文档库 最新最全的文档下载
当前位置:文档库 › 胶体电泳速率的测定实验数据

胶体电泳速率的测定实验数据

胶体电泳速率的测定实验数据
胶体电泳速率的测定实验数据

五、数据处理

1、数据记录

室温:19.0℃

大气压:101.94KPa

两极之间距离l=22.6cm 。 胶体电泳的数据记录在表一中:

2、由表一的数据作d~t 关系图,求出斜率u ,u 即为胶体的电泳速度。关系曲线如 图一、图二所示:

d 左(c m )

t (min)

图一左侧胶体d~t 关系拟合直线

d 右(c m )

t (min)

图二右侧胶体d~t 关系拟合直线

由于左侧和右侧通过拟合直线得到的斜率相差很多,所以我们没有采取求算平均值的方法。 在实验,一直是左侧的界面清晰,而右侧的界面模糊,而且在记录了大约三组数据之后,右侧 就出现了两个界面,一深一浅,不知道该读取哪个数据,并且可以看到右侧胶体的数据具有一 个明显的断层,出现在第三、四组数据之间。一个是考虑到读数过程中出现的这个问题,另一 个是考虑到左侧胶体拟合直线的R 2=0.9928,而右侧R 2=0.9322,所以在计算电动势时,用的胶 体电泳速度为左侧(负极)求得的速度。

3、由u 及U 的平均数据,计算胶体的ζ电动势。

由图一可知,斜率为0.06691cm/min 。

由此可知:胶体的电泳速度u=1.1152*10-5m/s 。 水的绝对粘度如表二所示:

-3表二水的绝对粘度

当温度为19℃时,水的绝对粘度η=1.027*10-3Pa ·s 。

当温度T=292K 时,根据水的介电常数ε=80-0.4(T/K-293),得到ε=80.4。 U 平均=92.4363V 。

所以,单位梯度U/l=409.0102V/m 。 K 是与胶粒形状有关的常数,球形粒子为5.4*1010 V 2 s 2 kg -1 m -1,棒状粒子为3.6*1010 V 2 s 2 kg -1 m -1,对Fe(OH)3,K 值为3.6*1010 V 2 s 2 kg -1 m -1。 将所有的数据归结于表三中:

表三求电动势各数据 根据求电动势公式:ζ=

)

/(u

K l U επη,代入各个数据得到,

ζ=m

V s m /0102.4094.80/101151.1s m kg 10027.114.3m kg s V 103.65-1-13-1-12210????????--

=3.94*10-2V

即ζ电动势为3.94*10-2V 。

胶体电泳速度的测定实验报告Word版

胶体电泳速度的测定 一.实验目的: 溶胶和纯化溶胶的方法 1.掌握凝聚法制备Fe(OH) 3 2.观察溶胶的电泳现象并了解其电学性 二.实验原理: 溶胶是一个多相体系,其分散相胶粒的大小约在1 nm~1 μm之间。由于本身的电离或选择性地吸附一定量的离子以及其它原因如摩擦所致,胶粒表面带有一定量的电荷,而胶粒周围的介质中分布着反离子。反离子所带电荷与胶粒表面电荷符号相反、数量相等,整个溶胶体系保持电中性,胶粒周围的反离子由于静电引力和热扩散运动的结果形成了两部分——紧密层和扩散层。紧密层约有一到两个分子层厚,紧密附着在胶核表面上,而扩散层的厚度则随外界条件(温度、体系中电解质浓度及其离子的价态等)而改变,扩散层中的反离子符合玻兹曼分布。由于离子的溶剂化作用,紧密层的反离子结合有一定数量的溶剂分子,在电场的作用下,它和胶粒作为一个整体移动,而扩散层中的反离子则向相反的电极方向移动。这种在电场作用下分散相粒子相对于分散介质的运动称为电泳。发生相对移动的界面称为滑移面,滑移与液体本体的电位差称为动电位(电动电位)或ζ电位,而作为带电粒子的胶粒表面与液体内 部的电位差称为质点的表面电势 ,相当于热力学 电势(如图23-1,图中AB为滑移面)。 图23-1 扩散双电层模型图23-2 电泳仪 1-U形管;2、3、4-活塞;5-电极;6-弯管胶粒电泳速度除与外加电场的强度有关外,还与ζ电位的大小有关。而ζ电位不仅与测定条件有关,还取决于胶体粒子的性质。 ζ电位是表征胶体特性的重要物理量之一,在研究胶体性质及其实际应用中有着重要意义。胶体的稳定性与ζ电位有直接关系。ζ电位绝对值越大,表明胶粒荷电越多,胶粒间排斥力越大,胶体越稳定。反之则表明胶体越不稳定。

单片机电子时钟课程设计实验报告

单片机电子时钟课程设 计实验报告 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

《单片机原理与应用》课程设计 总结报告 题目:单片机电子时钟(带秒表)的设计 设计人员:张保江江润洲 学号: 班级:自动化1211 指导老师:阮海容 目录 1.题目与主要功能要求 (2) 2.整体设计框图及整机概述 (3) 3.各硬件单元电路的设计、参数分析及原理说明 (3) 4.软件流程图和流程说明 (4) 5.总结设计及调试的体会 (10) 附录 1.图一:系统电路原理图 (11) 2.图二:系统电路 PCB (12) 3.表一:元器件清单 (13) 4.时钟程序源码 (14)

题目:单片机电子时钟的设计与实现 课程设计的目的和意义 课程设计的目的与意义在于让我们将理论与实践相结合。培养我们综合运用电子课程中的理论知识解决实际性问题的能力。让我们对电子电路、电子元器件、印制电路板等方面的知识进一步加深认识,同时在软件编程、排错调试、焊接技术、相关仪器设备的使用技能等方面得到较全面的锻炼和提高,为今后能够独立完成某些单片机应用系统的开发和设计打下一个坚实的基础。 课程设计的基本任务 利用89C51单片机最小系统,综合应用单片机定时器、中断、数码显示、键盘输入等知识,设计一款单片机和简单外设控制的电子时钟。 主要功能要求 最基本要求 1)使用MCS-51单片机设计一个时钟。要求具有6位LED显示、3个按键输入。 2)完成硬件实物制作或使用Pruteus仿真(注意位驱动应能提供足够的电流)。 3)6位LED数码管从左到右分别显示时、分、秒(各占用2位),采用24小时标准计时制。开始计时时为000000,到235959后又变成000000。 4)使用3个键分别作为小时、分、秒的调校键。每按一次键,对应的显示值便加1。分、秒加到59后再按键即变为00;小时加到23后再按键即变为00。在调校时均不向上一单位进位 (例如分加到59后变为00,但小时不发生改变)。 5) 软件设计必须使用MCS-51片内定时器,采用定时中断结构,不得使用软件延时法,也不得使用其他时钟芯片。 6)设计八段数码管显示电路并编写驱动程序,输入并调试拆字程序和数码显示程序。7)掌握硬件和软件联合调试的方法。 8)完成系统硬件电路的设计和制作。 9)完成系统程序的设计。 10)完成整个系统的设计、调试和制作。

氢氧化铁胶体制备及电泳

.. Fe(OH)3胶体的制备和电泳 韩丰 郭麟 刘天乙 (大连大学 环境与化学工程学院 化学111,辽宁大连 116622) 指导老师:李艳华 贾颖萍 [摘 要] 文章主要探究氢氧化铁的制备、纯化温度及时间对胶体的影响,并测定的胶体性质,最终确定利用化学法制备,纯化温度介于60℃到70℃,时间控制在2周左右,辅助液选用KCl 溶液并且电导率与胶体相同,电泳电压为60V ,得到Fe(OH)3胶体的ζ 电位为;并且研究了相同阳离子不同价态阴离子的盐对于胶体聚沉的影响,并得到价态越高,聚沉能力越强。 [关 键 词] Fe(OH)3胶体;电泳;ζ 电位;实验;聚沉值 作为物理化学实验中经典实验[1,2] ---胶体的制备及采用电泳方法测定溶胶的电动电势ζ,我们很有必要去认识和学习。但由于溶胶的电泳受诸多因素如:溶胶中胶粒形状、表面电荷数量、辅助液中电解质的种类、温度和所加电压等。根据实验内容主要利用水解Fe(OH)3溶液制备的氢氧化铁胶体,并且通过渗析纯化后使用。另外,根据教材的实验步骤进行电泳实验,经常遇到溶胶与辅助液间有一界模糊和两极间界面移动距离相差较大等问题。为了使这些问题能够得以很好的解决,我们主要是氢氧化铁胶体的制备、Fe(OH)3胶体的纯化时渗析温度及时间的控制、辅助液的选择与其电导率控制、胶体溶液和导电液的正确加入以及适度的电泳电压等方面对这一实验进行了改进研究来探究Fe(OH)3胶体的ζ 电位,通过与理论值相比较,做出合理的误差分析,以此来对胶体电泳最佳实验条件得以确定,以这一实验改进的条件探讨及结果。 1、实验部分 1.1 实验原理 1.1.1 胶体简介 溶胶是一个多相系统;是热力学不稳定系统(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定),胶粒(分散相)大小在1~100nm 之间[3] ; 1.1.2制备胶体的原理: 凝胶作用:由于溶剂的作用,使沉淀重新溶解成胶体溶液。 化学凝聚法:通过化学反应使生成物呈过饱和状态,然后粒子再胶合成胶粒。 1.1.3 氢氧化铁溶胶ζ电势的测定计算 实验主要是通过测定一定外加电场强度下胶粒的电泳速度的方法计算胶粒的ζ 电位。采用界面移动法测胶粒的电泳速率。 在电泳仪的两段极施加电位差E 后,在时间t 内,如溶胶界面移动的距离为d ,则胶粒的电泳速率: t d v

vf课程设计实验报告模板

vf 课程设计实验报告模板 经济管理学院 学生信息管理系统的设计与实现 09年12 月28 日 、课程设计的目的和意义 当今,人类正在步入一个以智力资源的占有和配置,知识生产、分配和使用为最重要因素的知识经济时代,为了适应知识经济时代发展的需要,大力推动信息产业的发展,我们通过对学生信息管理系统的设计,来提高学生的操作能力,及对理论知识的实践能力,从而提高学生的基本素质,使其能更好的满足社会需求。 学生信息管理系统是一个简单实用的系统,它是学校进行学生管理的好帮手。 此软件功能齐全,设计合理,使用方便,适合各种学校对繁杂的学生信息进行统筹管理,具有严格的系统使用权限管理,具有完善的管理功能,强大的查询功能。它可以融入学校的信息管理系统中,不仅方便了学生信息各方面的管理,同时也为教师的管理带来了极大地便利。 我们进行本次课程设计的主要目的是通过上机实践操作,熟练掌握数据库的设 计、表单的设计、表单与数据库的连接、SQL语言的使用和了解它的功能:数据定 义、数据操纵、数据控制,以及简单VF程序的编写。基本实现学生信息的管理, 包括系统的登录、学生信息的录入、学生信息的浏览、学生信息的查询、学生信息的修改和学生信息的删除,并对Visual FoxPro6.0 的各种功能有进一步的了解,为我们更进一步深入的学习奠定基础,并在实践中提高我们的实际应用能力,为我们以后的学习和工作提供方便,使我们更容易融入当今社会,顺应知识经济发展的趋势。 - 1 -

、系统功能设计 通过该系统可以基本实现学生信息的管理,包括系统的登录、学生信息的录 入、学生信息的浏览、学生信息的查询、学生信息的修改和学生信息的删除。系统 功能模块如下图所示。 学生信息管理系统主界面 登录 管理 学学学学学 生生生生生 信信信信信 息息息息息 录查浏修删 入询览改除 三、系统设计内容及步骤 3.1创建项目管理文件 1.启动foxpro 系统,建一个项目管理器,命名为“学生管理”。 哑 目f ■ 也 电 岂同左 矣 氏H. 0 存 JI 蛋誤曾

氢氧化铁胶体电动电位的测定(电泳法)

氢氧化铁胶体电动电位的测定 一、目的要求 1、掌握电泳法测定Fe(OH)3溶胶电动电势的原理和方法。 2、通过实验观察并熟悉胶体的电泳现象。 二、实验原理 在胶体溶液中,分散在介质中的微粒由于自身的电离或表面吸附其他粒子而形成带一定电荷的胶粒,同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。 在外电场作用下,荷点的胶粒携带起周围一定厚度的吸附层向带相反电荷的电极运动,在荷电胶粒吸附层的外界面与介质之间相对运动的边界处相对于均匀介质内部产生一电势,为ζ电势。 它随吸附层内离子浓度,电荷性质的变化而变化。它与胶体的稳定性有关,ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。 本实验用界面移动法测该胶体的电势。在胶体管中,以KCl为介质,用Fe(OH)3溶胶通电后移动,借助测高仪测量胶粒运动的距离,用秒表记录时间,可算出运动速度。 当带电胶粒在外电场作用下迁移时,胶粒电荷为q,两极间的的电位梯度为E,则胶粒受到静电力为f1=Eq 胶粒在介质中受到的阻力为f2=Kπηru 若胶粒运动速率u恒定,则f1=f2 qE=Kπηru (1) 根据静电学原理ζ=q/εr (2) 将(2)代入(1)得u=ζεE/Kπη (3)

利 用界面移动法测量时,测出时间t 时胶体运动的距离S ,两铂极间的电位差Φ和电极间的距离L ,则有 E=Φ/L , u=s/t (4) 代入(3)得 S=(ζΦε/4πηL)·t 作S —t 图,由斜率和已知得ε和η,可求ζ电势。 电泳公式可表示为: 上式中η为分散介质的粘度,ε为介电常数,25℃时,η=0.000894Pa ·S ,ε=78.36,U 为加于电泳测定管两端的电压(V ),l 是两极间的距离(cm ),u 是电泳速度(cm ·s -1)。 三、仪器与试剂 Fe(OH)3胶体,KCl 辅助溶液, 电泳管,直尺,电泳仪 四、实验步骤 1.洗净电泳管,然后在电泳管中加入50ml 的Fe(OH)3胶体溶液,用滴管将KCl 辅助溶液延电泳管壁缓慢加入,以保持胶体与辅助液分层明显,(注意电泳管两边必须加入等量的辅助液)。 2.辅助液加至高出胶体10厘米时即可,此时插入两个铂电极,将电泳管比活塞 辅助液 Fe(OH)3胶体 铂片电极 图2.14.1 电泳仪

氢氧化铁胶体制备及电泳

设计性实验 Fe(OH)3胶体的制备和电泳 韩丰 郭麟 刘天乙 (大连大学 环境与化学工程学院 化学111,辽宁大连 116622) 指导老师:李艳华 贾颖萍 [摘 要] 文章主要探究氢氧化铁的制备、纯化温度及时间对胶体的影响,并测定的胶体性质,最终确定利用化学法制备,纯化温度介于60℃到70℃,时间控制在2周左右,辅助液选用KCl 溶液并且电导率与胶体相同,电泳电压为60V ,得到Fe(OH)3胶体的ζ 电位为;并且研究了相同阳离子不同价态阴离子的盐对于胶体聚沉的影响,并得到价态越高,聚沉能力越强。 [关 键 词] Fe(OH)3胶体;电泳;ζ 电位;实验;聚沉值 作为物理化学实验中经典实验 [1,2] ---胶体的制备及采用电泳方法测定溶胶的电动电势 ζ,我们很有必要去认识和学习。但由于溶胶的电泳受诸多因素如:溶胶中胶粒形状、表面电荷数量、辅助液中电解质的种类、温度和所加电压等。根据实验内容主要利用水解Fe(OH)3溶液制备的氢氧化铁胶体,并且通过渗析纯化后使用。另外,根据教材的实验步骤进行电泳实验,经常遇到溶胶与辅助液间有一界模糊和两极间界面移动距离相差较大等问题。为了使这些问题能够得以很好的解决,我们主要是氢氧化铁胶体的制备、Fe(OH)3胶体的纯化时渗析温度及时间的控制、辅助液的选择与其电导率控制、胶体溶液和导电液的正确加入以及适度的电泳电压等方面对这一实验进行了改进研究来探究Fe(OH)3胶体的ζ 电位,通过与理论值相比较,做出合理的误差分析,以此来对胶体电泳最佳实验条件得以确定,以这一实验改进的条件探讨及结果。 1、实验部分 1.1 实验原理 1.1.1 胶体简介 溶胶是一个多相系统;是热力学不稳定系统(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定),胶粒(分散相)大小在1~100nm 之间[3] ; 1.1.2制备胶体的原理: 凝胶作用:由于溶剂的作用,使沉淀重新溶解成胶体溶液。 化学凝聚法:通过化学反应使生成物呈过饱和状态,然后粒子再胶合成胶粒。 1.1.3 氢氧化铁溶胶ζ电势的测定计算 实验主要是通过测定一定外加电场强度下胶粒的电泳速度的方法计算胶粒的ζ 电位。采用界面移动法测胶粒的电泳速率。 在电泳仪的两段极施加电位差E 后,在时间t 内,如溶胶界面移动的距离为d ,则胶粒的电泳速率: t d v

【实验报告】大学物理实验课程设计实验报告

大学物理实验课程设计实验报告北方民族大学 大学物理实验(设计性实验) 实验报告 指导老师:王建明 姓名:张国生 学号:XX0233 学院:信息与计算科学学院 班级:05信计2班 重力加速度的测定 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量

所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取 50―100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0(1) nsinα=mω2x(2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g.∴g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

凝胶电泳实验报告模板

凝胶电泳实验报告模板

降低了对流运动,故电泳的迁移率又是同分子的摩擦系数成反比的。已知摩擦系数是分子的大小、极性及介质粘度的函数,因此根据分子大小的不同、构成或形状的差异,以及所带的净电荷的多少,便可以通过电泳将蛋白质或核酸分子混合物中的各种成分彼此分离开来。在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基因呈离子状态从这种意义上讲,D N A 和RNA多核苷酸链可叫做多聚阴离子( Polyanions ) 。因此,当核酸分子被放置在电场中时,它们就会向正电极的方向迁移。由于糖- 磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因而它们能以同样的速度向正电极方向迁移。在一定的电场强度下,DNA分子的这种迁移速度,亦即电泳的迁移率,取决于核酸分子本身的大小和构型,分子量较小的DNA分子比分子量较大的DNA 分子迁移要快些。这就是应用凝胶电泳技术分离DNA片段的基本原理。 聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 3.1 凝胶电泳的分类 按照分离物质来分凝胶电泳可以分为核酸凝胶电泳和蛋白质凝胶电泳;按照分离介质来分可以分为琼脂糖凝胶电泳技术和PAGE凝胶电泳。本次实验我们采用按介质的分类方法来学习的。 3.1.1琼脂糖凝胶电泳 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他

氢氧化铁胶体电泳

氢氧化铁胶体电泳 (二)实验目的 (1)电泳法测定ξ电势原理与技术; (2)观察胶体的电泳现象,确定胶粒电性; (3)掌握界面移动法的电泳的ξ的电势; (三)实验原理 在外电场作用下.胶体粒子(带固定层)向一圾移动,扩散层中的反离子向另一极移动,这种现象称为电泳。显然,胶粒移动的速度与固定层和介质问的电位差有关。通常把固定层与介质间的电位差称为电动电势(ζ)。由实验直接测出胶体的电泳速度,根据亥姆霍兹方程计算出胶体的电动电势(ζ)。在一般憎液溶胶中,电位数值愈小,则其稳定性众差。当ζ电位等于零时,溶胶的聚集稳定性最差,此时可观察到聚沉的现象。因此,无论制备胶体或破坏胶体,都需要了解所研究胶体的ζ电位。 (四)仪器药品 1.仪器(见实验内容) 2.药品 三氯化铁(20%)硝酸银(0.01mol.dm-3) 火棉胶(质量分数为6%) 硫氰酸钾(0.01mol.dm-3)硝酸钾(1mol.dm-3) 蒸馏水 (五)预习提问

1.什么是ζ电势?对胶体的稳定性有何影响? 2.什么是电泳? 3.在整个实验操作中,应该注意那些问题? 4.要准确测定胶体的电泳速度必须注意那些问题? (六)实验结果要求 宏观法测定Fe(OH)3溶胶的电泳电势(ζ) 1.结果要求:ζ=44+5mV 2.文献值:ζ=44mV (七)影响实验结果的一些因数 (八)实验内容中思考题回答 1.Fe(OH)3胶粒带什么电荷? 答:Fe(OH)3胶粒带正电荷。 2.电泳速度快慢与哪些因素有关? 答:在外电场作用下,胶体粒子在分散介质中定向移动的现象称为电泳。胶体粒子的电泳速度与粒子所带的电量及外加电势梯度成正比,而与介质的粘度及粒子的大小成反比。实验还证明,若溶胶中加入电解质.则对电泳会有显著的影响。随着外加电解质的增加,电泳速度常会降低以至的成零.胶体的电泳速度还与溶剂中电解质的种类、离子强度以及PH值、温度和所加的电压有关.对于两性电解质,如蛋白质,在其等电点处,在外加电扬中位于不移动,不发生电泳现象,而在等电点前后粒子向相反的方向移动。 3.实验中所用的辅助液电导率为什么要与溶胶电导率相等?

南邮课程设计实验报告

课程设计I报告 题目:课程设计 班级:44 姓名:范海霞 指导教师:黄双颖 职称: 成绩: 通达学院 2015 年 1 月 4 日

一:SPSS的安装和使用 在PC机上安装SPSS软件,打开软件: 基本统计分析功能包括描述统计和行列计算,还包括在基本分析中最受欢迎的常见统计功能,如汇总、计数、交叉分析、分类比较、描述性统计、因子分析、回归分析及聚类分析等等。具体如下: 1.数据访问、数据准备、数据管理与输出管理; 2.描述统计和探索分析:频数、描述、集中趋势和离散趋势分析、分布分析与查看、正态性检验与正态转换、均值的置信区间估计; 3.交叉表:计数;行、列和总计百分比;独立性检验;定类变量和定序变量的相关性测度; 4.二元统计:均值比较、T检验、单因素方差分析; 5.相关分析:双变量相关分析、偏相关分析、距离分析; 6.线性回归分析:自动线性建模、线性回归、Ordinal回归—PLUM、曲线估计; 7.非参数检验:单一样本检验、双重相关样本检验、K重相关样本检验、双重独立样本检验、K重独立样本检验; 8.多重响应分析:交叉表、频数表; 9.预测数值结果和区分群体:K-means聚类分析、分级聚类分析、两步聚类分析、快速聚类分析、因子分析、主成分分析、最近邻元素分析; 10. 判别分析; 11.尺度分析; 12. 报告:各种报告、记录摘要、图表功能(分类图表、条型图、线型图、面积图、高低图、箱线图、散点图、质量控制图、诊断和探测图等); 13.数据管理、数据转换与文件管理; 二.数据文件的处理 SPSS数据文件是一种结构性数据文件,由数据的结构和数据的内容两部分构成,也可以说由变量和观测两部分构成。定义一个变量至少要定义它的两个属性,即变量名和变量类型其他属性可以暂时采用系统默认值,待以后分析过程中如果有需要再对其进行设置。在spss数据编辑窗口中单击“变量视窗”标签,进入变量视窗界面,即可对变量的各个属性进行设置。 1.创建一个数据文件数据 (1)选择菜单【文件】→【新建】→【数据】新建一个数据文件,进入数据编辑窗口。窗口顶部标题为“PASW Statistics数据编辑器”。 (2)单击左下角【变量视窗】标签进入变量视图界面,根据试验的设计定义每个变量类型。

凝胶电泳实验原理与步骤

一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液按4:1混匀后,用微量移液器将混合液加到样品槽中,每槽加10-20μl,记录样品的点样次序和加样量。 6、电泳 安装好电极导线,点样孔一端接负极,另一端接正极,打开电源,调电压至3-5V/cm,电泳1-3hr,当溴酚蓝移到距凝胶前沿1-2cm时,停止电泳。 7、染色和观察 取出凝胶,放在含有溴化乙锭的染色液中染色30min,即可在254nm的紫外灯下观察,有橙红色荧光条带的位置,即为DNA条带,或在紫外灯下照相记录电泳图谱。溴化乙锭是致癌剂,操作时要小心,必须戴手套。 附: ⑴5×TBE(tris-硼酸及EDTA)缓冲液的配制(1000ml): Tris 54g,硼酸27.5g,0.5mol/L EDTA 20ml,将pH调到8.0,定容至1000ml,4℃冰箱保存,用时稀释10倍。 ⑵加样缓冲液的配制: 0.25%溴酚蓝,40%(W/V)蔗糖水溶液,4℃冰箱保存。 ⑶溴化乙锭的配制: 称取0.1g溴化乙锭,溶于10ml水,配成终浓度为10mg/ml的母液,4℃冰箱保存。染

实验32 Fe(OH)3 溶胶的聚沉值、ξ电势及粒径分布的测定

实验32 Fe(OH)3 溶胶的聚沉值、ξ电势及粒径分布的测定 一、目的要求 1.制备Fe(OH)3 溶胶并将其纯化。 2.测量Fe(OH)3 溶胶的聚沉值、ξ电势及粒径的分布。 3.分析影响聚沉值及ξ电势的主要因素。 二、原理 胶体溶液是分散相线度为1nm~100 nm的高分散多相体系。胶核大多是分子或原子的聚集体,由于其本身电离或与介质磨擦或因选择性吸附介质中的某些离子而带电。由于整个胶体体系是电中性的,介质中必然存在与胶核所带电荷相反的离子(称为反离子),反离子中有一部分因静电引力的作用,与吸附离子一起紧密地吸附于胶核表面,形成了紧密层。于是胶核、吸附离子和部分紧靠吸附离子的反离子构成胶粒。反离子的另一部分由于热运动以扩散方式分布于介质中,故称为扩散层。扩散层和胶粒构成胶团。扩散层与紧密层之交界区称为滑动面,滑动面上存在电势差,称为ξ电势。此电势只有在电场中才能显示出来。在电场中胶粒会向正极(胶粒带负电)或负极(胶粒带正电)移动,称为电泳。ξ电势越大,胶体体系越稳定,因此ξ电势大小是衡量溶胶稳定性的重要参数。ξ电势的大小与胶粒的大小、胶粒浓度,介质的性质、成分、pH值及温度等因素有关。 从能量观点来看,胶体体系是热力学不稳定体系,因高分散度体系界面能特别高,胶核有自发聚集而聚沉的倾向。但由于胶粒带同种电荷,因此在一定条件下又能相对地稳定存在。在实际中有时需要胶体稳定存在,有时需要破坏胶体使之发生聚沉。使胶体聚沉的最有效方法是加入适量的电解质来中和胶粒所带

电荷,降低ξ电势。一定量某种溶胶在一定时间内发生明显聚沉所需电解质的最低浓度称为该电解质的聚沉值。 聚沉值、ξ电势和胶粒粒径的测量常用比较纯净的溶胶,这就要求对溶胶进行纯化。本实验采用渗析法,即通过半透膜除去溶胶中多余的电解质达到纯化目的。 三、仪器与试剂 稳流稳压电泳仪1台,0~300V;电泳管1支;250ml、800ml烧杯各1个;10ml、100ml量筒各1个;1ml移液管2支,5ml移液管1支,10ml移液管4支;150 ml棕色试剂瓶1个;150ml大口锥瓶1个;25ml 试管6支,试管架1个;电导率仪1台;直径为2 cm长约4cm的空心玻管1根;棉线,细铜线、直尺等。800W电炉1台。 粒径分析仪一台(美国COULTER 公司N4 Plus submicron Particle size analyzer) 10% FeCl3溶液;2.000 mol/L NaCl溶液; 0.010 mol/L Na2SO4溶液; 0.005 mol/L Na3PO4 .12H2O;市售6%火棉胶溶液;KCl或KNO3稀溶液。 四、实验步骤 1.水解法制备Fe(OH)3溶胶 在250ml烧杯中加入120ml蒸馏水,加热煮沸。在沸腾条件下约1min滴加完3ml 10%FeCl3溶液,并不断搅拌,加完后继续煮沸3分钟。水解得到深红色的Fe(OH)3 溶胶约100ml。 2.制备火棉胶半透膜

c课程设计实验报告

c课程设计实验报 告

中南大学 本科生课程设计(实践)任务书、设计报告 (C++程序设计) 题目时钟控件 学生姓名 指导教师 学院交通运输工程学院 专业班级 学生学号 计算机基础教学实验中心 9月7日 《C++程序设计基础》课程设计任务书

对象:粉冶、信息、能源、交通工程实验2101学生时间: .6 2周(18~19周) 指导教师:王小玲 1.课程设计的任务、性质与目的 本课程设计是在学完《C++程序设计基础》课程后,进行的一项综合程序设计。在设计当中学生综合“面向对象程序设计与结构化程序设计”的思想方法和知识点,编制一个小型的应用程序系统。经过此设计进一步提高学生的动手能力。并能使学生清楚的知道开发一个管理应用程序的思想、方法和流程。 2.课程设计的配套教材及参考书 ●《C++程序设计》,铁道出版社,主编杨长兴刘卫国。 ●《C++程序设计实践教程》,铁道出版社,主编刘卫国杨长兴。 ●《Visual C++ 课程设计案例精编》,中国水力电力出版社,严华峰等编著。 3.课程设计的内容及要求 (1)自己任选一个题目进行开发(如画笔、游戏程序、练习打字软件等),要求利用MFC 工具操作实现。 (2)也可选一个应用程序管理系统课题(如:通讯录管理系统;产品入库查询系统;学生成绩管理;图书管理 等);

设计所需数据库及数据库中的数据表,建立表之间的关系。 设计所选课题的系统主封面(系统开发题目、作者、指导教师、日期)。 设计进入系统的各级口令(如系统管理员口令,用户级口令)。 设计系统的主菜单。要求具备下列基本功能: ●数据的浏览和查询 ●数据的统计 ●数据的各种报表 ●打印输出 ●帮助系统 多种形式的窗体设计(至少有查询窗体、输入窗体) 注意:开发的应用程序工作量应保证在2周时间完成,工作量不能太少或太多。能够2人合作,但必须将各自的分工明确。 4.写出设计论文 论文基本内容及撰写顺序要求: ●内容摘要 ●系统开发设计思想 ●系统功能及系统设计介绍 ●系统开发的体会

胶体电泳深度解析

一、胶体的结构是怎样的? 关于胶体的结构,一般认为在胶体粒子的中心,是一个由许多分子聚集而成的固体颗粒,叫做胶核。在胶核的表面常常吸附一层组成类似的、带相同电荷的离子。当胶核表面吸附了离子而带电后,在它周围的液体中,带相反电性的离子会扩散到胶核附近,并与胶核表面电荷形成扩散双电层。扩散双电层由两部分构成: (1)吸附层 胶核表面吸附着的离子,由于静电引力,又吸引了一部分带相反电荷的离子(简称反离子),形成吸附层。 (2)扩散层 除吸附层中的反离子外,其余的反离子扩散分布在吸附层的外围。距离吸附层的界面越远,反离子浓度越小,到了胶核表面电荷影响不到之处,反离子浓度就等于零。从吸附层界面(图中虚线)到反离子浓度为零的区域叫做扩散层。 吸附层的离子紧挨着胶核,跟胶核吸附得比较牢固,它跟随胶核一起运动。扩散层跟胶核距离远一些,容易扩散。通常把胶核和吸附层共同组成的粒子称为胶粒,把胶核、吸附层和扩散层统称为胶团。 二、胶体为什么会带电? 胶体带电的原因,是由于胶体是高分散的多相体系,具有巨大的界面(总表面积),因而有很强的吸附能力。它能有选择地吸附介质中的某种离子,而形成带电的胶粒。 这里以AgI胶体为例来说明。包围着AgI胶核的是扩散双电层(吸附层和扩散层),胶核和吸附层构成了胶粒,胶粒和扩散层形成的整体为胶团,在胶团中吸附离子的电荷数与反离子的电荷数相等,因此胶粒是带电的,而整个胶团是电中性的。 式中的m是AgI分子数,m的值常常很大,n的数值比m小得多;(n-x)是包含在吸附层中的反离子数;x为扩散层中的反离子数。 由于胶核对吸附层的吸引能力较强,对扩散层的吸引能力弱,因此在外加电场(如通直流电)作用下,胶团会从吸附层与扩散层之间分裂,形成带电荷的胶粒而发生电泳现象。带电的胶粒向一极移动,带相反电荷的反离子向另一极极移动。因此,胶团在电场作用下的行为跟电解质相似。 三、胶体应该带什么电? 胶体粒子吸附溶液中的离子而带电,当吸附了正离子时,胶体粒子荷正电,吸附了负离子则荷负电。不同情况下胶体粒子容易吸附何种离子,与被吸附离子的本性及胶体粒子表面结构有关。法扬斯规则表明:

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是: M r =K(10-b·m) logM r =LogK—b·R m , 式中M r ——蛋白质的分子量; logK——截距; b——斜率; R m ——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

南京大学物化实验系列胶体电泳速度的测定

胶体电泳速度的测定 1 实验目的 1.1 掌握凝聚法制备Fe (OH )3溶胶和纯化溶胶的方法 1.2 观察溶胶的电泳现象并了解其电学性质,掌握电泳法测定胶体电泳速度和溶胶ζ 电位的方法。 2 实验原理 溶胶是一个多相体系,其分散相胶粒的大小约在1nm ~1um 之间。由于本身的电离或 选择性地吸附择性地吸附一定量的离子以及其它原因所致,胶粒表面具有一定量的电荷;胶粒周围的介质分布着反离子。反离子所带电荷与 胶粒表面电荷符号相反,数量相等。整个溶胶体 系保持电中性。胶粒周围的反离子由于静电引力 和热扩散运动的结果形成了两部分——紧密层 和扩散层。紧密层约有一两个分子层厚。紧密吸 附在胶核去面上.而扩散层的厚度则随外界条件 (温度,体系中电解质浓度及其离子的价态等)而 改变,扩散层中的反离子符合玻兹曼分布。由于 离子的溶剂化作用,紧密层结合着一定数量的溶 剂分子,在电场的作用下,它和胶粒作为一个整 体移动,而扩散层中的反离子则向相反的电极方 向移动。这种在电场作用下分散相粒子相对于分散介质的运动称为电泳。发生相对移动的界面称为切动面,切动面与液体内部的电位差称为电动电位或ζ电位,而作为带电粒子的胶粒表面与液体内部的电位差称为质点的表面电θ ?。 胶粒电泳速度除与外加电场的强度有关外,还与ζ电位的大小有关。面ζ电位不仅与测 定条件有关,还取决于胶体粒子的性质。 ζ电位是表征胶体特性的重要物理量之一,在研究胶体性质 及其实际应用有着重要意义。胶体体的稳定性与ζ电位有直接关 系,ζ电位绝对值越大,表明胶粒荷电越多,胶粒间排斥力越大, 胶体越稳定。反之则表明胶体越不稳定。当ζ电位为零时.胶体 的稳定性最差,此时可观察到胶体的聚沉。 本实验是在一定的外加电场强度下通过测定Fe(OH)3胶粒的 电泳速度然后计算出ζ电位。实验用拉比诺维奇-付其曼U 形电泳 仪,如图2所示。活塞2、3以下盛待测的溶胶,以上盛辅助液。 在电泳仪两极间接上电位差E (V )后,在t (s )时间内溶胶 界面移动的距离为D(m),即胶粒电泳速度1()U m S - 为: D U t = 相距为l(m)的电极间的电位梯读平均值1 ()H V m - 为:

(完整word版)DNA的琼脂糖凝胶电泳实验原理和操作步骤

一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,学习DNA琼脂糖凝胶电泳的使用技术,掌握有关的技术和识读电泳图谱的方法。 二、实验原理 琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA 核酸分子是两性解离分子,pH3.5是碱基上的氨基解离,而三个磷酸基团中只有一个磷酸解离,所以分子带正电,在电场中向负极泳动;而pH8.0-8.3时,碱基几乎不解离,而磷酸基团解离,所以核酸分子带负电,在电场中向正极泳动。不同的核酸分子的电荷密度大致相同,因此对泳动速度影响不大。在中性或碱性时,单链DNA与等长的双链DNA的泳动率大致相同。 影响核酸分子泳动率的因素主要是: 1、样品的物理性状 即分子的大小、电荷数、颗粒形状和空间构型。一般而言,电荷密度愈大,泳动率越大。但是不同核酸分子的电荷密度大致相同,所以对泳动率的影响不明显。 对线形分子来说,分子量的常用对数与泳动率成反比,用此标准样品电泳并测定其泳动率,然后进行DNA分子长度(bp)的负对数——泳动距离作标准曲线图,可以用于测定未知分子的长度大小。 DNA分子的空间构型对泳动率的影响很大,比如质粒分子,泳动率的大小顺序为:cDNA >IDNA>ocDNA但是由于琼脂糖浓度、电场强度、离子强度和溴化乙锭等的影响,会出现相反的情况。 2、支持物介质 核酸电泳通常使用琼脂糖凝胶和聚丙烯酰胺凝胶两种介质,琼脂糖是一种聚合链线性分子。含有不同浓度的琼脂糖的凝胶构成的分子筛的网孔大小不同,是于分离不同浓度范围的核酸分子。聚丙烯酰胺凝胶由丙烯酰胺(Acr)在N,N,N′-四甲基乙四胺(TEMED)和过硫酸铵

胶体的制备和电泳

(3) 四、仪器药品 1.仪器 直流稳压电源1台;万用电炉1台;电泳管1只;电导率仪1台;直流电压表1台;秒表1块;铂电极2只;锥形瓶(250mL)1只;烧杯(800、250、100mL)各1个,超级恒温槽1台;容量瓶(100mL)1只。 2.药品 火棉胶;FeCl 3(10%)溶液;KCNS(1%)溶液;AgNO 3 (1%)溶液;稀HCl溶液。 五、实验步骤 1.Fe(OH) 3 溶胶的制备及纯化 (1)半透膜的制备 在一个内壁洁净、干燥的250mL锥形瓶中,加入约10mL火棉胶液,小心转动锥形瓶,使火棉胶液粘附在锥形瓶内壁上形成均匀薄层,倾出多余的火棉胶于回收瓶中。此时锥形瓶仍需倒置,并不断旋转,待剩余的火棉胶流尽,使瓶中的乙醚蒸发至已闻不出气味为止(此时用手轻触火棉胶膜,已不粘手)。然后再往瓶中注满水,(若乙醚未蒸发完全,加水过早,则半透膜发白)浸泡10min。倒出瓶中的水,小心用手分开膜与瓶壁之间隙。慢慢注水于夹层中,使膜脱离瓶壁,轻轻取出,在膜袋中注入水,观察有否漏洞,如有小漏洞,可将此洞周围擦干,用玻璃棒蘸沾火棉胶补之。制好的半透膜不用时,要浸放在蒸馏水中。 (2)用水解法制备Fe(OH) 3 溶胶 在250mL烧杯中,加入100mL蒸馏水,加热至沸,慢慢滴入5mL(10%)FeCl 3 溶液,并不断搅 拌,加毕继续保持沸腾5min,即可得到红棕色的Fe(OH) 3溶胶,其结构式可表示为{m[Fe(OH) 3 ] nFeO+(n-x)Cl-}x+xCl-。在胶体体系中存在过量的H+、Cl-等离子需要除去。 (3)用热渗析法纯化Fe(OH) 3 溶胶 将制得的40mLFe(OH) 3 溶胶,注入半透膜内用线拴住袋口,置于800mL的清洁烧杯中,杯中加蒸馏水约300mL,维持温度在60℃左右,进行渗析。每30min换一次蒸馏水,2h后取出 1mL渗析水,分别用1%AgNO 3 及1%KCNS溶液检查是否存在Cl-及Fe3+,如果仍存在,应继续换水渗析,直到检查不出为止,将纯化过的Fe(OH)3溶胶移入一清洁干燥的100mL小烧杯中待用。 2.配制HCl溶液 调节恒温槽温度为(25.0±0.1)℃,用电导率仪测定Fe(OH) 3 溶胶在25℃时的电导率,然后配制与之相同电导率的HCl溶液。方法是根据附录二所给出的25℃时HCl电导率—浓度关系,用内插法求算与该电导率对应的HCl浓度,并在100mL容量瓶中配制该浓度的HCl溶液。

实验6、琼脂糖凝胶电泳

实验六、琼脂糖凝胶电泳 【实验目的】 熟练掌握琼脂糖凝胶的配置和DNA凝胶电泳的方法。 【实验原理】 琼脂糖是从海澡中提取的长链状多聚物,琼脂糖凝胶点为 40~45℃。当加热至90℃左右时,即可成清亮、透明的液体,浇在模具上冷却后固化形成凝胶,琼脂糖凝胶可区分相差100bp 的 DNA片段。为了满足特殊的要求,可选择低溶点琼脂糖(<70℃,低于双链DNA的变性温度)。 带电物质在电场中向相反电极移动的现象称为电泳(electrophoresis)。各种生物大分子在一定的pH值条件下,可解离成带电荷的离子,在电场中向相反的电极移动。分子生物学领域中,琼脂糖和聚丙烯酰胺作为支持介质的凝胶电泳应用最多,它们是分离、鉴定和纯化DNA及RNA片段的主要方法。该方法操作简便、快速,可以分辨其它方法(如梯密度离心法)所无法分离的片段。直接嵌入荧光染料后,在紫外灯下可直接检出DNA片段所在的位置,如有必要,从凝胶中回收DNA片段,用于各种克隆操作。 琼脂糖和聚丙烯酰胺凝胶均可制成各种不同大小、形状和孔径的凝胶块,在不同的装置上进行电泳。琼脂糖比聚丙烯酰胺凝胶的分辨率低,但其分离范围广,约200bp~50kb的DNA。琼脂糖凝胶电泳通常在水平装置上进行。聚丙烯酰胺分离小片段(5~500bp)的效果较好,甚至可以分辨相差1bp的DNA片段。长度大于10 000kb的DNA片段,可以通过电场方向呈周期性变化,在脉冲电场胶中进行电泳。 【试剂和器材】 试剂:灭菌重蒸水;TE缓冲液;琼脂糖;核酸染料;;DNAmarker;6×上样缓冲液(0.25%溴酚蓝、0.25%二甲苯青FF、30%甘油) 器材:移液器;水平电泳槽;电泳仪,枪头,移液器,锥形瓶,微波炉,制胶槽,梳子,水平电泳仪,稳压器,凝胶成像系统 【实验步骤】 (1)称取1 g琼脂糖加入250mL锥形瓶中,量取100 ml 1× TAE电泳缓冲液加入锥形瓶。 (2)微波炉加热并多次摇晃锥形瓶使琼脂糖充分溶解。

相关文档
相关文档 最新文档