Lawrence Herbert开发了一种革新性的色彩系统,可以进行色彩的识别、配比、和交流,从而解决有关在制图行业制造精确色彩配比的问题。他意识到每个人对同一光

如何运用色卡选色及辩别色差

如何运用色卡选色及辩别色差 1.了解色卡的编排规律 CHOIMER PAINT色彩系统,色卡的编排规律与色轮的排色次序相一致。如Choimer paint的8000色系。 从左开始是红色,横向过渡到红-橙、橙、黄-橙、黄、黄-绿、绿、蓝-绿、蓝、蓝-紫、紫、红-紫;每个颜色分成7度,纵向色彩编号从A至G,意味着所加入的白色逐层上升。 Choimer paint品牌的8000多种颜色分成不同的色系,每种色系的颜色编排规则是相一致的,但会从实用选色的角度出发,编排的手法各有侧重。 2.运用色卡选色需要注意的事项 设计师或色彩从业人员在做配色的时候一定要用到的两个工具是:色轮和色卡。但真正选色做方案一定要用色卡,因为色卡有8000种。但色彩种类这么多,色相纷呈,变幻万千,差之毫厘失之各里如何运用色卡来选色?色彩上墙后的效果要比在一张小色卡上看到的纯度高出3至5倍。这个不仅仅是彩色会有的效果,中性色类别也如此。 色卡最重要的实用目的就是为了方便选色的时候做比色,您想知道自己所选的颜色在纯度和明度上的最真实的效果,拿这个颜色与该颜色的纯色卡条进行对比是最快捷的方法之一。

3. 涂料选色三个重要步骤 第一步:了解你或你的客户对颜色的预期 为墙面选择颜色之前,您需要了解自己或你的客户对颜色的心理预期。色卡只是一小块纸片,但涂刷上去的却是整面墙或四面墙。所含色中色越丰富的颜色,涂刷上墙后的视觉效果越容易给人更丰富的视觉变化。 第二步不要将刷墙作为装饰的第一步 很多人以为装修第一步就是选个自己喜爱的颜色涂刷好墙面,再根据墙面的颜色来选择家具和其它软装物件。然而多数的结果都是追悔莫及,因为发现:该墙面的颜色很难找到相匹配或匹配出彩的家具和软装;二是发现墙面的颜色跟之后所购买的家具/软装搭配一起后,整体效果跟自己原来想象的完全不一样。 从专业配色的角度说,每个配色方案都有主/次/辅之分,通常墙面是主色。主色的功能是它能更好的包容空间中的其它颜色,从而将空间中所有的颜色和谐地连接在一起。但如果你先将墙面的颜色全刷了,包括背景墙的颜色,之后你选择其它物件的颜色就被动了。作为居住空间的墙面颜色相对固定,而其它物件的颜色可能会根据季节的变化而调整,比如客厅沙发的抱枕、窗帘的花卉样式、卧室的床上用品、各地旅游带回来的装饰件,等等。 第三步先选几个颜色而非只选一个 如果你想为家里改变一面背景墙的颜色,可以从你喜爱的家具或艺术品的颜色中挑出三到四种,借阅纸色卡或邀请Choimer paint专业配色师和你一起,将色卡带回家跟家具/艺术品放在一起,给自己一天或更多的时间来感受它们,最后做出一种选择。 如果你是为全屋装修选色,多选几种颜色跟你已选好的家具和饰品颜色作比

常用颜色国际色卡对照表

常用颜色国际色卡对照表 常用颜色国际代码速查表PANTONE色卡潘通色卡服装纺织色卡国际色卡对照表pantone色号查询pantone国际色卡查询网页颜色代码查询 编号中文名称英文名称Hex RGB Decimal 选择颜色演示 008黑色,纯黑Black #000000 0,0,0 041 暗淡的灰色DimGray #696969 105,105,105 051灰色Gray #808080 128,128,128 025 深灰色DarkGray #A9A9A9 169,169,169 123银色,银白色Silver #C0C0C0 192,192,192 069浅灰色LightGrey #D3D3D3 211,211,211 047 Gainsboro Gainsboro #DCDCDC 220,220,220 138 白烟WhiteSmoke #F5F5F5 245,245,245 137白色,纯白White #FFFFFF 255,255,255 081 栗色Maroon #800000 128,0,0 032 深红色DarkRed #8B0000 139,0,0 043 耐火砖FireBrick #B22222 178,34,34 012棕色Brown #A52A2A 165,42,42 114红色,纯红Red #FF0000 255,0,0 056 印度红IndianRed #CD5C5C 205,92,92 115 玫瑰棕色RosyBrown #BC8F8F 188,143,143 065 淡珊瑚色LightCoral #F08080 240,128.128 127 雪Snow #FFFAFA 255,250,250 118 鲜肉(鲑鱼)色Salmon #FA8072 250,128,114 093 薄雾玫瑰MistyRose #FFE4E1 255,228,225 133 番茄Tomato #FF6347 255,99,71 033 深鲜肉(鲑鱼色) DarkSalmon #E9967A 233,150,122 101 橙红色OrangeRed #FF4500 255,69,0 017 珊瑚Coral #FF7F50 255,127,80 071 浅鲜肉(鲑鱼)色LightSalmon #FFA07A 255,160,122 122 黄土赭色Sienna #A0522D 160,82,45 121 海贝壳Seashell #FFF5EE 255,245,238 117 马鞍棕色SaddleBrown #8B4513 139,69,19 016 巧克力Chocolate #D2691E 210,105,30 119 沙棕色SandyBrown #F4A460 244,164,96 108 桃色PeachPuff #FFDAB9 255,218,185 109 秘鲁Peru #CD853F 205,133,63 079 亚麻布Linen #FAF0E6 250,240,230 030 深橙色DarkOrange #FF8C00 255,140,0 007 (乳脂,番茄等的)浓 汤 Bisque #FFE4C4 255,228,196

色卡使用说明

核准审核拟稿 四、说明图 1. PANTONE色号: 2. PANTONE专色油墨: 3. 4色印刷机(Process)专用油墨: PANTONE专用油墨配份表: 16份PANTONE黄80% 4份PANTONE黑20% PANTONE色号: 潘通(彩通)105C 调配出 PANTONE105C

核准审核拟稿 4. 6色印刷机(Hexachrom)专用油墨: 五、色号颜色配比说明: 1. PANTONE formula guide印刷油墨配方中相邻色号调配: a. 以专色油墨为基本色,上一色号基本色适当添加稀释剂,约为50%,如下: b. 主油墨适当增加配比,在原基础上约增加一倍,形成相邻下一色号,如下: 上一色号:1787C配比:8份PANTONE Red 03250%(基本色50%) 8份PANTONE Trans. Wt. 50%(稀释剂50%) 基本色号:032C PANTONE Red 032 下一色号:1797C配比:16份PANTONE Red 03298.5%(基本色98.5%) 1/4份PANTONE Black 1.5%(黑色1.5%) 开始色号:106C配比:8份PANTONE Yellow 12.5% 1/8份PANTONE Warm Red. 0.2% 56份PANTONE Trans. Wt. 87.3%(稀释剂87.3%) 下一色号:107C配比:8份PANTONE Yellow 24.9%(在106C上增一倍) 1/8份PANTONE Warm Red. 0.4%(在106C上增一倍) 24份PANTONE Trans. Wt. 74.7%(稀释剂74.7%) 再下一色号:108C配比:8份PANTONE Yellow 49.6%(在107C上增一倍) 1/8份PANTONE Warm Red. 0.8%(在107C上增一倍) 8份PANTONE Trans. Wt. 49.6%(稀释剂49.6%)

如何正确打印icc用的色卡文件

如何正确打印icc用的色卡文件 [作者:Admin来源:色彩管理网点击数:9845 更新时间:2007-8-16 文章录入:Admin] 【字体:】 大家在在作打印机icc的时候,需要使用分光光度计测量打印机打印出来的色卡文件。 这些色卡文件包括: TC2.83RGB(小型喷墨打印机使用,包括绝大多数A4幅面喷墨打印机都可以使用这个色卡) TC9.18RGB(喷墨打印机使用,包括大幅面喷墨打印机、照片冲印、数码片夹、热转印等) IT8/7.3CMYK(激光打印机使用,包括数码打样设备、CMYK模式写真喷绘设备、印刷等) ECI2002CMYK(激光打印机使用,包括数码打样设备、CMYK模式写真喷绘设备、印刷等,比 IT8/7.3CMYK有更好的色块分布) 我们网站下载(符合我们的分光光度仪测量要求的)这四种色卡,直接点击上面的色卡名称即可进入下载。 除了TC2.83RGB为一张外,其他几种色卡都有卷筒纸、A3幅面、A4幅面三种区分(每种幅面的色块数是一样的,只不过是每个文件的尺寸不同上面的色卡排列方式不同)。每种幅面内又包括几个文件(3-5个,全部打印)。推荐使用A4幅面的文件打印,比较灵活,也比较方便测量和邮寄。 在打开色卡之前,首先要对photoshop和系统内分打印机进行简单设定,才不会使打印的色卡出现色彩的错 误转换。 1、photoshop设定 打开photoshop的颜色设置面板,设置如下(红框内):

2、系统内打印机机颜色管理设置: 打开控制面板/打印机/选择你要使用的打印机,点右键/属性/颜色管理,将其中的颜色管理icc文件删除,如下图:

TOUCH马克笔色卡及常用颜色

TOUCH马克笔色卡及常用颜色

touch常用色 景观常用30色 1 9 25 36 37 4 2 4 3 47 49 51 54 56 58 59 68 74 84 92 97 102 104 WG1 WG3 WG5 WG7 CG2 CG4 GG3 GG5 120 环艺常用30色版本一同景观常用三十色 环艺常用30色版本二 WG1,WG3,WG5,WG7,WG9,CG0.5,CG2,CG4,CG6,CG8

,41,43,45,47,51,53,55, 57,63,67,70,75,76,7,10,3 1,33,37,83,88 建筑常用30色 19 25 36 37 42 43 47 49 51 58 59 68 74 92 97 102 104 WG1,3,5,7 CG2,4,6,8 BG3 GG3 GG5 120 20支常用色 9,25,42,43,47 48,51,59,68,74,97,104, 120,BG-3,CG-0.5,CG-4,GG-3,GG-5,WG-3,WG-7 25支常用色

7,21,36,37,42,43,47,48,51,54,56,58,59,67,69,75,76,92,94,97,120,CG0.5,CG2,CG4,CG7 30支常用色 1,9,25,36,37,42,43,47,48,51,58,59,68,74,92,97,102,104,120 BG-3,GG-3,GG-5,CG-0.5,CG-4,CG-6,CG-9,WG-1,WG-3,WG-5,WG-7 40支常用色 1,6,9,15,25,36,37,42,43,46,47,48,49,50,51,53,54,56,58,59,62,68,76,84,92,97,104, 120,BG-3,GG-3,GG-5,CG-0.5,CG-1,CG-4,CG-6,CG-9,WG-1,WG-3, WG-5,WG-7 室内常用30色 1 9 25 36 37 47 48 51 57 65 67 74 76 75 84 91 95 97 98 102 103 104 WG1 WG3 WG5 WG7 CG2 CG4 GG3 120 产品设计30色 1 7 26 29 35 37 43 47 49 58 59 67 68 70 75 97 10 2 104 WG1 WG3 WG5 WG7 CG1 CG3 CG5 CG7 BG3 GG3 GG5 120 工业设计30色

标准色卡

国画用色 ████银朱:呈暗粉色。 ████胭脂:色暗红。用红蓝花、茜草、紫梗三种植物制成的颜料,年代久则有褪色的现象。 ████朱砂:色朱红。用以画花卉、禽鸟羽毛。(quester注:黄色成分微高于红色成分,色艳丽,需注意与背景色调和,多数情况下不大面积使用。) ████朱膘:色橘红。明度比朱砂高,彩度比朱砂低。用以画花卉。 ████赭石:色红褐。用以画山石、树干、老枝叶。 ████石青:色青,依深浅分为-头青、二青、三青。用以画叶或山石。 ████石绿:依深浅分为-头绿、二绿、三绿。用以画山石、树干、叶、点苔等。 ████白粉:亦称胡粉,色白,有蛤粉和铅粉两种。用以画白花、鸟,或调配其他颜料使用。 ████花青:色藏青。用以画枝叶、山石、水波等。用蓼蓝或大蓝的叶子制成蓝靛,再提炼出来的青色颜料,蓝绿色或藏蓝色。用途相当广,可调藤黄成草绿或嫩绿色。广花,颜料。即广东产的花青。(quester注:微含红色成分,故与黄色调和后生成的绿色较为沉着) ████藤黄:色明黄。用以画花卉、枝叶。藤黄:明黄色。南方热带林中的海藤树,常绿乔木,茎高达二十米,从其树皮凿孔,流出黄色树脂,以竹筒承接,干透可作国画颜料。(quester注:亦含微量红色成分,有毒。和黑色配合时甚为醒目,多为危险警示色彩)████赭石色:暗棕色矿物,用做颜料 ████雌黄:矿物名。成分是三硫化二砷(As2S3)橙黄色,半透明,可用来制颜料。古人用雌黄来涂改文字,因此称乱改文字、乱发议论为“妄下雌黄”,称不顾事实、随口乱说为“信口雌黄”。 ████雄黄:中药名。为含硫化砷的矿石。别名石黄、黄石。 ████石黄:国画颜料,即雄黄。 ████洋红:色橘红。用以画花卉。 古典文学常见的色彩词 鎏金:中国传统的一种镀金方法,把溶解在水银里的金子涂刷在银胎或铜胎器物上。 飞金泥金洒金:用金粉或金属粉制成的金色涂料,用来装饰笺纸或调和在油漆中涂饰器物。洒金一说是指带斑点的图案。 描金:为使器物美观而在其上用金银粉勾图、描绘作为装饰。 花黄:古代妇女的面饰。用金黄色纸剪成星月花鸟等形贴在额上,或在额上涂点黄色。 撒花:织物上的碎花图案。 云斑:在颜色比较淡的或半透明的材料上的暗黑的或无光泽的条纹或斑点(如在大理石上)。 云母纹:像云母断面及砂子闪烁光泽的纹理。 下面我们分色系来为大家介绍丰富多彩的颜色。 红色系 ████粉红,即浅红色。别称:妃色杨妃色湘妃色妃红色 ████妃色妃红色:古同“绯”,粉红色。杨妃色湘妃色粉红皆同义。 ████品红:比大红浅的红色(quester注:这里的“品红”估计是指的“一品红”,是基于大红色系的,和现在我们印刷用色的“品红M100”不是一个概念)

色卡使用说明

核准审核拟稿 一、色号选取之说明:依据客户/设计给定的PANTONE色卡号作为标准色号,再依据PANTONE formula guide(2005)定订出上、下限。 二、油墨颜色说明: 1. PANTONE专色之14种基本油墨,如PANTONE formula guide之1.1C,1.2C。(另:PANTONE Transparent White透明白,为稀释油墨所用): 序号PANTONE油墨全称PANTONE油墨简写对应译义 1 PANTONE Yellow PANTONE Yellow PANTONE 黄 2 PANTONE Yellow 012 PANTONE Yellow 012 PANTONE 黄012 3 PANTONE Orange 021 PANTONE Or. 021 PANTONE 橙021 4 PANTONE Warm Red PANTONE Warm Red PANTONE 暖红 5 PANTONE Red 032 PANTONE Red 032 PANTONE 红032 6 PANTONE Rubine Red PANTONE Rub. Red PANTONE 宝石红 7 PANTONE Rhodamine Red PANTONE Rhod. Red PANTONE 玫瑰红 8 PANTONE Purple PANTONE Purple PANTONE 紫 9 PANTONE Violet PANTONE Violet PANTONE 紫罗兰 10 PANTONE Blue 072 PANTONE Blue 072 PANTONE 蓝072 11 PANTONE Reflex Blue PANTONE Ref. Blue PANTONE 射光蓝 12 PANTONE Process Blue PANTONE Pro. Blue PANTONE 四色蓝 13 PANTONE Green PANTONE Green PANTONE 绿 14 PANTONE Black PANTONE Black PANTONE 黑 15 PANTONE Transparent White PANTONE Trans. Wt. PANTONE 透明白 2. 4色印刷机所用之4种基本色油墨:(CMYK) 序号油墨全称对应译义 1 PANTONE Process Yellow PANTONE四色黄 2 PANTONE Process Magenta PANTONE四色红 3 PANTONE Process Cyan PANTONE四色蓝 4 PANTONE Process Black PANTONE四色黑 3. 6色印刷机所用之6种基本色油墨:(CMYOGK) 序号油墨全称对应译义 1 PANTONE Hexachrome Yellow PANTONE六色黄 2 PANTONE Hexachrome Orange PANTONE六色橙 3 PANTONE Hexachrome Magenta PANTONE六色红 4 PANTONE Hexachrome Cyan PANTONE六色蓝 5 PANTONE Hexachrome Green PANTONE六色绿 6 PANTONE Hexachrome Black PANTONE六色黑 三、PANTONE formula guide中部分含议之说明: pt(s) = part(s) 油墨配份 C = Coated Paper 光面铜版纸 U = Uncoated Paper 哑面铜版纸 ::= Achievable in CMYK 可以用CMYK四色印刷模拟PANTONE色彩 nC = n Coated 装订在光面铜版纸本上的页码nU = n Uncoated 表示装订在哑面铜版纸本上的页码

色 卡 管 理 流 程

色卡管理流程 一:色卡组的目标: 确保做出的色卡:准确无误.美观大方.与时俱进.不断创新,色卡的精细度.美观度尽可能的吸引人家的眼球。严格操作流程,层层把关落实审验制度,将错误降到最低点。 二:人员素养的培养; 让大家有一个舒适的环境和一种愉悦的心情,避免压抑苦恼,心烦意乱。在一种愉悦的心理环境下效率更高,出错率更低,大家团结得更紧,力量更大。 三:制作流程: 1:制作色卡订单跟踪表,将整个色卡的制造工艺步骤的完成情况做记录,具体内容包括;下单日期.需求单位.品名.类型.数量.调料.打色卡纸.贴合.入库。 2:各个销售点填写色卡需求申请单,由各点色卡负责人签名传真至色卡部。 3-1:色卡组根据订单数量参考产品的畅销程度综合考虑色卡的制作数量和储备数量,充分考量成本的运用,以免造成不必要的浪费和损失。A级产品和新产品色卡料备货充足,B级产品色卡存储适当,C.D 级针对性制作,不储备色卡料。 3-2:色卡制作参考数量:A级产品200份.B级产品100份.C级产品50份。 4:剪料:为了节省成本,各点提供色卡料时严格按照剪料单上数量,

不得随意加减,以及剪料整齐,无明显色差,尽量将整批色卡料的差异缩到最小,浪费就越小。 5:理料管理:检查来料数量及色号是否正确.齐全,对应色卡如有欠缺,核对库存及时补充,并按颜色的深浅顺序或色号顺序以色卡和VIP 相结合的整体考虑美观的原则排列。将整理好的色卡料编写相应的编号和缺少的色号。 6:冲料管理:根据色卡的需求使用相应的刀模和合适的厚度,根据纹路的方向感(一般为横向)进行冲料,避免过厚导致斜滑不整齐。捆绑不能太用力以免过紧中间有勒痕,不美观。用袋子装好写上品名。冲料员每冲一款材料都要做好记录品名和数量。 7:打印色卡纸:根据所冲的料的色水号顺序排列打印,要求打印字迹清晰工整,排列均匀,字体大小一致,无涂改,无偏移。日期.品名.色水号准确无误。 8:粘贴制作:每款必须制作一份标准的样板核对底卡,然后正式生产,发现不合规格,长短不一.缺角.色差.不齐的料不能贴。搭配适当抢眼的主料。 9:品检入库:贴好的每款色卡取上.中.下不同部位抽查5%以上,核对色水是否有误及色差,将合格品记数入库至金蝶系统。色卡按鞋材.包材分类摆放,并做好品名标识。 10:产品出库:为了有效发挥色卡的利用率,节省成本,控制色卡的随意发放,各供应点必须指定一名专人负责色卡的申领和发放,并记录个人领取数量。建议年终销售额与色卡量成正比进行比例分配,视

PANTONE色卡选用常识

选择色卡,要根据自己实际使用的情况来判定,是客人提出了颜色要求还是根据自己的需要来选用色卡。如果是客人指定的型号或者颜色编号,那就直接告诉我们的工作人员需要的型号或者颜色的编号就可以很准确的确定产品类别了。但是如果是自己需要色卡来作为同行交流呢? 首先,您根据所属行业来选择。除了您是属于纺织、服装、家居、家纺类的客户是用PANTONE的纺织版外,其他行业都可以是用PANTONE通用系列里面的产品。最为常用的是一个两本套装,价格也不贵,六百多元。这两本分别是光面铜版纸一本和胶版纸一本,行业人士也称为C卡和U卡(英文COATED和UNCOATED缩写)。光面铜版纸当然就是光泽感强的纸张,而胶版纸则是没有光泽的。加上一本哑粉纸(M卡)的就成了一个三本套装。哑粉纸的光泽介于C 卡和U卡之间,如果实际工作有类似需要,选择这套C+U+M的就比较全面。当然,这三本可以分别单独购买,只是价格会稍比整套购买贵一些。单本中光面铜版纸也就是C卡还有个中文版本,上面的油 墨混合配方都是用中文标注的,封面也是中文和英文两种语言标注的。选购中要特别注意根据不同的需要选用不同的产品。 而如果你刚好是纺织、服装、家纺类的客户,那你就是要使用PANTONE的纺织系列产品了。纺织系列目前市场上使用的成套产品有8种产品,大类可分为两类,即纸版和棉布版。纸版其颜色编号特点是这样的格式:xx—xxxxTPX(例如:12—0738TPX),即六位数字

后面是有个TPX的后缀。而棉布版本的则为:xx—xxxxTCX(例如12—0738TCX)。颜色标号中的英文字母“P”和“C”分别表示纸版和棉布。纸版的目前有长条状、便携式扇形的型号FGP100,和书本样式、活页、可撕式色票的型号FBP100两种,其区别就在于书本样式的色票是有六个小片可以撕取的,而便携式的没有。便携式的打开是扇形,很多公司都因为它小巧方便携带、价格便宜而首选这款。棉布版本的根据颜色面积的大小分为了很多款产品,但是不管怎么分,其颜色数量和纸版的一样都是1925个颜色。在棉布版本中最为常用的一款其 单个颜色面积大小为1.5cm*1.5cm,颜色整齐的排列在活页夹中,可作为要使用棉布版本的朋友的首选。其他还有1.5cm*1cm、2cm*5cm 等。棉布版本的产品价格从几千元到几万元不等,区别就在于颜色面积的大小,完全可以满足你的不同需求。 经常有朋友问道为什么客人的颜色号是“TP”或者说“TC”结尾的,那是因为这些色号是PANTONE旧版本里的颜色编号后缀了。比如“12—0738TP”,对应的新版本颜色号就是“12—0738TPX”。新版本相比旧版本是PANTONE公司工作人员根据市场的流行趋势增加了175个颜色颜色,并且颜色面积比以前增大25%更易于色彩的识别!而“TP”和“TC”已经是几年前的产品了,对于颜色交流很容易产生误差。 除了以上两种分类以外,PANTONE公司将塑胶作为专门类别有独立系统产品。分别有735个透明和1005个不透明的颜色,每块以 聚苯乙烯制成的选色片整齐的排列在模制的活页中。其颜色编号特点

正确打印色卡文件制作icc

怎样正确打印色卡文件制作icc 发布日期:2010-03-08 大家在制作打印机icc的时候,需要使用分光光度计测量打印机打印出来的色卡文件。 这些色卡文件包括: TC2.83RGB(小型喷墨打印机使用,包括绝大多数A4幅面喷墨打印机都可以使用这个色卡) TC9.18RGB(喷墨打印机使用,包括大幅面喷墨打印机、照片冲印、数码片夹、热转印等) IT8/7.3CMYK(激光打印机使用,包括数码打样设备、CMYK模式写真喷绘设备、印刷等) ECI2002CMYK(激光打印机使用,包括数码打样设备、CMYK模式写真喷绘设备、印刷等,比IT8/7.3CMYK有更好的色块分布) 我们网站下载(符合我们的分光光度仪测量要求的)这四种色卡,直接点击上面的色卡名称即可进入下载。除了TC2.83RGB为一张外,其他几种色卡都有卷筒纸、A3幅面、A4幅面三种区分(每种幅面的色块数是一样的,只不过是每个文件的尺寸不同上面的色卡排列方式不同)。每种幅面内又包括几个文件(3-5个,全部打印)。推荐使用A4幅面的文件打印,比较灵活,也比较方便测量和邮寄。

在打开色卡之前,首先要对photoshop和系统内分打印机进行简单设定,才不会使打印的色卡出现色彩的错误转换。 1、photoshop设定【仅限CS4及以下版本,CS5不推荐使用】打开photoshop的颜色设置面板,设置如下(红框内): 2、系统内打印机机颜色管理设置: 打开控制面板/打印机/选择你要使用的打印机,点右键/属性/颜色管理,将其中的颜色管理icc文件删除,如下图:

现在,可以打开色卡文件了。 如果按上面的PS颜色设置后,打开色卡文件的时候,一定会跳出如下图的对话框,请一定选择“保持原样”,也不要修改分辨率,尺寸和进行任何颜色调整。

色卡司NAS简易使用手册 - 副本.

简易使用手册 系统基本信息 系统的出厂默认IP为: WAN: 192.168.1.100 LAN: 192.168.2.254 NAS (2盘位以上产品) 有两个千兆网口, 即WAN口和LAN口, 用户可以理解为LAN1和LAN2, 为两张独立网卡, 其IP地址不能设在同一网段. 系统的出厂默认密码为: admin 通过IE7或Firefox浏览器登入WEB管理界面 在浏览器的地址栏中输入连接NAS网口的IP地址, 登入NAS的WEB管理页面, 进行设置. 如下图 创建RAID 进入”储存”中的”磁盘资讯”, 了解每一块磁盘的”状况”,如果状况为”warning”,则说明此块硬盘有问题, 建议更换此块硬盘.如下图: 然后选择”磁盘阵列”中的”建立”,在弹出的窗口中,勾选需要使用的硬盘为”已使用”, 选择所需要的阵列形态, 确认资料百分比之后, 就可以开始建立阵列了. Tips:阵列的建立,耗时较长,建议合理选择空闲时间 资料百分比默认为95%, 表明此RAID中95%的空间用于文件共享, 另外5%空间 用于iSCSI. 一旦RAID开始建立, iSCSI空间就只能缩小,不能扩大. 所以在建立RAID前需要规划好此两种空间. RAID创立时间, 随硬盘容量不同而不同, N7700的创建速率约为40-50M/S. RAID档案系统的选择, 请参看此链接:

创建本地用户及文件夹授权 添加本地用户 RAID创建完毕之后, 进入管理页面中的”用户和群组验证”-->”用户”-->”新增”, 进行本地用户的添加 . 添加共享文件夹

进入”储存”-->”share folder”-->”新增”, 进行共享文件夹的添加. 选择开放为”Yes”, 则此文件夹不能被授权(), 任何人都可以访问. 选择开放为”No”, 则此文件夹能被授权(), 只有输入正确的账户密码方可访问. 权限设置 创建文件夹”test”成功后, 选中”test”, 点选”权限” 在弹出ACL设定窗口中. 点击鼠标左键, 选中左边列表中的某个用户, 拖入右边的列表中即可. 此例表明, 在访问文件夹”test”时, 必须输入账户dddd及其正确的密码. 否则将无法访问 .

色卡标准

色卡 色卡是自然界存在的色彩在某种材质(比如纸、面料、塑胶等)上的体现,用于色彩选择、比对、沟通和色彩供应链管理的工具。 目前国内外色卡种类繁多,国际上还没有统一的色彩应用标准,各行各业应用着各不相同的色卡和色彩标准,举例如下: 国内标准色卡: 1、纺织服装行业、国家标准色卡——CNCS色卡 目前已被确立为国家标准和纺织行业标准的CNCS 简介:2001年开始,中国纺织信息中心承担了科技部“中国应用色彩研究项目”,建立了CNCS颜色体系。之后,广泛进行色彩调研,通过中心所属趋势研究部门、中国流行色协会、国外合作伙伴、采购商、设计师等途径收集色彩资讯,开展市场调查。经过几年的努力,研发第一版颜色体系,并确定了所用材料及工艺。 2006年,中国纺织信息中心根据合作伙伴、市场 相关方、色彩专家等各方意见调整体系,完成第二版颜色体系的试制,并携手浙江龙盛控股有限公司、德塔颜色科技有限公司(DATACOLOR)等一起正式开始CNCS 纺织颜色体系标准的生产制作,同时,开展了数字化色彩和数字化流行色彩的研究,将CNCS颜色系统同数字化色彩接轨。在此基础上,完成了CNCS纺织颜色标准的制作。 2、建筑行业、国家标准色卡——深圳海川色彩科技有限公司 深圳海川色彩科技有限公司是国家“重要技术标准研究”专项企业试点单位,是深圳市政府授予的“高新技术企业”,承担了GB/T15608-2006《中国颜色体系》、GSB 16-2062-2007《中国颜色体系标准样册》和 GB/T 18922-2002《建筑颜色的表示方法》、GSB16-1517-2002 《中国建筑色卡》等多项颜色国家标准的修订和研制工作。 国际色卡: 1、美国Pantone 色卡:提供平面设计、服装家居、涂料、印刷等行业专色色卡,是目前国际上广泛应用的色卡。 PANTONE色彩是整过生产流程中,用以建立基本色彩标准的审批基准。这为客户与生产商之间,提供了最准确和高效方法来沟通和说明各个色彩选择。只要指定一个PANTONE颜色编号,查一下相应的PANTONE色卡,就可找到所需颜色的色样,按客户要求的色彩制作产品。 总部位于美国新泽西州卡尔士达特市(Carlstadt, NJ)的Pantone公司.是一家专门开发和研究色彩而闻 名全球的权威机构,也是色彩系统和领先技术的供货 商,提供许多行业专业的色彩选择和精确的交流语言。 彩通® (PANTONE®)这一名字已成为设计师、制造商、零 售商和客户之间色彩交流的国际标准语言而享誉全球。 1963年,Pantone 公司的创始人Lawrence Herbert开发了一种革新性的色彩系统,可以进行色彩 的识别、配比、和交流,从而解决有关在制图行业制造 精确色彩配比的问题。他意识到每个人对同一光谱见解 各不相同而带来了彩通配色系统®(PANTONE MATCHING SYSTEM?)的革新,该系统是一册扇形格式的 标准色。 40多年来,彩通已经将其配色系统延伸到色彩占 有重要地位的各行各业,如数码技术、纺织、塑料、建 筑以及室内装饰等。它将继续为各行业开发色彩交流工 具,大胆地采用新式数码技术来满足设计和生产专业人 士的需要。 2、德国RAL色卡:RAL 是德国的一种色卡品牌, 这种色卡在国际上广泛通用,中文译为:劳尔色卡. 自从1927年,当RAL涉入色彩时,就创建了一种 统一的语言,为丰富多彩的颜色建立标准统计和命名, 这些标准在世界范围内被广泛的理解和应用。 4位数的RAL颜色作为颜色标准已达70年之久, 至今为止已发展到200多种。无光泽的颜色基础色卡为 RAL-840HR,有光泽的为841-GL,这些颜色基本色块满 足了大范围的应用,已被许多重要公司及研究机构所使 用。RAL-840HR及RAL-841GL 颜色注册都作为颜色样本 应用于设计中,同时它们也包括了安全和信号色符合 DIN及ISO规定的颜色要求。 RAL设计系统已被发展用于专业色彩设计,对建筑 业尤其有用。它包含以一个有规律次序排列的1688种 颜色。所以七位数的颜色被划分为单独的RAL颜色,与 RAL古典色卡不同的是RAL设计系统的颜色代码不是任 意排列的,这七位数颜色显示色度,亮度及色品(颜色 的饱和度)HLC的技术测量值。由于颜色编号建立在国 际标准CIE颜色固体上,编码清楚易解,你可找到想选 择的任何颜色,是设计者及其它同颜色有关人员的杰 出工具,使用这个系统协调的颜色结合产生将变十分容 易 3、瑞典NCS色卡:NCS的研究始于1611年,现已 经成为瑞典、挪威、西班牙等国的国家检验标准,它是 欧洲使用最广泛的色彩系统。 4、日本DIC色卡:专门用于工业、平面设计、包 装、纸张印刷、建筑涂料、油墨、纺织、印染、设计等 方面。 DIC色彩指南 收录色彩编号:1~654 特殊号码:584B、546 1/2、549 1/2(3色) 无色号:560、562、573、575、622~631(14色) 刊载色数:643色 用途:工业、平面设计,包装、纸张印刷 Munsell Book of Color- Glossy Collection 蒙赛尔色彩大全-全光泽 这套色彩大全包含了1600多个蒙赛尔高光泽的颜色, 每个颜色都按照40个固定的色相排列,并且可以自由 抽取,同时还新增了37个“蒙塞尔”的灰系列。被广 泛的应用到艺术设计,包装产品设计,色彩详述以及质 量控制等等行业对颜色的选择和沟通。 另外该系列还供应8.5"X11"(21.6X28厘米)的色彩 单页,方便客户剪取。 A-6 NCS Index 1950 NCS便携式色谱1950 方便、经济、实用的颜色应用工具,全部颜色按照色相 及黑度、白度和彩度规律有序排列,十分方便进行颜色 查找。方便携带,可以用于颜色设计、分析、交流和对 照。 产品描述:1950个颜色,长条形扇卡,硬质外壳 充分保护内页不易磨损。 PA-GP1201 Pantone Formula Guide-Coated/Uncoated PANTONE专色色彩配方指南-铜版 纸/胶版纸 2009新版本经重新设计,版面已经扩大,以更 宽阔的色面展示,大大提高可读程度,同时也使检索书 页上的色彩变得更为方便。本配方指南是平面设计师、 印前工序专业人士和印刷厂家的必备工具书。它设计简 单,既方便又可携带,它是您向客户进行展示或在印刷 过程中的随身色彩叁考良伴。这套两册装的配方指南, 包括印制在光面铜版纸和胶版纸上1,114种PANTONE 色彩。这版本PANTONE色卡采用使用者最希望的样式制 作。里面所有的色彩选择都注明PANTONE编号和尾码。 例如:PANTONE 256C或7416C。虽然这是个PANTONE 印刷专色系列,因为颜色比较鲜艳和特别,也越来越被 纺织服装、印染、针织、塑料、箱包、玩具、鞋业鞋材、 橡胶、化工陶瓷、工艺等各行业广泛使用。 新的大号样式提供更佳视觉效果。这扇形色彩指南包含 1900多种PANTONE纺织色彩,采用涂面条纹格式制作, 并按色系顺序排列。这便於携带PANTONE服装和家居色 彩指南是样本采购、客户或供应商会议洽谈和即时检视 的理想工具。 PANTONE色卡 PANTONE色卡配色系统,英文名为 PANTONE MATCHING SYSTEM(曾缩写为PMS),中文官方名称为"彩 通"是享誉世界的涵盖印刷、纺织、塑胶、绘图、数码 科技等领域的色彩沟通系统,已经成为事实上的国际色 彩标准语言。世界任何地方的客户,只要指定一个 PANTONE 颜色编号,我们就可找到他所需颜色的色样, 无须臆测,更可以避免电脑屏幕颜色及打印颜色与客户 实际要求的颜色不可能一致所引起的麻烦。 市场和产品 每年,Pantone, Inc.及其遍布全球100多个国家 的众多特许经营商户提供了无数的产品与服务,范围涉 及制图艺术、纺织、服饰、室内家居、塑胶品、建筑和 工业设计等领域。 制图艺术──印刷、出版和包装 彩通配色系统是选择、确定、配对和控制油墨色彩 方面的权威性国际叁照标准。彩通配方指南(PANTONE formula guide)──三册装,包括了1,114种彩通专 色(含有光面铜版纸,胶版纸和哑面铜版纸版本),分 别展示了每种色彩相应的印刷油墨配方。三册装专色色 票提供了光面铜版纸,胶版纸,哑面铜版纸的打孔可撕 式色票,方便用於质量控制。 数码化彩通叠印色彩系统(PANTONE Process Color System)色票以及指南提供了一种具有3,000 多种色彩的综合色库,可以用於四色(CMYK)叠印处理 印刷。彩通四色模拟指南(PANTONE solid to process guide)将一种彩通专色与CMYK四色叠印中最为接近的 匹配色相比较,这种匹配色可以在计算机显示器、输出 装置或者印刷机上可以获得。制图艺术方面的其他彩通 色彩叁照指南包括金属色、粉彩、色阶、双色、胶片和 铝箔。 彩通高保真六色色彩系统(PANTONE Hexachrome Color System)是一种已申请专利保护,具有穿透力的 六色超高质量印刷程式,可以复制许多种更为明亮的持 久色图像,模拟出比标准四色叠印更为逼真的亮色。高 保真六色(Hexachrome)程式由许多业内领导厂商提供 技术支援,这些厂商包括Adobe、Quark、Macromedia、 柯达保丽光、Agfa,杜邦、宝丽莱以及富士电气等。 纺织

CMYK常用色色卡

C M Y K 102030405060708090100 Y100M20 Y100M40 Y100 M60 Y100 M80 Y100 M100 Y100 M100 M100 Y80 M100 Y60 M100 Y40 M100 Y20 C100 Y100C80 Y100 C60 Y100 C40 Y100 C20 Y100 C100 C100 M100 C100 M80 C100 M60 C100 M40 C100 M20 C80 M100 C60 M100 C40 M100 C20 M100 C100 Y80 C100 Y60 C100 Y40 C100 Y20

C100 M100 Y0 K0 C20 M20 Y0 K0 C20 M0 Y0 K20 C60 M0 Y20 K20 C0 M0 Y20 K80 C0 M20 Y60 K20 C0 M40 Y40 K0 C0 M60 Y0 K40 C20 M40 Y0 K60C100 M0 Y0 K0 C40 M40 Y0 K0 C20 M0 Y0 K40 C20 M0 Y20 K20 C0 M0 Y20 K60 C0 M60 Y80 K0 C0 M20 Y20 K0 C0 M40 Y0 K0 C20 M40 Y0 K40 C100 M0 Y100 K0 C60 M40 Y0 K0 C20 M0 Y0 K60 C20 M0 Y20 K0 C0 M0 Y20 K40 C0 M40 Y80 K0 C0 M40 Y20 K40 C0 M40 Y0 K20 C40 M60 Y0 K0 C0 M0 Y100 K0 C60 M60 Y0 K0 C20 M0 Y0 K80 C40 M0 Y40 K0 C0 M0 Y40 K40 C0 M40 Y60 K0 C0 M60 Y40 K20 C0 M20 Y0 K40 C40 M100 Y0 K0 C0 M100 Y100 K0 C40 M40 Y0 K20 C40 M0 Y20 K60 C20 M0 Y20 K40 C0 M0 Y60 K20 C0 M20 Y100 K0 C0 M60 Y20 K20 C0 M20 Y0 K20 C40 M80 Y0 K20 C0 M100 Y0 K0 C60 M40 Y0 K40 C60 M0 Y40 K40 C20 M0 Y40 K40 C0 M0 Y60 K0 C0 M20 Y40 K0 C0 M100 Y60 K0 C20 M60 Y0 K20 C60 M80 Y0 K0 C20 M80 Y0 K20 C40 M40 Y0 K60 C40 M0 Y20 K40 C20 M0 Y60 K20 C0 M0 Y40 K0 C0 M20 Y40 K60 C0 M60 Y40 K0 C20 M80 Y0 K0 C40 M60 Y0 K40 C0 M60 Y100 K0 C40 M20 Y0 K40 C60 M0 Y40 K20 C20 M0 Y40 K20 C0 M0 Y20 K0 C0 M60 Y60 K40 C0 M80 Y40 K0 C20 M60 Y0 K0 C60 M80 Y0 K20 C0 M40 Y20 K0 C100 M20 Y0 K0 C60 M0 Y60 K20 C40 M0 Y100 K0 C0 M20 Y40 K40 C0 M60 Y80 K20 C0 M40 Y20 K20 C20 M40 Y0 K20 C0 M0 Y0 K100 C0 M20 Y20 K60 C40 M0 Y0 K0 C60 M0 Y20 K0 C20 M0 Y60 K0 C0 M40 Y60 K20 C0 M60 Y60 K0 C0 M40 Y0 K60 C20 M40 Y0 K0 C0 M0 Y0

相关文档