文档库 最新最全的文档下载
当前位置:文档库 › 高分子化学与物理基础名词解释

高分子化学与物理基础名词解释

高分子化学与物理基础名词解释
高分子化学与物理基础名词解释

单体:能通过相互反应生成高分子的化合物。

高分子或聚合物:由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。

主链:构成高分子骨架结构,以化学键结合的原子集合。

侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。

聚合反应:由低分子单体合成聚合物的反应称做~.

重复单元:聚合物中组成和结构相同的最小单位称为~,又称为链节。

结构单元:构成高分子链并决定高分子性质的最小结构单位(或原子组合)称为~

单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 连锁聚合(Chain Polymerization ):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。

逐步聚合(Step Polymerization ):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。

加聚反应(Addition Polymerization ):即加成聚合反应, 烯类单体经加成而聚合起来的反应。加聚反应无副产物。

缩聚反应(Condensation Polymerization ):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。

线型聚合物:指许多重复单元在一个连续长度上连接而成的高分子.

热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。聚苯乙烯(PS )、聚氯乙烯(PVC )、聚乙烯(PE )等均属于此类。

热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。酚醛树脂、环氧树脂、脲醛树脂等均属于此类。

应力松弛:在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐减弱的现象

蠕变:在一定温度和较小的恒定应力下,聚合物形变随时间而逐渐增大的现象。蠕变反映了材料的尺寸稳定性和长期负载能力

时温等效原理:从分子运动的松驰性质可以知道,同一个力学松驰现象,既可在较高的温度下,较短的时间内观察到,也可以在较低的温度下,较长的时间内观察到。因此,升高温度与延长时间对分子运动和粘弹性都是等效的。

WLF 方程:12()log ()S T S C T T a C T T --=+-

脆性断裂:在材料屈服之前发生的断裂称为~

韧性断裂:在材料屈服之前发生的断裂称为~

溶解度参数:内聚能密度的平方根,即1/21/2()()E

C E

D V δ?==

相似相溶原理:分子结构相似的物质可以相互溶解,极性分子易溶于极性分子,非极性分

子易溶于非极性溶剂中。

物理化学名词解释

物理化学名词解释(希望对大家有所帮助,小心有错别字呀,小帽) 两相界面可分为:气液;气固;液液;液固;固固; 比表面:(衡量多相分散体系的分散程度)就是指单位体积或单位质量的物质所具有的表面积 表面能:(比表面自由能):当温度,压强及组分恒定时,增加单位表面积所引起的吉布斯自由能的增量 表面张力(物理意义):是在与液面相切的方向垂直作用于单位长度线段上的收缩力(表面张力与比表面自由能在数值上相等,有相同的量纲,但物理意义不同,单位不同,是从不同的角度反映体系的表面特征) 备注:温度升高,物质的表面张力值下降。绝热条件下,扩展液体的表面积,液体的温度必定下降 表面活性物质:只需少量这样的物质就可已显著的降低溶液的表面张力 (饱和吸附时,表面层上吸附的分子式垂直于液面定向排列的) HLB(亲水亲油平衡值):表示表面活性物质的亲水性和亲油性的相对强弱;越大代表亲水性越强 CMC(临界胶束浓度):表面活性分子在溶液中以疏水基相互靠拢,形成疏水基朝内,亲水基指向水相的胶束;形成胶束的浓度称之为表面活性物质的临界胶束浓度 固体表面吸附的根本原因:很难通过降低表面积来降低表面能,只能通过降低界面张力的途径来降低表面能 吸附:固体暴露在气体或液体中时,气体或液体分子自动聚集在固体表面上的现象 吸附平衡:吸附和解吸是互逆的两个过程,当这两个过程速率相等时,达到吸附平衡(气固吸附只有正吸附没有负吸附;吸附是放热过程) 吸附量:是指在一定温度下,吸附平衡时,单位质量的吸附剂所吸附气体的体积或气体的物质的量 吸附热:是指吸附过程中产生的热量,吸附热越大,吸附越强 物理吸附:吸附分子和固体表面分子间作用力是分子间的引力(范德华力) 化学吸附:吸附分子和固体比较面间形成化学键 单分子层吸附理论:1.固体具有吸附能力是因为固体表面的原子力场没有饱和,有剩余价力(气体分子只有碰撞到尚未被吸附的空表表面上才能够发生吸附作用) 2.一吸附在固体表面上的分子,当其热运动的动能足以克服表面力场的 势垒时,又重新回到气相,即发生解吸 3.吸附是一个可逆过程 影响吸附的因素:1.极性的影响 2.溶质溶解度的影响(溶解度越小,说明溶质越容易被吸附) 3.温度的影响(吸附为放热过程,升温吸附下降) 润湿:当液体与固体接触时,液体能在固体表面上铺开(即原来的气固界面被液固界面替代的过程)分为:沾湿,浸湿,铺展 沾湿:是指将气液界面和气固界面转变成液固界面 浸湿:是指固体浸入到液体中的过程 铺展:是指液体在固体表面展开的过程 铺展系数(S):表示液体在固体表面铺展的能力(S=△G,当S<0,表示液体可以在固体表面自由铺展) 备注:非极性固体大多是憎水型固体,极性固体通常是亲水型固体

材料物理化学 第一二三章名词解释集锦--复习材料

第二章晶体结构 1. 晶格能 指将一克式量(与一摩尔相当的量)的离子晶体中各离子拆散成气态所需的能量(也称为点阵能) 2. 电子亲合能 气态原子获得一个电子所放出的能量,常用千卡/克原子(4200J/mol)表示。元素的电子亲合能越大,则越易获得电子形成负离子。 3. 电离能 指气态原子在最低能态失去电子所需的能量,常用千卡/克原子(4200J/mol)表示,从中性原子失去第一个电子所需的能量称第一级电离能;失去第二个电子所需的能量称第二级电离能,余类推。元素的电离能越小,则越易失去电子形成正离子。 4. 电负性 各元素的原子在形成价键时吸引电子的能力。用以比较各种原子形成负离子或者正离子的倾向。两元素的电负性差越大,所形成的键的极性就越强。 5. 原子配位数 指一个原子邻近周围的同种原子的个数。 6. 离子配位数 指一个离子邻近周围的异号离子的个数。 7. 面心立方密堆积 等径球的一种最紧密堆积方式,球体按ABCABC、、、、、、层序堆积,将这些球体的球心联接起来,便形成面心立方格子,即在这种堆积方式中可以找出面心立方晶胞。

8. 六方密堆积 等径球的一种最紧密堆积方式,球体按ABABAB、、、、、层序堆积,将这些圆球的球心联接起来,形成六方底心格子,即在这种堆积方式中可以找出面心立方晶胞。 9. 离子极化 离子在外电场作用下,其大小和形状发生改变的现象。 10. 离子极化力 一种离子使另一种离子发生变形(或极化)的能力。即:反映离子极化其它离子的能力。 11. 离子极化率 表征离子在外电场作用下,自身其大小和开头发生改变的难易程度,即变开性的大小,即反映离子本身被极化的难易。 12. 结晶化学定律 晶体的结构取决于其组成质点的数量关系,大小关系与极化性能。 13. 静电键强度 z 定义为阳离子电价Z除配位数n所得的商。即:静电键强度:S= n 14. 同质多晶现象 化学组成相同的物质在不同的热力学条件下结晶形成结构不同的晶体的现象。 15. 变体及多晶转变: 变体:由同质多晶现象面产生的每一种化学组成相同,而结构不同的晶体。 多晶转变:由于外界条件的改变使变体之间发生结构上的转变。 16. 多型现象

完整word版,高分子化学与物理习题2

1. 涤纶聚酯属于 ( ) A. 线性饱和脂肪族聚酯 B. 线性芳族聚酯 C. 不饱和聚酯 D. 醇酸树脂 2. 能同时进行自由基聚合,阳离子聚合和阴离子聚合的是 ( ) A. 丙烯腈 B. α—甲基苯乙烯 C. 烷基乙烯基醚 D. 乙烯 3. 在氯乙烯的自由基聚合中,聚氯乙烯的聚合度主要取决于向() 转移的速率常数。 A.溶剂 B.引发剂 C.聚合物 D.单体 4. 两种单体共聚时得到交替共聚物,则它们的竞聚率应是() A. r1=r2=0 B. r1= r2 =1 C. r1﹥1,r2﹥1 D. r1﹤1,r2﹤1 5.同时获得高聚合速率和高相对分子质量聚合物的聚合方法是() A. 溶液聚合 B. 悬浮聚合 C 乳液聚合D. 本体聚合 1. 分子量分布指数 2、竞聚率 3、引发剂效率 4、动力学琏长 5、阻聚作用 三、简单回答下列问题。〖每小题5分,共25分〗 1. 为提高聚甲醛的热稳定性,可以采取的两个措施是什么?简述理由 2. 在自由基聚合反应中,何种条件下会出现反应自动加速现象。采取什么措施可减轻这种现象? 3.分别绘出自由基聚合与缩合聚合这两类反应的分子量与反应时间的关系示意图,简单说明反应特点。 4.欲使逐步聚合成功,必须考虑哪些原则和措施? 5. 解释笼蔽效应和诱导分解,它们对引发效率有什么影响? 四、写出下列聚合反应,并指出其机理。〖每小题2分,共10分〗 1. 3,3′-二(氯亚甲基)丁氧环的开环聚合; 2. 尼龙-66的制备;

3. 聚乙烯醇与甲醛的反应; 4. 有机玻璃的制备; 5. 环氧树脂的制备。 五、写出下列聚合反应的机理。〖每小题10 分,共20 分】 1. 四氢呋喃中用SnCl4 + H2O 引发异丁烯聚合,写出引发,增长,终止的基元反应。 2. 写出用AIBN 引发甲基丙烯酸丁酯聚合的各基元反应。 六、计算题。【每小题10 分,共30 分】 1. 邻苯二甲酸酐(1.5 摩尔)、乙二醇(1.35 摩尔)、甘油(0.1 摩尔)混合体系进行缩 聚。试求 a. p=0.98 时的X b.X = 500 时的p 2. 甲基丙烯酸甲酯由引发剂引发进行自由基聚合,终止后每一大分子含有1.50个引发剂残基,假设无链转移发生,试计算歧化终止与偶合终止的相对数量。 3. 在搅拌下依次向装有四氢呋喃的反应釜中加入0.2mol n-BuLi和20kg苯乙烯。当单体聚合了一半时,向体系中加入1.8g H2O,然后继续反应。假如用水终止的和继续增长的聚苯乙烯的分子量分布指数均是1,试计算 (1)被水终止的聚合物的数均分子量; (2)继续增长所得聚合物的数均分子量; (3)整个体系所得聚合物的数均分子量及其分子量分布指数。 一、选择正确答案填空【每小题1分,共5分】 1—5 : B B D A C 二、解释下列概念:【每小题2分,共10分】 1、诱导分解实际上是自由基向引发剂的转移反应

考研高分子物理名词解释

高分子物理总复习 第一章高分子链的结构 一、名词解释 链结构:指单个分子的结构和形态。 近程结构:(一次结构)化学结构,包括高分子的组成和构型。 远程结构:(二次结构)高分子的大小及其在空间的形态,链的柔顺性及构象。 聚集态结构:(三次结构)通过范德华力和氢键形成具有一定规则排列的聚集态结构。 构型:是指分子中由化学键所固定的原子在空间的排列。 构造:是指链中原子的种类和排列,取代基和端基的种类单体单元的排列顺序,支链的类型和长度等。 几何异构(顺反异构):由于主链双键的碳原子上的取代基不能绕双键旋转,当组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺式、反式两种构型,它们称作几何异构。 键接异构(顺序异构):是指结构单元在高分子链中的连接方式。一般头-尾相连占主导优势,而头-头(或尾-尾)相连所占比例较低。 旋光异构:具有不对称C﹡原子的这种有机物,能构成互为镜象的两种异构体,表现出不同的旋光性,称为旋光异构体。但是含不对称C﹡的高分子没有旋光性的,原因是多个不对称C﹡原子的内消旋或外消旋的作用。 有规立构:有两种旋光异构单元完全是全同立构或间同立构的高分子。 规整度:(等规度)是指聚合物种全同立构和间同立构的聚合物占所有聚合物分子总的百分比。 规整聚合物:全同立构和间同立构的高分子。 全同立构:高分子链全部由一种旋光异构单元键接而成。 间同立构:高分子链由两种旋光异构单元交替键接而成。 无规立构:高分子链由两种旋光异构单元无规键接而成。 线性:高分子链呈直线形 交联:高分子链之间通过支链联结成一个三维空间网状大分子 支化:在缩聚过程中有官能度>=3的单体存在,或在加聚过程中,有自由基的链转移反应发生,或双烯类单体中第二双键的活化等生成支化的或交联的高分子。 支化度:以支化点密度或两相邻支化点之间的链的平均分子量来表示支化程度 交联:缩聚反应中有三个或三个以上官能度的单体存在时,高分子链之间通过支链联结成一个三维空间网形大分子时即成交联结构 交联度:用相邻两个交联点之间的链的平均分子量Mc来表示。交联度愈大,Mc愈小。 共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物 共聚物:由两种或两种以上的结构单元组成的高分子。 均聚物:由一种单体聚合而成的聚合物称为均聚物。 嵌段数:指在100个单体单元中出现的各种嵌段的总和。 单键内旋转:高分子链上存在大量C-C单键,单键由σ电子组成,电子云分布是轴向对称的,因此高分子在运动时,C-C单键可以绕轴旋转,称为单键内旋转。 构象:由于σ单键内旋转而产生的分子在空间的不同形态。 位垒:顺式构象与反式构象的位能差。 位阻效应:单健内旋转总是不完全自由的,因为C原子上总是带有其它原子或基团,当这些原子充分接近时,原子的外层电子之间将产生排斥力使之不能接近。这一作用被称为位阻

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

全国高分子化学与物理排名

07中国研究生教育分专业排行榜(武汉大学中国科学评价研究中心):070305高分子化学与物理 排名学校等级排名学校等级排名学校等级 1 吉林大学A+ 6 南京大学A 11 中国科学技术大学A 2 复旦大学A+ 7 浙江大学A 12 北京化工大学A 3 南开大学A+ 8 四川大学A 13 清华大学A 4 北京大学A 9 上海交通大学A 14 武汉大学A 5 中山大学A 10 华南理工大学A B+ 等(22 个) :兰州大学、苏州大学、西北工业大学、东华大学、华中科技大学、郑州大学、华东理工大学、湘潭大学、山东大学、湖南大学、青岛科技大学、西北师范大学、大连理工大学、厦门大学、福建师范大学、河北大学、河南大学、安徽大学、福州大学、西北大学、广东工业大学、湖北大学 B 等(22 个) :东南大学、华侨大学、东北大学、河北工业大学、济南大学、哈尔滨工业大学、合肥工业大学、华东师范大学、南京工业大学、江西师范大学、西安交通大学、鲁东大学、北京师范大学、南京理工大学、江苏工业学院、北京航空航天大学、哈尔滨理工大学、上海大学、太原理工大学、华南师范大学、中北大学、陕西师范大学 C 等(15 个) :名单略 国家重点学科 北京大学南开大学中山大学复旦大学吉林大学南京大学 博士点 安徽大学北京大学北京化工大学北京师范大学大连理工大学东北师范大学东华大学福建师范大学福州大学复旦大学河北大学河南大学湖南大学华东理工大学华东师范大学华南理工大学华中科技大学吉林大学兰州大学南京大学南开大学青岛科技大学清华大学山东大学山西大学陕西师范大学上海交通大学四川大学苏州大学天津大学同济大学武汉大学西北大学西北工业大学西北师范大学厦门大学湘潭大学浙江大学郑州大学中国科学技术大学中国科学院研究生院中山大学

高分子物理名词解释22953

近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型 远程结构:指与整个高分子链相关的结构 构型:分子链中由化学键所固定的原子在空间的几何排布方式 构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像 碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子 杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团 链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体 序列异构:不同序列排布方式形成的键接异构体 旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体 几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体 全同立构:分子链中所有不对称碳原子均以相同的构型键接 间同立构:分子链中的不对称碳原子分别以d型和l型交替键接 无规立构:分子链中的不对称碳原子以d和l构型任意键接 线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基 支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2 交联网络:经交联后,分子链形成的具有一定强度的网状结构 内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转 内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒 内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差 静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性 动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构

最新最全的物理化学名词解释

最全的物理化学名词解释 材料人考学 饱和蒸汽压:单位时间内有液体分子变为气体分子的数目与气体分子变为液体分子数目相同,宏观上说即液体的蒸发速度与气体的凝结速度相同的气体称为饱和蒸汽,饱和气体所具有的压力称为饱和蒸汽压。 敞开体系:体系与环境之间既有物质交换,又有能量交换。 封闭体系:体系与环境之间无物质交换,但有能量交换 孤立体系:体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。 广度量和强度量:是指与物质的数量成正比的性质,如系统物质的量,体积,热力学能,熵等。具有加和性,在数学上是一次齐函数,而是指与物质无关的性质,如温度压力等 平衡态:系统内部处于热平衡、力平衡、相平衡、化学平衡 状态函数:体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数。 热:体系与环境之间由于温度的不同而传递的能量称为热。 功:体系与环境之间传递的除热以外的其它能量都称为功。 摩尔相变焓:是指单位物质的量的物质在恒定温度T及该温度平衡压力下发生相变时对应的焓变 标准摩尔生成焓:在温度为T的标准态下,由稳定相态的单质生成化学计量数VB=1的β相态的化合物B 该生成反应的焓变称为该化合物B在温度T时的标准摩尔生成焓。 标准摩尔燃烧焓:在标准压力下,反应温度时,1摩尔反应物质B完全氧化成相同温度的指定产物时的标准摩尔反应焓。 可逆过程:我们把某一体系经过某一个过程,如果能使体系和环境都完全复原,则该过程称为“可逆过程”。 反应热当体系发生反应之后,使产物的温度回到反应前始态时的温度,体系放出或吸收的热量,称为该反应的热效应。 溶解热:在恒定的T、p下,单位物质的量的溶质B溶解与溶剂A中,形成B的摩尔分数xB=0.1的溶液时,过程的焓变。 稀释热:在恒定的T、p下,某溶剂中质量摩尔浓度b1的溶液用同样的溶剂稀释成为质量摩尔浓度b2的溶液时,所引起的每单位物质的量的溶质之焓变。 准静态过程:在过程进行的每一瞬间,体系都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成。 卡诺循环:1恒温可逆膨胀2绝热可逆膨胀3恒温可逆压缩,4绝热可逆压缩 卡诺定理:在两个不同温度的热源之间工作的所有热机,以可逆热机效率最大 热力学基本方程:1dU=Tds—pdV 2dH=TdS+Vdp 3dA=-SdT-pdV 4dG=-SdT+Vdp(记忆方法见后)拉乌尔定律:稀溶液中溶剂的蒸汽压等于同一温度下纯溶剂的饱和蒸汽压与溶液中溶剂的摩尔分数的乘积PA=PA*xA 亨利定律:一般来说,气体在溶剂中的溶解度很小,所形成的溶液属于稀溶液范围。气体B 在溶剂A中溶液的组成无论是由B的摩尔分数XB,质量摩尔浓度bB,浓度cB等表示时,均与气体溶质B的压力近似成正比。 偏摩尔量:在温度、压力及除了组分B以外其余组分的物质的量均不变的条件下,广度量X 随组分B的物质的量nB变化率XB称为组分B的偏摩尔量。

高分子化学与物理总结

一、名词解释 3.单体单元:(与单体具有相同的化学组成,只是电子结构不同的原子组合。) 4.结构单元:(构成高分子主链,并决定主链结构的最小的原子组合。) 5.重复结构单元:(主链上化学组成相同的最小原子组合,有时简称为重复单元或链节。) 7.聚合度:(结构单元数n定义位高分子的聚合度X。)1.体型缩聚:多官能单体参加反应,能形成非线性的多支链产物,支化的大分子有可能进一步交联成体型结构的产物,这种凡能形成体型结构缩聚物的缩聚反应,称为体型缩聚。 2.凝胶现象:体型缩聚反应在聚合过程中一般表现为反应体系的黏度在聚合初期逐渐增大,当反应进行一定程度后,黏度突然急剧增大,体系转变为具有弹性的凝胶状物质,这一现象称为凝胶化或凝胶现象。 3.凝胶点:出现凝胶现象时的反应程度(临界反应程度)称为凝胶点。 17. 转化率 :已转化为聚合物的单体量占起始单体量的百分数 18. 反应程度:参加反应的官能团数目与起始官能团数目的比值 偶合终止:两个大分子自由基相互结合生成一个大分子的终止方式,称为偶合终止。 歧化终止:歧化终止两个大分子自由基相互间反应,生成两个大分子的终止方式,称为歧化终止。 链转移反应:链转移反应是指在聚合过程中,链自由基可能从单体、引发剂、溶剂或大分子上夺取一个原子(大多数为氢原子)而终止,而失去一个原子的分子则成为新的自由基,并能继续进行反应形成新的活性自由基链,使聚合反应继续进行。 引发剂效率:用于引发聚合的引发剂量占引发剂分解总量的百分率。 诱导分解:自由基(包括初级自由基、单体自由基、链自由基)向引发剂分子的链转移反应。 笼蔽效应:引发剂分解产生的初级自由基在与单体反应生成单体自由基之前,发生了副反应而失活这种效应称为笼蔽效应。 诱导效应:有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应 6.异构化聚合:阳离子聚合中由于碳正离子的不稳定,异构成更稳定的结构,发生所谓的异构化反应。若异构化反应比链增长更快,则进行异构化聚合。 7.活性聚合:当单体转化率达到100%时,聚合仍不终止,形成所具有反应活性聚合物的聚合。 8.等规度:表征聚合物的立构规整指数,即有规立聚合物量当的分率。 5、构型:分子链中通过化学键相连接的原子和原子团的排列方式 7、几何异构:当分子链的双键两侧的碳原子所连接的原子或者集团在空间的排列方式不同时就会形成顺势结构和反式结构,这种结构称为几何异构 10、构型:分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组; 11、构象:由于单键的内旋转而产生的分子中原子在空间位置上的变化; 13、内聚能密度:单位体积的内聚能,内聚能是指将1mol的液体或固体分子气化所需要的能量; 17、结晶度:聚合物中结晶部分的重量或体积对全体重量或体积的百分数; 18、结晶形态:由晶胞排列堆砌生长而成的晶体大小和几何形态; 19、取向:聚合物受到外力作用后,分子链和链段沿外力作用方向的择优排列;

高分子物理名词解释

第二章名词解释 1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。 2.单分子链凝聚态:大分子特有现象,高分子最小单位。 3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功) 4.晶胞:晶体结构中具有周期性排列的最小单位。 5.晶系:晶体按其几何形态的对称程度。 https://www.wendangku.net/doc/c61892172.html,ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。 7.单晶:晶体的整体在三维方向上由同一空间格子组成。 8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。 9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。 10.结晶度:试样中结晶部分所占的质量分数或体积分数。 11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。 12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。 13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。 14.热致液晶:加热液晶物质时,形成的各向异性熔体。 15.液晶晶型:向列相(N相):完全没有平移有序 手征性液晶(胆甾相,手征性近晶相) 层状液晶(近晶A,近晶C )一维平移有序 盘状液晶相(向列相ND) 16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构 取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角) 17.双折射:一条入射光线产生两条折射光线的现象。 18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。 19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。 20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。 21.海-岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构。 22.核壳结构:由一种材料通过化学键或其他作用力将另一种材料包覆起来形成的有序组装结构。 23.包藏结构:海岛结构的粒子内部包藏着其他聚合物的结构。 24.电子显微镜:简称EM,电子显微镜由镜筒、真空装置和电源柜三部分组成。 25.X射线衍射:当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。 26.偏光显微镜:用于研究所谓透明与不透明各向异性材料的一种显微镜。 27.差示扫描量热法(DSC):在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。

生物化学名词解释

名词解释 1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。9.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G.C(或C.G)和A.T(或T.A)之间进行,这种碱基配对的规律就称为碱基配对规律。 11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相反。 12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。 13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。14. 退火:当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。 15. 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收

生物化学上册名词解释

一、核酸 1.核苷:戊糖与碱基靠糖苷键缩合而成的化合物。 2.核苷酸:核苷分子中戊糖的羟基与一分子磷酸以磷酸酯键相连而成的化合物。3.核酸:许多单核苷酸通过磷酸二酯键连接而成的高分子化合物。 4.核酸的变性:在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性。 5.DNA复性或退火:变性DNA在适当条件下,两条互补链可重新配对,恢复天然的双螺旋构象,这一现象称为复性。热变性的DNA经缓慢冷却后即可复性,这一过程称为退火。 6.DNA的一级结构:组成DNA的脱氧多核苷酸链中单核苷酸的种类、数量、排列顺序及连接方式称DNA的一级结构。也可认为是脱氧多核苷酸链中碱基的排列顺序。7.解链温度、熔解温度或Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度内完成的。在这一范围内,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度。由于这一现象和结晶体的融解过程类似,又称融解温度。 8.核酸的杂交:不同来源的DNA单链与DNA或RNA链彼此可有互补的碱基顺序,可通过变性、复性以形成局部双链,即所谓杂化双链,这个过程称为核酸的杂交。9.碱基对:核酸分子中腺嘌呤与胸腺嘧啶、鸟嘌呤与胞嘧啶总是通过氢键相连形成固定的碱基配对关系,因此碱基对,也称为碱基互补。 10.增色效应是指与天然DNA相比,变性DNA因其双螺旋破坏,使碱基充分外露,因 此紫外吸收增加,这种现象叫增色效应。 减色效应是指若变性DNA复性形成双螺旋结构后,其紫外吸收会降低,这种现象叫减色效应。 11、分子杂交:两条来源不同但有碱基互补关系的DNA单链分子,或DNA单链分子 与RNA分子,在去掉变性条件后互补的区段能够退火复性形成双链DNA分子或DNA /RNA异质双链分子,这一过程叫分子杂交。 12、回文结构:双链DNA中含有的二个结构相同、方向相反的序列称为反向重复序列,也称为回文结构, 二、蛋白质 1. 氨基酸的等电点(pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋 势及程度相等,成为兼性离子,呈电中性,此时溶液的pH叫氨基酸的等电点(pI)。 2. 蛋白质的一级结构:在蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺 序称为蛋白质的一级结构。 3. 蛋白质的二级结构:是指蛋白质分子中,某一段肽链的局部空间结构,也就是该 段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 4.分子病:由于基因或DNA分子的缺陷,致使细胞内RNA及蛋白质合成出现异常、 人体结构与功能随之发生变异的疾病。 5. 蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整 条肽链所有原子在三维空间的排布位置。 6. 结构域:分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,

高分子物理名词解释

1.名词解释 凝聚态,内聚能密度,晶系,结晶度,取向,高分子合金的相容性。 凝聚态:为物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。 内聚能密度:CED定义为单位体积凝聚体汽化时所需要的能量,单位: 晶系:根据晶体的特征对称元素所进行的分类。 结晶度:试样中的结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。 高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么? 答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体;(2)形态特征: 单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右; 树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状; 球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环; 纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度; 串晶:在电子显微镜下,串晶形如串珠; 柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状; 伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。 1.溶度参数的含义是什么?“溶度参数相近原理”判断溶剂对聚合物溶解能力的依据是什么? 答:(1)溶度参数:是指内聚能密度的平方根; (2)依据是:,因为溶解过程>0,要使<0,越小越好,又 因为?,所以与越相近就越小,所以可用“溶度参数相近原理”判断溶剂对聚合物的溶解能力。 2.什么叫高分子θ溶液?它与理想溶液有何本质区别? 答:(1)高分子θ溶液:是指高分子稀溶液在θ温度下(Flory温度),分子链段间的作用力,分子链段与溶剂分子间的作用力,溶剂分子间的作用力恰好相互抵消,形成无扰状态的溶液。此时高分子—溶剂相互作用参数为1/2,内聚能密度为0.(2)理想溶液三个作用力都为0,而θ溶液三个作用力都不为0,只是合力为0. 4.什么叫排斥体积效应?Flory-Kingbuam稀溶液理论较之晶格模型理论有何进展? 答:(1)排斥体积效应:在高分子稀溶液中,“链段”的分布实际上是不均匀的,高分子链以一个被溶剂化了的松懈的链球散布在纯溶剂中,每个链球都占有一定的体积,它不能被其他分子的“链段”占有。 (2)进展:把“链段”间的排斥体积考虑进去,更符合实际。

生物化学名词解释

一.名词解释 1. Tm(解链温度):当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增 加,当紫外吸收达到最大变化的半数值时,此时对应的温度称为溶解温度,用Tm表示。热变性的DNA解链到50%时的温度。 2. 增色效应:DNA变性时,其溶液A260增高的现象。 3. 退火:热变性的DNA经缓慢冷却后即可复性,这一过程称为~。 4. 核酸分子杂交:这种杂化双链可以在不同的DNA单链之间形成,也可以在不 同的RNA单链形成,甚至还可以在DNA单链和RNA单链之间形成,这一现象叫做核酸分杂交。 5. DNA复性:当变性条件缓慢去除后,两条解链的互补链可以重新配对,恢复 到原来的双螺旋结构。这一现象称为DNA复性。 6. Chargaff规则:包括 [A] = [T],[G] = [C];不同生物种属的DNA的碱基组 成不同;同一个体的不同器官或组织的DNA碱基组成相同。 7. DNA的变性: 在某些理化因素作用下,DNA双链解开成两条单链的过程。 8. 核酸酶:所有可以水解核酸的酶。 9. 糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原 生成乳酸的过程称为糖酵解(glycol sis),亦称糖的无氧氧化 10. 糖异生:是指从非糖化合物转变为葡萄糖或糖原的过程。 11. 丙酮酸羧化支路:糖异生过程中为绕过糖酵解途径中丙酮酸激酶所催化的不 可逆反应,丙酮酸需经丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶作用而生成丙酮酸的过程称为~。 12. 乳酸循环(Cori循环):肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。 肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为~,也称Cori循环。 13. 糖原合成:指由葡萄糖合成糖原的过程。 14. 糖原分解:习惯上指肝糖原分解成为葡萄糖的过程。 15. 血糖:血液中的葡萄糖。 16. 脂肪动员:储存在脂肪细胞中的脂肪,经脂肪酶逐步水解为甘油和脂肪酸, 并释放入血供全身组织氧化利用的过程称为脂肪动员。 17. 酮体:酮体主要包括乙酰乙酸,B-羟丁酸及丙酮,是脂酸在肝细胞分解氧化 时的特有中间代谢产物。 18. 必需脂肪酸:不能自身合成,需从食物摄取,故称必需脂酸。亚油酸、亚麻 酸、花生四烯酸等多不饱和脂酸是人体不可缺乏的营养素。 19. 脂肪的β氧化:指脂酰基的β-原子开始,进行脱氢加水再脱氢及硫解四部连 续的反应,将脂酰基断裂生成生成一个分子乙酰-COA和比原来少两个碳的脂酰-CoA的过程。 20. 血脂:血浆所含脂类统称血脂,包括:甘油三酯,磷脂,胆固醇及其酯以及 游离脂酸。 21. 必需氨基酸:指体内需要而又不能自身合成,必须由食物供给的氨基酸,共 有8种:缬氨酸 (Val)、异亮氨酸 (Ile)、亮氨酸 (Leu)、苏氨酸(Thr)、蛋氨酸 (Met)、赖氨酸 (Lys)、苯丙氨酸 (Phe)、色氨酸(Trp)。 22. 一碳单位:某些氨基酸代谢过程中产生的只含有一个碳原子的基团,称为一 碳单位(one carbon unit)。

物理化学课程复习题

一、名词解释 1.理想气体:又称完全气体。是一种假想的、在任何情况下均能严格遵循联合气体定律PV=nRT的气体。 2.状态方程:体系的状态是由一系列的物理性质与热力学性质所确定的,但是所有这些性质并不是彼此孤立的,描述这些性质相互关系的数学式称为体系的状态方程。 3.体系和环境:根据需要,人为地把一部分物体(一定数量和一定种类)从周围的物体中划分出来(可以是实际的,也可以是想象的),这被划分出来的一部分物体称为体系。与体系密切相关且影响所可及的部分称为环境。体系和环境之间不一定要有明显的物理分界面。 4.敞开体系:与环境有物质和能量交换的体系。 5.封闭体系:与环境仅有能量交换而无物质交换的体系称为封闭体系。 6.孤立体系:是与环境既无物质交换又无能量交换的体系。 7.热力学状态:体系的物理性质和化学性质(入质量、温度、压力、体积、密度、粘度、组成等)的总和。当这些性质都有确定值时,就说体系处于一定的热力学状态。 8.热力学函数:确定体系的热力学性质的函数,通常指内能、焓、吉布斯自由能和熵等,这些函数都是状态函数,它们的数值仅有体系的现状决定,定态下有定植,其改变量仅决定于体系的始终态,而与变化的途径没有关系。 9.强度量:只取决于体系自身的特性而与体系中物质的量无关的物理量,不具有加和性。 10.广度量:与体系中物质的数量成正比大的物理量,如体积,质量等,此性质在一定条件下具有加和性。 11.热力学过程:体系的状态所发生的一切变化称为热力学过程。如体系在等容条件下发生变化,则称为等容过程;绝热状态下发生变化,则成为绝热过程。12.绝热过程:体系与环境之间用绝热隔开(但不妨碍它们之间功德传递),此时体系所进行的过程叫绝热过程。 13.热:因温度不同而在体系和环境之间传递的能量叫热,这是热力学对“热“的定义。热的本质是大量粒子(分子,原子)的混乱运动,运动越激烈,由这些

高分子物理名词解释22426讲课稿

第一章概论 分子量分布,是指聚合物试样中各组分含量与分子量的关系。 黏弹性,对一整块聚合物熔体在短时间内可以观察到它有一定的形状和弹性,但是经长时间观察这种熔体会表现出液体的流动性。这种长时间观察到的粘性流动和短时间内观察到的弹性两者相结合,而且与时间有关的力学性质称为黏弹性。 玻璃化转变,无定形和结晶热塑性聚合物低温时都呈玻璃态,受热至某一较窄温度,则转变为橡胶态或柔韧的可塑状态,这一转变过程称为玻璃化转变。转变时对应的温度称为玻璃化转变温度Tg。高弹性,聚合物材料在受到外力时,分子中的链段发生了运动,使长链分子由蜷曲状变成伸展状,产生很大的形变,但不导致高分子链之间产生滑移,当解除外力后,形变可完全恢复,材料的这种性质称为高弹性。 第二章高分子的链结构 高分子的链结构又分近程结构和远程结构。近程结构属于化学结构,又称一级结构。远程结构包括分子的大小与形态,链的柔顺性及分子在各种环境中所采取的构象,又称二级结构。聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构,它们是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。织态结构和高分子在生物体中的结构则属于更高级的结构。 高分子链的构型包括单体单元的键合顺序、空间构型的规整性、支化度、交联度以及共聚物的组成及序列结构。 高分子链序列结构:共聚物中不同结构单元的交替次数,不同结构单元在分子链中的平均长度。 全同立构,高分子全部由一种旋光异构体键接而成,称为全同立构; 间同立构,由两种旋光异构体交替键接而成,称为间同立构; 无规立构,两种旋光异构体完全无规键接时,则称为无规立构。 等规立构,全同异构和间同异构统称为等规立构。定向聚合,通常自由基聚合的高聚物大都是无规的,只有用特殊的催化剂才能制得等规立构的高聚物,这种聚合方法称为定向聚合。 等规度是指高聚物中含有全同立构和间同立构的总的百分数。 交联结构,高分子链之间通过支化联结成一个三维空间网型大分子时即称为交联结构。 交联度,通常用两个交联点之间的平均分子量Mc 来表示。交联度愈高,Mc愈小。或者用交联点的密度表示。 交联点密度的定义为,交联的结构单元占总结构单元的分数,即每一结构单元的交联几率。 由于单键内旋转而产生的分子在不同形态称为构象。 构型是指分子中由化学键所固定的原子在空间的几何排列,要改变构型必须经过化学键的断裂和重组。 无规线团,单键的内旋转导致高分子呈蜷曲构象,这种不规则的蜷曲的高分子链的构象称为无规线团。 柔顺性,高分子能够改变其构象的性质称为柔顺 精品文档

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

相关文档