文档库 最新最全的文档下载
当前位置:文档库 › 大欧拉角的空间直角坐标转换方法探讨

大欧拉角的空间直角坐标转换方法探讨

大欧拉角的空间直角坐标转换方法探讨
大欧拉角的空间直角坐标转换方法探讨

空间坐标转换说明

空间坐标转换说明 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2(1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ? ??? --=+-++==)1(sin /]})1((/[)(arctan{) /arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、 b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半轴 a =6378137±2m ,短半轴 b =6356.7523142km ,90130066943799.02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

空间直角坐标系与大地坐标系转换程序

空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; //cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<>x; switch(x) { case 0: { cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<>X>>Y>>Z; double t,m,n, P,k,B0; m=Z/sqrt(X*X+Y*Y); //t0 B0=atan(m); //初值 n=Z/sqrt(X*X+Y*Y);

空间三位坐标系|三维空间坐标系变换

1.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三向量共面,则实数λ等于( ) A.62 7 B.637 C.647 D.657 2.直三棱柱ABC—A1B1C1中,若CA A.a+b-c ?a,CB?b,CC1?c,则A1B? ( ) B.a-b+c C.-a+b+c D.-a+b-c3.已知a+b+c=0,|a|=2,|b|=3,|c|=,则向量a与b之间的夹角?a,b?为 ( ) A.30°B.45°C.60°D.以上都不对 4.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上中线长( ) A.2 B.3 C.4 D.5 5.已知a?3i?2j?k,b?i?j?2k,则5a与3b的数量积等于( ) A.-15 B.-5 C.-3 D.-1 6.已知OA?(1,2,3),OB?(2,1,2),OP?(1,1,2),点Q在直线OP上运动,则当QA?QB 取得最小值时,点Q的坐标为( )

131123448A.(,,) B.(,,) C.(,,) 243234333D.(447,,)333二、填空题7.若向量a?(4,2,?4),b?(6,?3,2),则(2a?3b)?(a?2b)?__________________。 8.已知向量a?(2,?1,3),b?(?4,2,x),若a?b,则x?______;若a//b则x? ______。已知向量a?(3,5,1),b?(2,2,3),c?(4,?1,?3),则向量2a?3b?4c的坐标为 .14.如图正方体ABCD-A1B1C1D1中,E、F、G分别是B1B、AB、BC的中点. (1)证明D1F⊥平面AEG; (2)求cos?AE,D1B? 19.(14分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求BN的长; (2)求cos的值; (3)求证A1B⊥C1M.

不同空间直角坐标系的转换

不同空间直角坐标系的转换 欧勒角 不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。 三参数法 三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。

七参数法 用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。下面给出布尔莎七参数公式: 坐标转换多项式回归模型 坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。 两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在???? ??????+??????????=??????????000111222Z Y X Z Y X Z Y X ???? ??????+????????????????????---+??????????+=??????????000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε

不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

知识要点-空间直角坐标系

第5讲 空间直角坐标系 ★知识梳理★ 1.右手直角坐标系 ①右手直角坐标系的建立规则:x 轴、y 轴、z 轴互相垂直,分别指向右手的拇指、食指、 中指; ②已知点的坐标),,(z y x P 作点的方法与步骤(路径法): 沿x 轴正方向(0>x 时)或负方向(0y 时)或负方向(0z 时)或负方向(0

空间直角坐标系的旋转转换

空间直角坐标系的旋转转换 using System; using System.Collections.Generic; using https://www.wendangku.net/doc/c02588212.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.IO; using System.Windows.Forms; namespace ReferenceTransition { public partial class Form1 : Form { public Form1() { this.MaximizeBox = false; InitializeComponent(); } private double x, y, z; private double i, j, k; private double a1,a2,a3; private double b1, b2, b3; private double c1, c2, c3; private double rx, ry, rz; private string t1, t2, t3; private string k1, k2, k3; private void button1_Click(object sender, EventArgs e) { textBox1.Text = ""; textBox2.Text = ""; textBox3.Text = ""; textBox4.Text = ""; textBox5.Text = ""; textBox6.Text = ""; textBox7.Text = ""; textBox8.Text = ""; textBox9.Text = ""; richTextBox1.Text = ""; } private void button4_Click(object sender, EventArgs e) { try {

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

立体几何空间直角坐标系

空间直角坐标系080617 好题选析: 例1、在空间直角坐标系中,给定点)3,2,1(-M 。求它分别关于坐标平面、坐标轴和原点的对称点的坐标。 例2、已知两点)1,0,1(P 与)1,3,4(-Q 。(1)求Q P ,两点的距离;(2)求z 轴上点M ,使||||MQ MP =。 例3、如图,在河的一侧有一塔m CD 5=,河宽m BC 3=,另 一侧有点A ,BC AB m AB ⊥=,4。求点A 与塔顶D 的距离AD 。 好题精练: (一)选择题: 1、关于空间直角坐标系,叙述正确的是( ) A 、),,(z y x P 中z y x ,,的位置可以互换; B 、空间直角坐标系中的点与一个三元有序数组是一种一一对应关系; C 、空间直角坐标系中的三条坐标轴把空间分为八个部分; D 、某点在不同的空间直角坐标系中的坐标位置可以相同。 2、已知点)4,1,3(--A ,则点A 关于原点的对称点的坐标为( ) A 、)4,3,1(-- B 、)3,1,4(-- C 、)4,1,3(- D 、)3,1,4(- 3、已知点)2,1,0(),1,2,1(B A -,则向量坐标为( ) A 、)3,1,1(- B 、)3,1,1(-- C 、)1,1,1(-- D 、)0,1,0( 4、设点B 是点)5,3,2(-A 关于面xoy 的对称点,则||AB 等于( ) A 、10 B 、10 C 、38 D 、38 (二)填空题: 5、已知ABC D 为平行四边形,且)5,7,3(),1,5,2(),3,1,4(--C B A ,则顶点D 的坐标为 。 (三)解答题: 6、在坐标面yoz 内求与三个已知点)1,5,0(),2,2,4(),2,1,3(C B A --等距离的点D 的坐标。 7、已知ABC ?的顶点)1,3,1(),2,6,5(),2,1,1(---C B A 。试求AC 边上的高BD 的长。

大地坐标与空间坐标的互相转换··

大地坐标向空间坐标转换和空间坐标向大地坐标转换的c程 序 #include #include void main() { float a=6378137.000,b=6356752.3142,E=0.006694379990,pi=3.14159265; float B,L,N,H,X,Y,Z; float K,t0,t1,t2,P; int i; float B1,B2,B3,L1,L2,L3; printf("如果向进行大地坐标向空间坐标转换请输入1,进行空间坐标向大地坐标转换请输入0"); scanf("%d",&i); if(i) { printf("请输入经度:B1,B2,B3"); scanf("%f%f%f",&B1,&B2,&B3); B=(B1+B2/60+B3/3600)*pi/180; printf("请输入纬度:L1,L2,L3"); scanf("%f%f%f",&L1,&L2,&L3); L=(L1+L2/60+L3/3600)*pi/180; printf("请输入大地高:H"); scanf("%f",&H); N=a/sqrt(1-E*sin(B)*sin(B)); X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-E)+H)*sin(B); printf("X=%f\n",X); printf("Y=%f\n",Y); printf("Z=%f\n",Z); } else {printf("请输入空间坐标:X,Y,Z"); scanf("%f%f%f",&X,&Y,&Z);

高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系 4.3.1空间直角坐标系 教材分析 本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。 课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。 本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。结合图形、联系长方体和正方体是学好本小节的关键。 课时分配 本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。 教学目标 重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。 难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。 知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。 能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。 教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。 自主探究点:如何由空间中点的坐标确定点的位置。 考试点:空间中点的确定及坐标表示。 易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。 拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。 教具准备多媒体课件和三角板 课堂模式师生互动、小组评分以及兵带兵的课堂模式。 一、引入新课 由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。 ,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐 x y z表示。 标系)后,空间中任意一点可用有序实数组(,,)

空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换 1.空间直角坐标系/笛卡尔坐标系 坐标轴相互正交的坐标系被称作笛卡尔坐标系。三维笛卡尔坐标系也被称为空间直角坐标系。在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。 以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。 在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。 空间直角坐标系 2.空间大地坐标系 由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量: 2.1椭球的大小和形状

2.2椭球的短半轴的指向:通常与地球的平自转轴平息。 2.3椭球中心的位置:根据需要确定。若为地心椭球,则其中心位于地球质心。 2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。 以大地基准为基础建立的坐标系被称为大地坐标系。由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P点的位置用L,B表示。如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。 空间大地坐标系 3.空间直角坐标与大地坐标间的转换 3.1大地坐标转换为空间直角坐标

旋转矩阵、欧拉角、四元数

旋转矩阵、欧拉角、四元数比较 旋转矩阵、欧拉角、四元数主要用于: 向量的旋转、坐标系之间的转换、角位移计算、方位的平滑插值计算 各方法比较 任务/性质旋转矩阵欧拉角四元数 在坐标系间(物体和惯性)旋转点能不能(必须转换到矩 阵) 不能(必须转换到矩 阵) 连接或增量旋转能,但经常比四元数 慢,小心矩阵蠕变的情 况 不能能,比矩阵快 插值基本上不能能,但可能遭遇万向锁 或其他问题Slerp提供了平滑插值 易用程度难易难 在内存或文件中存储9个数3个数4个数 对给定方位的表达方式是否唯一是不是,对同一方位有无 数多种方法 不是,有两种方法,它 们互相为互 可能导致非法矩阵蠕变任意三个数都能构成 合法的欧拉角可能会出现误差积累,从而产生非法的四元数 不同的方位表示方法适用于不同的情况。下面是我们对合理选择格式的一些建议: l 欧拉角最容易使用。当需要为世界中的物体指定方位时,欧拉角能大大的简化人机交互, 包括直接的键盘输入方位、在代码中指定方位(如为渲染设定摄像机)、在调试中测试。这个优点不应该被忽视,不要以”优化”为名义而牺牲易用性,除非你去顶这种优化的确有效果。 2如果需要在坐标系之间转换响亮,那么就选择矩阵形式。当然,这并不意味着你就不能用其他格式来保存方位,并在需要的时候转换到矩阵格式。另一种方法是用欧拉角作为方位的”主拷贝”但同时维护一个旋转矩阵,当欧拉角发生改变时矩阵也要同时进行更新。

3 当需要大量保存方位数据(如:动画)时,就使用欧拉角或四元数。欧 拉角将少占用25%的内存,但它在转换到矩阵时要稍微慢一些。如果动画数据需要嵌套坐标系之间的连接,四元数可能是最好的选择。 4 平滑的插值只能用四元数完成。如果你用其他形式,也可以先转换 到四元数然后再插值,插值完毕后再转换回原来的形式。

空间坐标转换说明

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ????--=+-++==)1(sin /]})1((/[)(arctan{)/arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半 轴a =6378137±2m ,短半轴b =6356.7523142km ,90130066943799 .02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出的具有一定精度的0B ,直接求出H ,一次性计算出满足精度要求的H ;再将H 值代入公式(2)中,求出B 值。 令))/(arctan(22b Y X Za u ?+=,a 、b 分别为长半轴和短半轴。将u 代入下

大地坐标与空间直角坐标的转换程序代码

#include "stdio.h" #include "math.h" #include "stdlib.h" #include "iostream" #define PI 3.1415926535897323 double a,b,c,e2,ep2; int main() { int m,n,t; double RAD(double d,double f,double m); void RBD(double hd); void BLH_XYZ(); void XYZ_BLH(); void B_ZS(); void B_FS(); void GUS_ZS(); void GUS_FS(); printf(" 大地测量学\n"); sp1:printf("请选择功能:\n"); printf("1.大地坐标系到大地空间直角坐标的转换\n"); printf("2.大地空间直角坐标到大地坐标系的转换\n"); printf("3.贝塞尔大地问题正算\n"); printf("4.贝塞尔大地问题反算\n"); printf("5.高斯投影正算\n"); printf("6.高斯投影反算\n"); printf("0.退出程序\n"); scanf("%d",&m); if(m==0)exit(0); sp2:printf("请选择椭球参数(输入椭球序号):\n"); printf("1.克拉索夫斯基椭球参数\n"); printf("2.IUGG_1975椭球参数\n"); printf("3.CGCS_2000椭球参数\n"); printf("0.其他椭球参数(自行输入)\n"); scanf("%d",&n); switch(n) { case 1:a=6378245.0;b=6356863.0188;c=6399698.9018;e2=0.00669342162297;ep2=0.0067385254146 8;break;

空间直角坐标系(人教A版)

空间直角坐标系(人教A版) 一、单选题(共10道,每道10分) 1.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则点Q的坐标为( ) A. B. C. D. 2.在空间直角坐标系中,点A(1,-1,1)与点B(-1,-1,-1)关于( )对称. A.x轴 B.y轴 C.z轴 D.原点 3.如图,在空间直角坐标系中,正方体的棱长为1,,则点E的坐标为( ) A. B. C. D. 4.设点P(a,b,c)关于原点的对称点为,则=( ) A. B.

C. D. 5.设点P在x轴上,它到的距离为到点的距离的2倍,则点P的坐标为( ) A.(0,1,0)或(0,0,1) B.(0,-1,0)或(0,0,1) C.(1,0,0)或(0,-1,0) D.(1,0,0)或(-1,0,0) 6.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为( ) A.19 B. C. D. 7.如图所示,在空间直角坐标系中,有一棱长为a的正方体,的中点E与AB的中点F的距离为( ) A. B. C.a D. 8.如图,△PAB是正三角形,四边形ABCD是正方形,|AB|=4,O是AB的中点,平面PAB⊥平面ABCD,以直线AB为x轴、以过点O且平行于AD的直线为y轴、以直线OP为z轴建立如图所示的空间直角坐标系Oxyz,E为线段PD的中点,则点E的坐标是( )

A. B. C. D. 9.点P(x,y,z)满足,则点P在( ) A.以点(1,1,-1)为圆心,以2为半径的圆上 B.以点(1,1,-1)为中心,以2为棱长的正方体上 C.以点(1,1,-1)为球心,以2为半径的球面上 D.无法确定 10.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( ) A. B. C. D.

大地坐标与大地空间坐标转换工具

#include "stdafx.h" #include #include #include "resource.h" #include "MainDlg.h" #include #include BOOL WINAPI Main_Proc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch(uMsg) { HANDLE_MSG(hWnd, WM_INITDIALOG, Main_OnInitDialog); HANDLE_MSG(hWnd, WM_COMMAND, Main_OnCommand); HANDLE_MSG(hWnd,WM_CLOSE, Main_OnClose); } return FALSE; } BOOL Main_OnInitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam) { return TRUE; } void Main_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify) { double a=0; double e2=0; switch(id) { case IDC_B1: { a=6378245.0000; e2=0.00669342162297; if(a==0) { MessageBox(hwnd,TEXT("请选择坐标系"),TEXT("警告"),MB_OK); } else{

35知识讲解_空间直角坐标系_基础

空间直角坐标系 【学习目标】 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式. 【要点梳理】 要点一、空间直角坐标系 1.空间直角坐标系 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间点的坐标 空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标 1.空间直角坐标系中点的坐标的求法 通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标. 特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z . 2.空间直角坐标系中对称点的坐标 在空间直角坐标系中,点(),,P x y z ,则有 点P 关于原点的对称点是()1,,P x y z ---; 点P 关于横轴(x 轴)的对称点是()2,,P x y z --; 点P 关于纵轴(y 轴)的对称点是()3,,P x y z --; 点P 关于竖轴(z 轴)的对称点是()4,,P x y z --; 点P 关于坐标平面xOy 的对称点是()5,,P x y z -; 点P 关于坐标平面yOz 的对称点是()6,,P x y z -; 点P 关于坐标平面xOz 的对称点是()7,,P x y z -. 要点三、空间两点间距离公式 1.空间两点间距离公式 空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离

大地、地心空间直角和球面三种坐标的转换

第一章大地坐标 第一节大地坐标系统 科技名词定义 中文名称:大地坐标系 英文名称:geodetic coordinate system 定义:以参考椭球中心为原点、起始子午面和赤道面为基准 面的地球坐标系。 应用学科:测绘学(一级学科);大地测量学(二级学科) 大地坐标系(geodetic coordinate system)是大地测量中以参考椭球面为基准面建立起来的坐标系。地面点的位置用大地经度、大地纬度和大地高度表示。大地坐标系的确立包括选择一个椭球、对椭球进行定位和确定大地起算数据。一个形状、大小和定位、定向都已确定的地球椭球叫参考椭球。参考椭球一旦确定,则标志着大地坐标系已经建立。大地坐标系亦称为地理坐标系。大地坐标系是用来表述地球上点的位置的一种地区坐标系统。它

采用一个十分近似于地球自然形状的参考椭球作为描述和推算地面点位置和相互关系的基准面。一个大地坐标系统必须明确定义其三个坐标轴的方向和其中心的位置。通常人们用旋转椭球的短轴与某一规定的起始子午面分别平行干地球某时刻的平均自转轴和相应的真起始子午面来确定坐标轴的方向。若使参考椭球中心与地球平均质心重合,则定义和建立了地心大地坐标系。它是航天与远程武器和空间科学中各种定位测控测轨的依据。若椭球表面与一个或几个国家的局部大地水准面吻合最好,则建立了一个国家或区域的局部大地坐标系。大地坐标系中点的位置是以其大地坐标表示的,大地坐标均以椭球面的法线来定义。其中,过某点的椭球面法线与椭球赤道面的交角为大地纬度;包含该法线和大地子午面与起始大地子午面的二面角为该点的大地经度;沿法线至椭球面的距离为该点的大地高。大地纬度、大地经度和大地高分别用大写英文字母B、L、H表示。 大地坐标系是以地球椭球赤道面和大地起始子午面为起算面并依地球椭球面为参考面而建立的地球椭球面坐标系。它是大地测量的基本坐标系,其大地经度L、大地纬度B和大地高H为此坐标系的3个坐标分量。它包括地心大地坐标系和参心大地坐标系。 其中,对于地心大地坐标系,其地面上一点的大地经度L为大地起始子午面与该点所在的子午面所构成的二面角,由起始子午面起算,向东为正,称为东经(0~180),向西为负,称为西经

相关文档
相关文档 最新文档