文档库 最新最全的文档下载
当前位置:文档库 › 材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解
材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态答案详解.

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0ττσ== ; (B )AC AC /2,/2ττ σ==; (C )AC AC /2,/2 ττσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关于它们的正确性,现有四种答案,正确答案是( D )。

(b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是(D )。 τ (a) (b) (c) (A )三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)(a )和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是(B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是(C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料; 8、三个弹性常数之间的关系:/[2(1)] G E v =+适用于(C )。 (A)任何材料在任何变形阶级;(B)各向同性材料在任何变形阶级; (C)各向同性材料应力在比例极限范围内;(D)任何材料在弹性变形范围内。

材料力学第六章复习题

材料力学第六章复习题

————————————————————————————————作者:————————————————————————————————日期: 1

1 第六章 弯曲应力 1.图示梁的材料为铸铁,截面形式有四种如图: 最佳形式为 。 2.为了提高梁的承载能力,对同一梁、相同的均布载荷q ,下列哪一种支承条件下,梁的强度最好: 正确答案是 。 3.设计钢梁时,宜采用中性轴为( )的截面;设计铸铁梁时,宜采用中性轴为( )的截面。 正确答案是 。 (A) 对称轴 (B) 偏于受拉边的非对称轴 (C) 偏于受压边的非对称轴 (D) 对称或非对称轴 4.梁在弯曲时,横截面上正应力沿高度是按 分布的;中性轴上的正应力为 ; 矩形截面梁横截面上剪应力沿高度是按 分布的,中性轴上的剪应力为 。 5.矩形截面梁若 max Q 、m ax M 和截面宽度b 不变, 而将高度增加一倍,则最大弯曲正应力为原来的 倍,最大弯曲剪应力为原来的 倍。 6.图示正方形截面简支梁,若载荷不变, 而将边长增加一倍,其则最大弯曲正应力为原来的 倍, 最大弯曲剪应力为原来的 倍。 q (((( ( q l ( q l l 3l ( q l l l ( q l q l a a

1 7.下图所示的梁跨中截面上A 、B 两点的应力A σ= ; A τ= ; B τ= 。 8.图示T 字形截面梁。若已知A —A 截面上、下表面处沿x 方向的线应变分别是 0004.0-='ε, 0002.0=''ε,则此截面中性轴位置=c y h (C 为形心) 9.铸铁丁字形截面梁的许用应力分别为:许用拉应力 [ t σ] = 50MPa ,许用压应力[ c σ ] = 200 MPa 。则 上下边缘距中性轴的合理比值为 21/y y 为多少?(C 为形心) 10.⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。若材料的拉伸许用应力[]MPa l 40=σ,压缩许用应 力 []MPa c 160=σ,截面对形心轴z c 的惯性矩410180cm zc =I ,cm h 64.91=,试计算该 梁的许可载荷P 。 11.正方形截面简支梁,受有均布载荷作用如图,若[σ ] = 6 [ τ ] ,证明当梁内最大正应力和最大剪应力同 时达到许用应力时,l / a = 6 0.l l q B A 0. z c z y 1 y 2 C P P A A εε x y y h A-z C P B 2P 1400 C A 600 y c z c 50 150 C 50

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

材料力学第六章习题选及其解答

6-2. 用积分法求图示各梁的挠曲线方程、自由端的挠度和转角。设EI=常量。 解:(1)列弯矩方程 ?? ?∈---=∈-=) 2,[ )()(] ,0[ )(222221111a a x a x P Px x M a x Px x M (2)挠曲线近似微分方程 ?? ?---==-==) ()('')(''222221 111a x P Px x M EIy Px x M EIy (3)直接积分两次 ?????? ? +---=+-=2 222221211)(2 2'2 'C a x P x P EIy C x P EIy ??? ??? ? ++---=++-=2 2232322111311)(666 D x C a x P x P EIy D x C x P EIy (4)确定积分常数 边界条件: 0' ,0 :2222===y y a x 光滑连续条件: '' , :212121y y y y a x x ==== 求解得积分常数 3 212 212 7 2 5Pa D D Pa C C - === = 梁的挠曲线方程和转角方程是 b)

?????? ?+---=+-=2 22 2222 2112 5)(22'252'Pa a x P x P EIy Pa x P EIy ??? ??? ?-+---=-+-=3 2 2323223123112725)(662 7256Pa x Pa a x P x P EIy Pa x Pa x P EIy (5)自由端的挠度和转角 令x1=0: EI Pa y EI Pa y 25' ,272 13 1= - = 6-4. 求图示悬臂梁的挠曲线方程,自由端的挠度和转角。设EI=常量。求解时应 注意CB 段内无载荷,故CB 仍为直线。 解:(1)求约束反力 Pa M P R A A == (2)列AC 段的弯矩方程 ],0( )(a x Pa Px x M ∈-= (3)挠曲线近似微分方程 Pa Px x M EIy -==)('' (4)直接积分两次 D Cx x Pa x P EIy C Pax x P EIy ++- = +-=2 32 2 6 2' a) M A

7-第七章 应力状态分析 强度理论

第七章应力状态分析强度理论 7.1 应力状态概述 一、工程实例 1. 压缩破坏 2. 弯曲拉伸破坏 3. 弯曲剪切破坏 4. 铸铁扭转破坏 5. 低碳钢扭转破坏 二、应力状态的概念 1. 点的应力状态 过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。2. 一点应力状态的描述 以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。 3. 求一点应力状态 (1)单元体三对面的应力已知,单元体平衡 (2)单元体任意部分平衡 (3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。 三、应力状态的分类 1. 单元体:微小正六面体 2. 主平面和主应力:

主平面:无切应力的平面 主应力:作用在主平面上的正应力。 3. 三种应力状态 单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零 四、应力状态分析的方法 1. 解析法 2. 图解法 7.2 应力状态分析的解析法 一、解析法 图示单元体,已知应力分量x σ、y σ 、xy τ和yx τ。 x x x

(一)任意截面上的正应力和切应力: 利用截面法,考虑楔体bef 部分的平衡。设ef 面的面积为dA , ∑=0 F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy ∑=0F t sin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy 根据切应力互等定理: y x xy ττ= 三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2 αα-=,?=cos sin 22sin αα 解得: ατασσσσσα2sin 2cos 2 2 x x xy y y --+ += (7-1) ατασστα2cos 2sin 2 x xy y +-= (7-2) (二)主应力即主平面位置 将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。 令0αα=时,0d d =α σα 即: y x xy xy y x σσταατασσασα -- ==?? ????+--=22tan 02cos 2sin 22d d 000 将0α和ο 900+α代入(8-1),求出最大及最小的正应力为: 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=??? (三)最大切应力及其作用平面的位置 将式(8-2)对α取一次导数,并令其等于零可确定切应力的极值和它所在平面的位置。

材料力学复习题(答案)

工程力学B 第二部分:材料力学 扭转 1、钢制圆轴材料的剪切弹性模量G=80Gpa,[]=50Mpa,m o 1 ] [= '?,圆轴直径d=100mm;求(1) 做出扭矩图;(2)校核强度;(3)校核刚度;(4)计算A,B两截面的相对扭转角. 解: 3 max max 3 610 30.57[]50 (0.1) 16 t T MPa MPa W ττ π ? ===<= ? ] 030 max00 max 94 180610180 0.44[]1 8010(0.1) 32 m m p T GI ?? π ππ ? '' =?=?=<= ??? 30 94 (364)210180 0.0130.73 8010(0.1) 32 AB p Tl rad GI φ ππ +-?? ===?= ??? ∑ 2、图示阶梯状实心圆轴,AB段直径d1=120mm,BC段直径d2=100mm 。扭转力偶矩M A=22 kN?m,M B=36 kN?m,M C=14 kN?m。材料的许用切应力[ = 80MPa ,(1)做出轴的扭矩图;(2)校核该轴的强度是否满足要求。 解:(1)求内力,作出轴的扭矩图

(2)计算轴横截面上的最大切应力并校核强度 AB段: 1 1,max 1t T W τ= ( ) 3 3 3 2210 64.8MPa π 12010 16 - ? == ?? []80MPa τ <= BC段: () 3 2 2,max3 3 2 1410 71.3MPa π 10010 16 t T W τ - ? === ?? []80MPa τ <= 综上,该轴满足强度条件。 ; 3、传动轴的转速为n=500r/min,主动轮A输入功率P1=400kW,从动轮B,C分别输出功率P2=160kW,P3=240kW。已知材料的许用切应力[]=70MP a,单位长度的许可扭转角[,]=1o/m,剪切弹性模量G=80GP a。(1)画出扭矩图。(2)试确定AB段的直径d1和BC段的直径d2;(3)主动轮和从动轮应如何安排才比较合理为什么 解:(1) m N n P M. 7639 500 400 9549 95491 e1 = ? = =,m N n P M. 3056 500 160 9549 95492 e2 = ? = = m N n P M. 4583 500 240 9549 95493 e3 = ? = =,扭矩图如下 (2)AB段, 按强度条件:] [ 16 3 max τ π τ≤ = = d T W T t ,3 ] [ 16 τ π T d≥,mm d2. 82 10 70 7639 16 3 6 1 = ? ? ? ≥ π

材料力学习题答案1

材料力学习题答案1 2.1试求图各杆1-1、2-2、3-3截面上的轴力,并作轴力图 40 30 20 50 kN,F2 2 30 20 10 kN ,F3 320 kN 解:⑻F 11 (b)F1 1 F,F2 2 F F 0,F3 3 F (c)F 0,F2 2 4F,F3 3 4F F 3F 1 1 轴力图如题2. 1图(a)、( b )、( c)所示 2.2作用于图示零件上的拉力F=38kN,试问零件内最大拉应力发生在哪个截面上?并求其值。 解截面1-1的面积为 A 50 22 20 560 mm2 截面2-2的面积为

A 15 15 50 22 840 mm 2 因为1-1截面和2-2截面的轴力大小都为F , 1-1截面面积比2-2截面面积小, 故最大拉应力在截面1-1上,其数值为: 由 h 1.4,得 h 16 2.9 mm b 所以,截面尺寸应为 b 116.4 mm , h 162.9 mm 。 2.12在图示简易吊车中,BC 为钢杆, AB 为木杆。木杆AB 的横截面面积 A , 100cm 2,许用应力 1 7MPa ;钢杆 BC 的横截面面积A 6cm 2,许用拉应 max F N A F 38 103 A 560 67.9 MPa 2.9冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,承受的 镦压力F=1100kN 。连杆截面是矩形截面,高度与 宽度之比为h 1.4。材料为45钢,许用应力 b 58MPa ,试确定截面尺寸h 及b 。 解 连杆内的轴力等于镦压力F ,所以连杆内 正应力为 匚。 A 根据强度条件,应有 F — ,将h 1.4 A bh b 代入上式,解得 0.1164 m 116.4 mm 1100 103 1.4 58 106 (a)

材料力学习题册答案_第6章_弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。(√)8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D) A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移

D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2 D 梁长改为3 l /2,惯性矩改为I/4 7. 已知等截面直梁在某一段上的挠曲线方程为: y(x)=Ax2(4lx - 6l2-x2),则该段梁上(B)

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学扭矩习题

第六章 圆轴的扭转 习题解析 6-1 试述绘制扭矩图的方法和步骤。 答:首先求任意截面的扭矩,一般步骤为:“假截留半,内力代换,内外平衡”。熟练后也可用简捷方法计算而无须画出分离体受力图。 取平行于轴线的横坐标表示横截面的位置,用纵坐标表示扭矩的代数值,画出各截面扭矩的变化图,即为扭矩图。 6-2 为什么空心轴比实心轴能充分发挥材料的作用? 答:空心圆轴比实心轴能充分发挥材料的作用,其原因在于圆轴扭转时,横截面上应力呈线性分布,越接近截面中心,应力越小,那里的材料就没有充分发挥作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到了充分利用。而且也减轻了构件的自重。 6-3 已知圆杆横截面上的扭矩,试画出截面上与T 对应的切应力分布图。 图6-1 题6-3图 解:截面上与T 对应的切应力分布图如下: 图6-2 6-4 用截面法求图6-3所示各杆在1-1、2-2、3-3截面上的扭矩。 图6-3 题6-4图 解:a)采用截面法计算扭矩(见图6-4)。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-311。 取2-2截面左侧外力偶矩计算,由平衡方程 062122=+?-+-T m kN )(,可得

m kN T ?=-322。 取3-3截面右侧外力偶矩计算,可得m kN T ?=-133。 图6-4 b) 采用截面法计算扭矩(见图6-5)。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-511。 取2-2截面左侧外力偶矩计算,由平衡方程05522=+?+-T m kN )(,可得 m kN T ?-=-1022。 取3-3截面右侧外力偶矩计算,由平衡方程03333=+?+-T m kN )( ,可得m kN T ?-=-633。 图6-5 6-5 如图6-6所示,作各杆的扭矩图。

材料力学习题答案.docx

材料力学习题答案1试求图各杆 1-1 、2-2 、3-3 截面上的轴力,并作轴力图。 解: (a) (b)F1140 3020 50 kN , F2 230 20 10 kN , F3 320 kN F1 1 F , F2 2 F F 0 , F3 3F (c) F1 10 , F2 24F , F3 34F F3F 轴力图如题 2. 1图( a)、( b )、( c)所示。 作用于图示零件上的拉力 F=38kN,试问零件内最大拉应力发生在哪个截面上 ? 并求其值。 解截面 1-1 的面积为 A150 22 20 560 mm2 截面 2-2 的面积为 A215 15 50 22 840 mm2 因为 1-1 截面和 2-2 截面的轴力大小都为 F,1-1 截面面积比 2-2 截面面积小,故最大拉应力在截面 1-1 上,其数值为: F N F38 103 max A167.9 MPa A1560 冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,承受的镦 压力 F=1100kN。连杆截面是矩形截面,高度与宽度之比为h。材料为钢, 1.4 b45 许用应力58MPa ,试确定截面尺寸h及b。 解连杆内的轴力等于镦压力 F,所以连杆内正应力为F。 A

根据强度条件,应有F F,将h 1.4代入上式,解得 A bh b F110010 3 0.1164m116.4mm b 1.458106 1.4 由h 1.4,得h16 2.9 mm b 所以,截面尺寸应为 b116.4 mm , h162.9 mm 。 在图示简易吊车中,BC为钢杆, AB为木杆。木 杆AB的横截面面 积 A1100cm2,许 用应力 17MPa ;钢杆BC的横截面面 积 A16cm2,许用拉应力 2 160MPa 。试 求许可吊重F。 解 B 铰链的受力图如图(b) 所示,平衡条件为 F x0 ,F NBC cos30o F NAB (1) F y0 ,F NBC sin 30o F0(2)解( 1)、( 2)式,得 F NBC2F ,F NAB3F(3) (1) 按照钢杆的强度要求确定许可吊重 钢杆的强度条件为: F NBC 22 A2 由上式和 ( 3) 式可得 F F NBC1 2 A21160 106610 448000 N 48 kN 222 (2)按木杆的强度要求确定许可吊重 木杆的强度条件为: 1F NAB 1 A1 由上式和 ( 3) 式可得 F F NAB1 1 A117 106 100 10 440415 N 40.4 kN 333

材料力学第六章复习题

第六章 弯曲应力 1.图示梁的材料为铸铁,截面形式有四种如图: 最佳形式为 。 2.为了提高梁的承载能力,对同一梁、相同的均布载荷q ,下列哪一种支承条件下,梁的强度最好: 正确答案是 。 3.设计钢梁时,宜采用中性轴为( )的截面;设计铸铁梁时,宜采用中性轴为( )的截面。 正确答案是 。 (A) 对称轴 (B) 偏于受拉边的非对称轴 (C) 偏于受压边的非对称轴 (D) 对称或非对称轴 4.梁在弯曲时,横截面上正应力沿高度是按 分布的;中性轴上的正应力为 ; 矩形截面梁横截面上剪应力沿高度是按 分布的,中性轴上的剪应力为 。 5.矩形截面梁若 max Q 、m ax M 和截面宽度b 不变, 而将高度增加一倍,则最大弯曲正应力为原来的 倍,最大弯曲剪应力为原来的 倍。 6.图示正方形截面简支梁,若载荷不变, 而将边长增加一倍,其则最大弯曲正应力为原来的 倍, 最大弯曲剪应力为原来的 倍。 (A) (B) (C) (D) (C) (B) (D)

7.下图所示的梁跨中截面上A 、B 两点的应力A σ= ; A τ= ; B τ= 。 8.图示T 字形截面梁。若已知A —A 截面上、下表面处沿x 方向的线应变分别是 0004.0-='ε, 0002.0=''ε,则此截面中性轴位置=c y h (C 为形心) 9.铸铁丁字形截面梁的许用应力分别为:许用拉应力 [ t σ] = 50MPa ,许用压应力[c σ] = 200 MPa 。则 上下边缘距中性轴的合理比值为 21/y y 为多少?(C 为形心) 10.⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。若材料的拉伸许用应力[]MPa l 40=σ,压缩许用应 力 []MPa c 160=σ,截面对形心轴z c 的惯性矩410180cm zc =I ,cm h 64.91=,试计算该 梁的许可载荷P 。 11.正方形截面简支梁,受有均布载荷作用如图,若[ σ ] = 6 [ τ ] ,证明当梁内最大正应力和最大剪应力同 时达到许用应力时,l / a = 6 x A-A B c

材料力学第六章习题选及其解答

6-2. 用积分法求图示各梁的挠曲线方程、自由端的挠 度和转角。设EI=常量。 解:(1 ?? ?∈---=∈-=) 2,[ )()(] ,0[ )(222221111a a x a x P Px x M a x Px x M (2)挠曲线近似微分方程 ?? ?---==-==) ()('')(''222221 111a x P Px x M EIy Px x M EIy (3)直接积分两次 ?????? ? +---=+-=2222221211)(22'2'C a x P x P EIy C x P EIy ??? ??? ? ++---=++-=222323221 11311)(666 D x C a x P x P EIy D x C x P EIy (4)确定积分常数 边界条件: 0' ,0 :2222===y y a x 光滑连续条件: '' , :212121y y y y a x x ==== 求解得积分常数 3212212 7 25Pa D D Pa C C -=== = 梁的挠曲线方程和转角方程是

???????+---=+-=2 222222 2112 5)(22'252'Pa a x P x P EIy Pa x P EIy ??? ??? ?-+---=-+-=3 22323223123112725)(662 7256Pa x Pa a x P x P EIy Pa x Pa x P EIy (5)自由端的挠度和转角 令x1=0: EI Pa y EI Pa y 25' ,272 131= -= 6-4. 求图示悬臂梁的挠曲线方程,自由端的挠度和转角。设EI=常量。求解时应 注意CB 段内无载荷,故CB 仍为直线。 解:(1)求约束反力 Pa M P R A A == (2)列AC 段的弯矩方程 ],0( )(a x Pa Px x M ∈-= (3)挠曲线近似微分方程 Pa Px x M EIy -==)('' (4)直接积分两次 D Cx x Pa x P EIy C Pax x P EIy ++-=+-=2 32 2 62 ' a) M

《材料力学》期末复习题

1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。 2.弹性滞后环是由于什么原因产生的。材料的弹性滞后环的大小对不同零件有不同的要求? 弹性滞后环是由于材料的加载线和卸载线不重合而产生的。对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为? 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4.应力状态系数α值大小和应力状态的软硬关系。为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。 5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因? 在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成450。 6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。 7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。 低温脆性常发生在具有体心立方结构的金属及合金 中,而在面心立方结构的金属及合金中很少发现。 8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是? 9.材料的磨损按机理可分为哪些磨损形式。 10. 不同加载试验下的应力状态系数分别为多少? 11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为? 答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花

材料力学作业习题

第二章 轴向拉伸与压缩 1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。 (1) (2) 2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2 。如以α表示斜截面与横 截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。 3、一木桩受力如图所示。柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。如不计柱的自重,试求: (1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱的总变形。 4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。 (2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。 (3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。试求: (1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律); (2) 钢丝在C点下降的距离?; (3) 荷载F的值。 6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组 [σ=170MPa。试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力] 条件? 7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。 ] E

《材料力学》第6章简单超静定问题习题解

轴力图 1 234 -5-4-3-2 -1 123 4 5 6 7 N(F/4) x(a) 第六章 简单超静定问题 习题解 [习题6-1] 试作图示等直杆的轴力图 解:把B 支座去掉,代之以约束反力B R (↓)。设2F 作用点为C , F 作用点为D ,则: B BD R N = F R N B CD += F R N B A C 3+= 变形谐调条件为: 0=?l 02=?+?+?EA a N EA a N EA a N BD CD AC 02=++BD CD AC N N N 03)(2=++++F R F R R B B B 45F R B - =(实际方向与假设方向相反,即:↑) 故:45F N BD -= 445F F F N CD -=+-= 4 7345F F F N AC = +-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积 分别为21100mm A =,2 2150mm A =,23200mm A =。试求各杆的轴力。 解:以节点A 为研究对象,其受力图如图所示。 ∑=0X 030cos 30cos 01032=-+-N N N 0332132=-+-N N N 0332132=+-N N N (1) ∑=0Y 030sin 30sin 0103=-+F N N 2013=+N N (2) 变形谐调条件: 设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知: 00130cos 30sin x y l δδ+=? x l δ=?2 00330cos 30sin x y l δδ-=? 03130cos 2x l l δ=?-? 2313l l l ?=?-? 设l l l ==31,则l l 2 32= 2 23 31123 3EA l N EA l N EA l N ? ?=- 2 2 331123A N A N A N =- 150 23200100231?=-N N N

材料力学习题第6章

材料力学习题 第6章 6-1作图示各杆的扭矩图。 6-2如图,轴的转速为450rpm,最大切应力为45MPa,试求轴传递的功率。 6-3画出各杆横截面上的切应力分布图。 6-4直径50mm的圆轴,扭矩2.15kN·m,求在距离横截面中心10mm处的切应力,并求横截面上最大切应力。 6-5实心轴和空心轴通过牙嵌式离合器连接在一起,已知轴的转速n=100rpm,传递功率P=7.5KW,最大切应力为40MPa,试选择实心轴直径d1和内外径之比为1/2的空心轴外径D2。 6-6用横截面ABE,CDF和包含轴线的纵向面ABCD从受扭圆轴(图a)中截出一部分如图b所示,根据切应力互等定理,纵向截面上的切应力τ′将产生一个力偶矩,试问这个力偶矩与这一截出部分上的哪个

力偶矩平衡?

6-7 直径50mm的钢圆轴,其横截面上的扭矩T=1.5KN·m,求横截面上的最大切应力。 6-8圆轴的直径d= 50mm ,转速为120rpm ,若该轴横截面上的最大切应力等于60MPa ,问所传递的功率是多少kW? 6-9圆轴的粗段外径为100mm ,内径为80mm ,细段直径为80mm ,在轮A处由电动机带动,输入功率P1=150kW,在轮B ,C处分别负载P2=75kW,P3=75kW ,已知轴的转速为300rpm。 1)作扭矩图; 2)求该空心轴及实心轴的最大切应力。 6-10一直径为d=50mm的圆轴,其两端受力矩为1kN·m的外力偶作用而发生扭转,轴材料的切变模量G=8 ×104MPa.试求:1.横截面上ρA=d/4处的切应力和切应变;2. 最大切应力和和单位长度扭转角。 6-11材料相同的一根空心圆轴和一根实心圆轴.它们的横截面面积相同,扭矩相同,试分别比较这两根轴的最大切应力和单位长度扭转角。 6-12一电机轴的直径d= 40mm ,转速n=1400rpm ,功率为30kW ,.切变模量G=8×104MPa。试求此轴的最大切应力和单位长度扭转角。 6-13空心圆轴的外径D=100mm ,内径d=50mm ,已知间距为L=2.7m的两横截面的相对扭转角Ф=1.8°,材料的切变模量G = 80GPa ,求:1.轴内最大切应力;2.当轴以n=80rpm的速度旋转时,轴传递的功率。 6-14全长为L,两端面直径分别为d1,d2的圆锥形杆,其两端各受一矩为M的集中力偶作用,试求杆的总扭转角。

材料力学性能试题集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√) 16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×)

相关文档
相关文档 最新文档