文档库 最新最全的文档下载
当前位置:文档库 › 2-5 第五节 传递函数的定义及基本环节的传递函数

2-5 第五节 传递函数的定义及基本环节的传递函数

第五节 传递函数

的定义及基本环节的传递函数

一旦建立起系统的线性化数学模型,就能用拉氏变换这个数学工具对其进行求解,从而得到系统的输出响应。但这种方法随输入函数的变化而变化显得繁琐,最主要的还是难以从方程本身判断系统的动态特性。

因此引入传递函数的概念,用来描述单输入、单输出系统。推广之,还可以用传递矩阵描述多输入、多输出系统,进一步深化对系统的认识。

一、传递函数的定义

零初始条件下,系统(元件)输出量的拉氏变换与输入量的拉氏变换之比,称为系统(元件)的传递函数,有时也称转移函数。

记为。

()G s ()()

()

Y s G s X s =

零初始条件含义

1、指输入作用在0t =以后才加入,因此输入量及其各阶导数在0t =时均为0(与其本身无关)。

2、输入作用加入前,系统是相对静止的,

因此系统的输出量及其各阶导数在0t =时也全为0。

二、传递函数的特性

()()()

1

111

11n

n n n m m m m Y s G s X s a s a s a s a b s b s b s b ???00

?=

++++=++++

m n ≥

1、对于线性定常系统,传递函数是的有理分式,且。对于单独一个元件,可能有。

S m ≥n m n <()G s TS = (微分元件)

2、传递函数是系统(元件)动态规律的固有描述,仅与其结构参数有关,不随输入量变化。

三、系统基本环节的传递函数

一个系统可看作是由许多基本环节组成的,这些基本环节主要有;

1、比例环节(放大环节)——输出量与输入量成正比的环节

()

()

()

()() Y s

G s K Y s KX s

X s

==?=

2、惯性环节(非周期环节)

由于有储能元件,故对突变形式的输入

信号,不能立即送出去。

()1

K

G s TS =+

K —放大系数,T —时间常数

3、微分环节——输出正比于输入的微分的环节

()()y t x

t =

()()()()

()

Y s Y s SX S G s S X S =?==

4、积分环节——输出正比于输入的积分的环节

()()y t x t dt =∫

()()()()()1

1Y s Y s X S G s S X =?=S S

=

5、振荡环节

该环节含有两种储能元件,在信号传递过程中,因能量的转换而使其输出带有振荡的性质。

()22

1

21

G s T S TS ξ=++ 标准形式为:

()2

22

2n

n n

w G s S w S w ξ=++ n w ——无阻尼自然频率,ξ ——阻尼比

6、一阶微分环节——输出正比于输入的一阶微分的环节

()1G s TS =+

7、二阶微分环节——输出正比于输入的二阶微分的环节

()2

2

21G s T S TS ξ=++

8、延时环节——该环节输出滞后输入时间τ后不失真地复现输入

()()y t x t τ=?

()s

G s e τ?=

例1:齿轮传动,n ,n 转数,是时间的变量。

1

212

Z n n Z =

()()()()()21

12121N s Z Z N s N s G s K Z N s Z =?==

2

= 为比例环节 例

轧辊在点形成的厚度要延迟时间

A L

V

τ=后,才能在点检测出来,即在t 时刻测

出的厚度B ()h t 为()t τ?时刻在点形成的厚度。

A ()g h t 所以微分方程为:()(g h t h t )τ=? 应用实位移定理:

()(as

)f t a e F s ????=??

()()()()()

s

s

g g H s H s e H s G s e H s ττ??=?==

为延时环节 例

设x y >,由F ma =,对于P 点来说有:

()0K x y By

By Ky Kx ??=?+= 则:()()(BSY s KY s KX s )+=

()()()1111

B T K Y s K

G s X s BS B TS S K =?==

+==

+??

+????

K

为惯性环节

i C

1

o u C

=∫idt ②

由:

11

o o o u i C u

C i C u

=?=?=?dt

i ∫ ③ 将③代入①得:

o o RCu

u u i += 拉氏变换

()()(()()())1

111o o i o i T RC

RCSU s U s U s U s G s U s RCS TS =+=?==

+=

+ 为惯性环节

()()()()f t Ky t By

t my t ??= ()()()()my

t By t Ky t f t ++=

拉氏变换

()()()()2

mS Y s BSY s KY s F s ++=

推出:

()()()2

21

1Y s G s F s mS BS K

m B K

K S S m m

==K ++=?

++

考研---基本初等函数知识汇总-必看

一、三角公式总表 ⒈L 弧长=αR=n πR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?== =y x ctg ③θθθtg r y ?==cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a (其中辅助角?与点(a,b )在同一象限,且 a b tg = ?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T= ω π 2, 频率f=T 1, 相位?ω+?x ,初相? ⒎五点作图法:令?ω+x 依次为ππ ππ 2,2 3,,2 0 求出x 与y , 依点()y x ,作图 ⒏诱导公试

函数的基本概念练习

第 1 页 共 1 页 函数的基本概念 一、知识归纳: 1、映射: 2、函数的定义: 3、函数的三要素: 4、函数的表示: 二、题型归纳: 1、有关映射概念的考察; 2、求函数的定义域; 3、求函数的解析式: 4、求函数的值域。 三、练习: 1、设B A f →:是集合A 到集合B 的映射,则下列命题正确的是( ) A 、A 中的每一个元素在B 中必有象 B 、B 中的每一个元素在A 中必有原象 C 、B 中的每一个元素在A 中的原象是唯一的 D 、A 中的不同元素的象不同 3、已知A={1、2、3、 4、5},对应法则f :1)3(2 +-→x x ,设B 为A 中元素在f 作用下的象集,则B = 。 4、设函数f(x)=132 +-x x ,则f(a)-f(-a)= 。 5、设(x ,y )在映射f 下的象是(x +y ,x -y ),则象(1,2)的原象是 ( ) A .(3,1) B .)21,23 (- C .(-1,3) D .)2 3,21(- 6、已知函数 =???>+-≤+=)]25([,) 1(3)1(1)(f f x x x x x f 则 . 7、函数y =f(x)的图像与直线x =4的交点个数为 ( ) (A )至多一个(B )至少一个(C )必有一个(4)一个、两个或无穷多个 8、由函数1)(2++= mx mx x f 的定义域是一切实数,则m 的取值范围是 ( ) A .(0,4] B .[0,1] C .[0,4] D .[4,+∞) 9、下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 10、函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1} 3、已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1] 6、已知y=f(x)的定义域为R ,f(x+2)=-f(x),f(1)=10,则f(9)的值为( ) A .10 B .-1 C .0 D .不确定 7、设f (x -1)=3x -1,则f (x )=__ _______. 8、已知函数f ( 2x + 1 )的定义域为(0,1),则f ( x ) 的定义域为 。 9、函数)1(-x f 的定义域是[0,2],则)2(+x f 的定义域是 。 11、已知f ( x ) = 2 21x x +,那么f ( 1 ) + f ( 2) + f (2 1) + f ( 3 ) + f( 31 ) + f ( 4 ) + f ( 4 1 ) = 。 13、 14、 ). ()1(x f x x x f ,求已知函数满足+=+的解析式。,求已知函数)(1 2)1(2 x f x x x f +=

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

通过函数绘制一阶二阶传递函数伯德图

关于一阶二阶传递函数的伯德图 一阶惯性系统的通式为: 将式子两边同时除以a0得 令0 0a K b =为系统静态灵敏度; 0 1a a =τ为系统时间常数; 则有 )()()1( s KX s Y s =+τ 故有 ) 1()()()(+==s K s X s Y s H τ 以液柱式温度计为例,传递函数为 )1(1)()()(+==s s X s Y s H τ 可得频率响应函数 )1j (1)(+= τωs H )()()(001t x b t y a dt t dy a =+)()()(0001t x a b t y dt t dy a a =+

可得传递函数的幅频与相频特性 2)1(1 )()(τωωω+==j H A ωτωω?arctan )()(-=∠=j H 在MATLAB 上输入程序(此时令1=τ) num=[1]; den=[1,1]; figure sys=tf(num,den); bode(sys);grid on 可得bode 图

二阶惯性系统的通式为: 将式子两边同时除以a 0得 令0 0a K b =为系统静态灵敏度; 20n a a = ω为系统无阻尼固有频率; 1 012a a a =ξ为系统阻尼器 传递函数为 12) ()()(22++==n n s s K s X s Y s H ωξω 可得传递函数的幅频与相频特性 2222)(4)1(1 )()(2n n K j H A ωωξωωωω+-== )()()()(001222t x b t y a dt t dy a dt t y d a =++)()()()(00012202t x a b t y dt t dy a a dt t y d a a =++

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

二阶系统的性能指标

一、二阶系统传递函数的标准形式 二阶系统的闭环传递函数写成标准形式为:22 2 2)()(n n n s s s R s C ωξωω++= 式中,ξ为阻尼比;n ω为无阻尼自振频率。 所以,二阶系统的特征方程为:022=++n n s s ωξω 由上式解得二阶系统的二个特征根(即闭环极点)为:2 2.11ξωξω-±-=n n j s 随着阻尼比ξ取值的不同,二阶系统的特征根(即闭环极点)也不相同。 二、单位阶跃函数作用下二阶系统的过渡过程(针对欠阻尼状态,10<<ξ ) 令)(1)(t t r =,则有s s R 1 )(= ,二阶系统在单位阶跃函数作用下输出信号的拉氏变换为:2 2222 22)()(1 ) )((211 2)(d n d d n d n n d n d n n n n n s s s s j s j s s s s s s s C ωξωωωξωωξωξωωξωωξωξωωξωω++? -+++-=-++++- =?++= 式中,2 1ξωω-=n d 为有阻尼自振频率 对上式进行反拉氏变换,得: ) sin(11) sin 1(cos 1sin cos 1)(2 2 ?ωξ ωξ ξ ωωωξωωξωξωξωξω+-- =-+-=?- -=----t e t t e t e t e t c d t d d t d t d n d t n n n n 式中,ξ ξ?2 1-=arctg 由上式看出,对应10<<ξ时的过渡过程,)(t c 为衰减的正弦振荡曲线。其衰减速度取决 ?角的定义

于n ξω值的大小,其衰减振荡的频率便是有阻尼自振频率d ω,即衰减振荡的周期为: 2 122ξ ωπ ωπ -= = n d d T 三、二阶系统的性能指标 1.上升时间tr :上升时间是响应曲线由零上升到稳态值所需要的时间。 根据定义,当r t t =时,1)(=r t c 。 即 0sin 1cos 2 =-+ r d r d t t ωξ ξ ω 或 n n r d t tg ξωξωω2 1-=,)(?πω-=tg t tg r d 所以,上升时间为:2 1ξ ω?π--= n r t 2.峰值时间tp :过渡过程曲线达到第一个峰值所需的时间。 ??ωtg t tg dt t dc p d t t p =+?==)(0) ( ( ,3,2,,0πππω=p d t ) 由于峰值时间tp 是过渡过程曲线达到第一个峰值所需的时间,故取πω=p d t 即 21ξ ωπωπ-= = n d p t 3.最大超调量p σ 最大超调量为:%100) ()()(?∞∞-= c c t c p p σ % 100% 100)sin 1(cos % 100)sin 1(cos 2 12 2 ?=??-+ -=?-+-=-- --ξξπ ξωξωσπξξ πωξ ξ ωe e t t e p t p d p d t p n p n 式中,)(p t c 为过渡过程曲线第一次达到的最大输出值;)(∞c 为过渡过程的稳态值()(∞c =1)。

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

(完整版)基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域() , -∞+∞ 对称轴 2 b x a =- 顶点坐标 2 4 , 24 b a c b a a ?? - - ? ?? 值域 2 4 , 4 ac b a ?? - +∞ ? ?? 2 4 , 4 ac b a ?? - -∞ ? ??单调区间 , 2 b a ?? -∞- ? ?? 递减 , 2 b a ?? -+∞ ? ?? 递增 , 2 b a ?? -∞- ? ?? 递增 , 2 b a ?? -+∞ ? ?? 递减 ①.二次函数2 ()(0) f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 , 2 b x a =-顶点坐标是 2 4 (,) 24 b a c b a a - - ②当0 a>时,抛物线开口向上,函数在(,] 2 b a -∞-上递减,在[,) 2 b a -+∞上递增, 当 2 b x a =-时, 2 min 4 () 4 ac b f x a - =;当0 a<时,抛物线开口向下,函数在(,] 2 b a -∞- 上递增,在[,) 2 b a -+∞上递减,当 2 b x a =-时, 2 max 4 () 4 ac b f x a - =. 三、幂函数 (1)幂函数的定义 一般地,函数y xα =叫做幂函数,其中x为自变量,α是常数. (2)幂函数的图象

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

(完整版)基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

18.2多元函数的基本概念教案

18. 2多元函数的基本概念 一、. 多元函数概念 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h . 这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 RT P V =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定. 例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2 121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定. 定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为 z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D ) 其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量. 上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ). 值域: f (D )={z | z =f (x , y ), (x , y )∈D }. 函数的其它符号: z =z (x , y ), z =g (x , y )等. 类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数. 一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为 u =f (x 1, x 2, ? ? ? , x n ), (x 1, x 2, ? ? ? , x n )∈D , 或简记为 u =f (x ), x =(x 1, x 2, ? ? ? , x n )∈D , 也可记为 u =f (P ), P (x 1, x 2, ? ? ? , x n )∈D . 关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而

基本初等函数定义及性质知识点归纳

一、基本函数图像及其性质: 1、一次函数:(0)y kx b k =+≠ 2、正比例函数:(0)y kx k =≠ 3、反比例函数:(0)k y x x = ≠ 4、二次函数:2 (0)y ax bx c a =++≠ (1)、作图五要素:2 124(,0),(,0),(0,),(),(,)()224b b ac b x x c x a a a -=--对称轴顶点 (2)、函数与方程:2 =4=0 0b ac >???-??≠且 (1)、图像与性质:

(i )1()(0,1)x x y a y a a a ==>≠与且关于y 轴对称。 (ii )1a >时,a 越大,图像越陡。 (2)、应用: (i )比较大小: (ii )解不等式: 1、回顾: (1)()m m m ab a b =? (2)()m m m a a b b = 2、基本公式: (1)m n m n a a a +?= (2)m m n n a a a -= (3)()m n m n a a ?= 3、特殊: (1)0 1(0)a a =≠ (2)11 (0)a a a -= ≠ (3 )1;0)n a n a R n a =∈≥为奇数,为偶数, (4 ;0;0|| a n a a a a a n ≥??==? ? -

浅谈波函数的理解

浅谈波函数的理解 吕晓卿 2006623161 (华中师范大学物理科学与技术学院2006级基地班,武汉) [摘要]:本文主要论述微观粒子的运动状态,借助布朗运动理解微观粒子运动的不可预测性。由量子理论知道微观粒子的状态是用波函数描述的,浅谈我对波函数物理意义的理解。最后类比投硬币事件理解力学量的本征值和本征函数的意义,以及对各种测量结果的概率的计算。 [关键词]:微观粒子;波函数;概率分布;本征值;本征函数 由量子力学理论我们知道微观粒子具有波粒二象性,那应该怎样理解那既是波又是粒子的微观粒子呢?为什么量子力学量测不准呢?波函数用来描述微观粒子的状态,它的物理意义是什么?力学量算符的本征值、本征函数的理解怎样? 1.微观粒子的运动与布朗运动 19世纪末,经典物理学遇到了重重困难:黑体辐射、光电效应、原子光谱的分立性等,正是在对这一系列困难的解决中提出并建立了量子理论。人类对光的本性的认识过程:从牛顿的“微粒说”到胡克的“波动说”,德布罗意类比这一过程提出任何速度的微观粒子都具有波粒二象性。 微观粒子的波粒二象性是指微观粒子在与物质作用时呈现出粒子的“原子性”,在传播过程中表现出波动性的本质“叠加性”。微观粒子到底是个什么东西?它在空间中到底怎么运动? 事实告诉我们微观粒子在空间中任何一点都有可能出现,但它出现在哪一点又是无法预测的。对于经典粒子,我们可以根据前一时刻的运动状态来预测其下一时刻的运动状态。但对于微观粒子我们不能做到这一点,我们只能知道下一时刻它可能出现在什么位置以及出现的概率是多少。 布朗运动图 当学习微观粒子那神秘诡异的运动时,我们不妨借助我们熟知的布朗运动来理解。这两幅图片分别是氢原子电子图和布朗运动图,我们可以从中看出他们一些相似的地方。 首先,二者的共同点是运动都是杂乱无章的,电子云图中的点的密集程度表示电子在此出现的概率的大小,布朗运动图中的折点是布朗粒子曾出现的位置,但折线并不是布朗粒子的运动轨迹。他们都不像宏观物体那样有其运动的轨道。其实我们知道布朗粒子的无规则运动其实质就是它所处环境中(像液体)分子的无规则运动。其次,这两种运动我们都无法预知其下一时刻的运动状态。这一时刻出现在这里,下一时刻可能出现在任何地方,谁都不

10基本初等函数知识点总结

基本初等函数知识点总结 一、指数函数的概念 (1)、指数函数的定义 一般地,函数x y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。 (2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。 (3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。 2、指数:自变量x 。 3、系数:1。 二、指数函数的图象与性质 一般地,指数函数x y a =(0a >,且1a ≠)的图象与性质如下表: 三、幂的大小比较方法 比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法: 要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。 四、底数对指数函数图象的影响 (1)、对函数值变化快慢的影响 1、当底数1a >时,指数函数x y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。 2、当底数01a <<时,指数函数x y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。 (2)、对函数图象变化的影响

指数函数x y a =与x y b =的图象的特点: 1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当 0x >时,总有1x x a b >>。 2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当 0x >时,总有01x x a b <<<。 五、对数的概念 (1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。 (2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。 (3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数, 为了简便,N 的自然对数log e N 简记为ln N 。 六、对数的基本性质 根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =; 4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N a N =。 七、对数运算性质 如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a a a M M N N =-; (3)、log log n a a M n M =(n R ∈)。 八、换底公式

波函数及其统计诠释

§15-1波函数及其统计诠释 在经典物理学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用它的位置矢量和动量来描述的。但是,对于微观粒子,由于它具有波动性,根据不确定关系,其位置和动量是不可能同时准确确定的, 所以我们也就不可能仍然用位置、动量以及轨道这样一些经典概念来描述它的运动状态了。微观粒子的运动状态称为量子态,是用波函数ψ(r, t)来描述的,这个波函数所反映的微观粒子波动性,就是德布罗意波。 在经典物理学中,我们曾经用波函数y(x, t) = a cos(ωt-kx)表示在t时刻、在空间x处的弹性介质质点离开平衡位置的位移,用波函数e(r, t) = e0 cos(k?r-ω t)和b(r, t) = b0 cos (k?r-ω t)分别表示在t时刻、在空间r处的电场强度和磁场强度。那么在量子力学中描述微观粒子的波函数ψ(r, t)究竟表示什么呢? 为了解释微观粒子的波动性,历史上曾经有人认为,微观粒子本身就是粒子,只是它的运动路径像波;也有人认为,波就是粒子的某种实际结构,即物质波包,波包的大小就是粒子的大小,波包的速度(称为群速)就是粒子的运动速度;还有人认为,波动性是由于大量微观粒子分布于空间而形成的疏密波。实验证明,这些见解都与事实相违背,因而都是错误的。 1926年玻恩(m.born, 1882-1970)指出,德布罗意波或波函数ψ(r, t)不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。对波函数的这种统计诠释将量子概念下的波和粒子统一起来了。微观粒子既不是经典概念中的粒子,也不是经典概念中的波;或者说,微观粒子既是量子概念中的粒子,也是量子概念中的波。其量子概念中的粒子性表示它们是具有一定能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿运动定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。

基本初等函数定义及其性质重要资料归纳

基本函数图像及性质 一、基本函数图像及其性质: 1、一次函数:(0)y kx b k =+≠ 2、正比例函数:(0)y kx k =≠ 3、反比例函数:(0)k y x x = ≠ 4、二次函数:2 (0)y ax bx c a =++≠ (1)、作图五要素:2 124(,0),(,0),(0,),(),(,)()224b b ac b x x c x a a a -=--对称轴顶点 (2)、函数与方程:2 =4=0 0b ac >???-??

5、指数函数:(0,1)x y a a a =>≠且 (1)、图像与性质: (i )1()(0,1)x x y a y a a a ==>≠与且关于y 轴对称。 (ii )1a >时,a 越大,图像越陡。 (2)、应用: (i )比较大小: (ii )解不等式: 1、回顾: (1)()m m m ab a b =? (2)()m m m a a b b = 2、基本公式: (1)m n m n a a a +?= (2)m m n n a a a -= (3)()m n m n a a ?= 3、特殊:

(1)0 1(0)a a =≠ (2)11 (0)a a a -= ≠ (3 )1;0)n a n a R n a =∈≥为奇数,为偶数, (4 ;0;0|| a n a a a a a n ≥??==?? -

相关文档
相关文档 最新文档