文档库 最新最全的文档下载
当前位置:文档库 › DIN 25201-1-2004 铁道车辆及其组件的设计准则 螺栓连接 第1部分 螺栓连接的分类 中文版

DIN 25201-1-2004 铁道车辆及其组件的设计准则 螺栓连接 第1部分 螺栓连接的分类 中文版

DIN 25201-1-2004 铁道车辆及其组件的设计准则 螺栓连接 第1部分 螺栓连接的分类 中文版
DIN 25201-1-2004 铁道车辆及其组件的设计准则 螺栓连接 第1部分 螺栓连接的分类 中文版

德国标准 2004年6月

DIN 25201-1 DIN

ICS 21.060.10 部分替换DIN 25201:1986-11,

DIN 25202:1992-04, DIN 25203:1992-04

铁路车辆及其组件的设计准则

螺栓连接——

第1部分:螺栓连接的分类

共9页

德国标准化研究所(DIN )中的“铁路车辆标准化委员会(FSF )”

? 德国工业标准化研究所(DIN )(注册协会)?各种形式的复制,即使是摘 价格系列07

抄形式的复制,都要事先征得德国工业标准化研究所(DIN )的同意。 www.din.de 本标准由Beuth Verlag GmbH(Beuth 出版有限公司)独家销售,10772柏林。 www.beuth.de

w w

w .

b a

b a

k

e .n e

t

目录

前言....................................................................................................................................................3 引言....................................................................................................................................................4 1 适用范围.....................................................................................................................................4 2 规范性引用文件.........................................................................................................................4 3 风险等级......................................................................................................................................5 4 拧紧场合......................................................................................................................................5 4.1 拧紧场合1...............................................................................................................................5 4.2 拧紧场合2................................................................................................................................5 4.3 拧紧场合3................................................................................................................................5 5 螺栓连接的分类..........................................................................................................................6 6 螺栓连接的设计..........................................................................................................................7 6.1 概述. (7)

6.2 机械制造应用...........................................................................................................................7 6.3 电气应用...................................................................................................................................8 附录A (资料性附录) 拧紧场合1的实例. (9)

w w

w .

b a

b a k

e .n e

t

前言

本标准由“铁路车辆标准化委员会(FSF )”下属的“连接件工作委员会”(5.1)制定。 DIN 25201系列标准“铁路车辆及其组件的设计准则”由以下七部分组成: ——第1部分:螺栓连接的分类;

——第2部分:设计——机械制造应用; ——第3部分:设计——电气应用;

——第4部分:螺栓连接的安全; ——第5部分:防腐蚀保护; ——第6部分:连接尺寸; ——第7部分:安装。 上述各个部分综合到一起替代替代说明中提到的标准。

修改 与DIN 25201:1986-11、DIN 25202:1992-04、DIN 25203:1992-04相比,本标准做了下列修改:

a) 把上述标准综合在一起; b) 在编辑方面进行彻底的修订;

c) 新添加了“电气应用”。

以前的版本

DIN 25201:1986-11

DIN 25202:1992-04

DIN 25203:1992-04

w w

w .

b a

b a k

e .n e

t

引言

本标准适用于铁路车辆用螺栓连接的选择和应用。本标准应作为设计师选择螺栓连接的依据,并给设计师提供这方面详细的系统理论和概念等知识。

本标准原则上不免除用来验证结果的实验性研究和/或数值算法研究(FEM ——有限元法,BEM ——边界元法),尤其是在特别重要的螺栓连接时不能免除。

在设计螺栓连接时,应遵守本标准各个部分规定的要求。除了连接件,一个螺栓连接还包括待连接的构件。

1 适用范围

标准DIN 25201的本部分规定了螺栓连接的风险等级、拧紧场合及其种类,并以图表

的形式列出了它们之间的关系。

2 规范性引用文件

本标准以注日期或不注日期的方式,包含了其他规范性文件中的条款。本标准在适当的地方引用了这些规范性文件,这些被引用的规范性文件在此给出。对于注日期的规范性引用文件,只有当它包含了后来补充或修改的部分时,这些规范性引用文件的补充或修改单才适用于本标准。对于不注日期的规范性引用文件,应参照使用该规范性引用文件的最新版本(包

括修改单)。

DIN 7984 薄头内六角圆柱头螺栓 DIN 25201-2 铁路车辆及其组件的设计准则——螺栓连接——第2部分:设计——机械制造应用 DIN 25201-3 铁路车辆及其组件的设计准则——螺栓连接——第3部分:设计——电气应用 DIN 25201-4 铁路车辆及其组件的设计准则——螺栓连接——第4部分:螺栓连接的

安全 DIN 25201-5 铁路车辆及其组件的设计准则——螺栓连接——第5部分:防腐蚀保护 DIN 25201-6 铁路车辆及其组件的设计准则——螺栓连接——第6部分:连接尺寸 DIN 25201-7 铁路车辆及其组件的设计准则——螺栓连接——第7部分:安装 DIN EN ISO 10642 内六角埋头螺栓(ISO 10642:1997);德文版EN ISO 10642:1997/

注意:估计本标准将由DIN EN ISO 10642(2003-01)替代。

VDI 2230第1部分 高强度螺栓连接的系统计算——圆柱形旋入式连接──注意:纠

正过的再版本2003-10(注:VDI 为德国工程师协会标准)

w w

w .

b a

b a k

e .n e

t

3 风险等级

螺栓连接失效时可能发生的危险定义为三个风险等级。

风险等级不同,对螺栓连接的尺寸、安装和文件记录以及安装时所用的工具提出的要求也不相同。

风险等级分级如下: 风险等级H(高):

螺栓连接发生故障失效时,产生直接或间接的身体和生命危险和/或运行危险。 风险等级M(中): 螺栓连接发生故障失效时,导致铁路车辆发生功能性故障。

风险等级G(低):

螺栓连接发生故障失效时,最多导致乘客和/或工作人员感觉不舒适。 任何一个螺栓连接都可以归入上述三个等级的其中一级。

4 拧紧场合 螺栓连接的拧紧场合分类如下:

4.1 拧紧场合1

螺栓的允许安装预紧力不能直接采用,因为:

——安装预紧力受表面允许压力的严格限制(取决于其材料和几何形状); ——不能遵守设计原理的要求(螺栓应是最薄弱的部件;负荷过大时,只能在可加载

螺纹处断裂);

——螺栓头的几何形状只能部分地用来传递全部拧紧扭矩; ——追求“密封性”功能。 4.2 拧紧场合2

L k /d <5、安装时使用允许安装预紧力的螺栓连接,其中安装预紧力因为变形而减小(材料蠕变、振动、碰撞、温度变化等)。 4.3 拧紧场合3 L k /d ≥5并使用允许安装预紧力的螺栓连接。

w w

w .

b a

b a

k

e .n e

t

5 螺栓连接的分类

——机械制造应用

按照E DIN 25201-2的规定; ——电气应用

按照DIN 25201-3的规定; ——其它螺栓连接

本标准系列规定的其它螺栓连接是指使用自攻螺钉、木螺钉、内螺纹滚压螺钉、切削螺纹螺钉和刨花板螺钉的螺栓连接。这些螺栓连接的计算和设计在本标准中没有作详细说明。

w w

w .

b a

b a

k

e .n e

t

6 螺栓连接的设计

6.1 概述

6.2中的图1和图2显示了螺栓连接的风险等级、拧紧场合和种类之间的关系,并简要的介绍了采取的相应措施。

6.2 机械制造应用

t

螺栓连接

风险等级高中低

6.3 电气应用

螺栓连接

风险等级 H M G

图2 电气应用

w w

w .

附录A (资料性附录) 拧紧场合1的实例

——桶(槽)上的盖子用橡胶密封“仅 1/2 预紧力”,因为橡胶在全部的预紧力时流变的更厉害——使用胶粘剂加固螺栓连接,如防止拧松、丢失;

——圆柱头螺栓DIN 7984,埋头螺钉DIN EN ISO 10642,基于螺栓头的几何形状,只能利用适用于相应强度的允许安装预紧力的70%;

——螺母高度或旋进深度太小(限制扭矩)。

w w

w .

b a

b a k

e .n e

t

西南交大二年第2学期铁道车辆制动技术第3次作业

铁道车辆制动技术第3 次作业 16. 紧急制动时,GK 型制动机制动缸压力分阶段上升。 答:三个 17. F—8 分配阀有、、、、五个作用位置。 答:充气缓解位、常用制动位、制动保压位、缓解保压位、紧急制动位 18. 紧急放风阀中的先导阀起提高,从而提高紧急制动波速的作用。 答:紧急制动灵敏度 19. 由制动装置产生的与列车运行方向相反的外力,称为。 答:制动力 20. 我国现行铁规规定,列车运行速度不超过120km/h 的列车紧急制动距离限值为。答:800 m 21. 直接作用的三压力制动机有哪些特点? 答:1) 主活塞的动作与否决定于三种压力的平衡与否。2) 副风缸只承担在制动时向制动缸供风的任务而不参与主活塞的平衡。3) 具有阶段缓解的性能,但缓解比较慢。4) 具有彻底的制动力不衰减性。制动缸因漏泄而降压时,副风缸将经过供气阀口自动给制动缸补风,恢复其原有的空气压强。5) 制动与否只取决于列车管减压量而与减压速度无关,即缓慢减压也制动。 22. 结合下图,简述直接作用的三压力制动机的工作原理。 答:1) 制动:列车管获得一定的减压量,工作风缸的空气压力推动主活塞上移,使活塞杆上方端接触供排气阀,将排气的小阀口(活塞杆中心孔上端)关闭,活塞杆继续上移,顶起供排气阀,副风缸的压力空气→制动缸;2) 保压:列车管停止减压,制动缸不断增压,当列车管、工作风缸、制动缸的压力处于新的平衡状态时,活塞杆稍稍下移,关闭供排气阀,活塞杆中心孔上端仍贴在供排气阀上,处于关闭状态。副风缸停止向制动缸供风,制动缸也没有连通大气。3) 缓解:列车管获得一定的增压量,向下作用于主活塞的力增大,活塞杆下移,活塞杆上端排气的小阀口开放,制动缸的压力空气→中空的活塞杆→大气。缓解同样有保压位。 23. 软性制动机和硬性制动机的基本特征是什么? 答:软性制动机的特点(以三通阀为例):①具有一定的缓解稳定性。②具有必要的制动灵敏度。③列车管压力高于副风缸20~30kpa,制动机一次缓解完毕。④三通阀的作用只取决于主活塞两侧的压差,与定压无关,因此适用于不同的列车管定压。硬性制动机有以下特点:①缓慢减压也制动,即没有稳定性。硬性制动机不管列车管的减压速度快慢只要减压量达到一定程度,就能发生制动作用。这主要是因为工作弹簧的压力没有衰减性造成的。 ②具有阶段缓解的性能,列车管必须达到工作弹簧的定压,制动机才能够彻底缓解,而且缓解的快慢受列车管增压速度的制约。③列车管的定压在应用中不能改变,如果工作弹簧是按照500kpa设置的,则列车管风压即使增加到600kpa 也起不到效果,制动时列车管减压至500kpa 以上时是不会发生制动作用的。 24. 现代机车对列车管压力是如何控制的? 答:现代机车对列车管空气压强的控制也是间接作用式的:在自动制动阀与列车管之间插进了一个固定容积的均衡风缸和一个中继机构。控制关系:自动制动阀→均衡风缸→中继阀→列车管压强。 25. 结合车辆分配阀的简图,叙述其作用原理。 答:1)制动:列车管减压,主活塞在工作风缸与列车管的压力差作用下左移至制动位,滑阀左移,工作风缸向容积室充风,同时进入第二活塞下方,推动第二活塞上移,第二活塞杆顶开制动缸供排气阀,副风缸通过供排气阀向制动缸充风,实现制动作用。制动缸的压力空

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁 间的 最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距 t0 不得大于 下表 所推荐的数值 扳手空间尺寸 螺栓间距 t 0 注:表中 d 为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成 4,6,8 等偶数,以便在圆周上钻孔时的分度 和画 线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上 保 证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图 2)等。

铁路货车制动装置检修规则

铁路货车制动装置检修规则(2) 1 总则 1.1制动装置是铁路货车的重要组成部分,是铁路货物运输秩序和安全的重要保障。货车制动装置检修的目的是恢复制动装置的性能。为满足铁路运输提速、重载的需要,保证运用货车制动装置的技术状态,适应制动新材料、新技术、新工艺、新结构的发展,统一制动装置检修技术要求和质量标准,根据《铁路技术管理规程》、《铁路货车厂修规程》、《铁路货车段修规程》、《铁路货车站修规程》、《铁路货车运用维修规程》以及国家、铁路专业技术管理标准有关要求和铁路货车制动技术发展趋势,特制订本规则。 1.2 本规则是对货车各级检修规程中涉及到制动装置零部件检修及试验部分内容的细化和补充,是制动装置零部件检修及试验的专业化操作性文件。适用于铁路货车制动装置主要零部件分解后的检修、试验和装车要求。制动装置及其主要零部件在现车上的检查和从车辆上拆下的分解检修范围及要求按《铁路货车厂修规程》、《铁路货车段修规程》、《铁路货车站修规程》、《铁路货车运用维修规程》和铁道部颁发的其他有关文件、电报规定执行。 1.3 铁路货车制动装置的检修坚持质量第一的原则,

贯彻“以装备保工艺、以工艺保质量、以质量保安全”的指导思想,实现工艺规范、装备先进、质量可靠、管理科学。 1.4铁路货车制动装置检修以状态修为主,逐步扩大换件修、专业化集中修的范围,主要零部件的检修周期与货车检修周期一致。 1.5铁路货车制动装置的检修须在铁道部批准的单位进行,检修单位的工艺条件须符合本规则的要求。货车制动装置检修单位须按本规则制定检修工艺、标准和作业指导书,加强工艺控制,提高工艺水平,建立健全质量保证体系,全面落实质量责任制,严格执行质量检查制度。检修单位应设置制动专职技术人员,技术管理人员和操作人员须掌握本规则和车辆检修的有关规定及技术要求,制动装置检修、试验人员须具备基本的业务知识,经过专门培训,具备上岗资格。 1.6 铁路货车重要制动零部件实行质量保证、寿命管理和生产资质管理。装车使用的货车空气制动阀、空重车阀、折角塞门、组合式集尘器、制动缸及缸体、编织制动软管总成、闸瓦间隙自动调整器(以下简称闸调器)、脱轨自动制动装置、人力制动机、制动梁、闸瓦、闸瓦托、橡胶密封件等零部件,须由铁道部批准的厂家制造、修理。车辆制造、检修和装车单位须

机械设计试题联接

联 接 一、判断题 在轴端的轴毂联接,为了便于安装最好采用C 型平键,而不是A 型或B 型平键。(√ ) 普通平键按构造分为ABC ,C 常用于轴端与毂类的连接,B 放在铣出的键槽中,对于尺寸较大的键,需要用紧固螺钉,A 宜放在轴上用键槽铣刀铣出的键槽中。平键的两侧是工作面,工作时靠挤压来传递转矩。静连接的主要失效形式为压溃,动连接的主要失效形式为工作面的磨损。 与矩形花键相比,渐开线花键的强度高。(√ ) 渐开线花键制造精度高,花键齿的根部强度高,应力集中小,易于对中。适用于载荷较大,定加工方便,用小径定心,易于保证定心的精度。适用于静连接或轻载连接 采用两个普通平键时,为使轴与轮毂对中良好,两键通常布置成相隔180°。(√ ) 应布置在沿周向相隔180°两个半圆键应在同一条母线上,两个楔键应布置在沿周向90°~120°,两个键在校核中按1.5个计算,一般键长不超过1.6~1.8 d 受轴向外载荷的紧螺栓联接,螺栓在该轴向外载荷作用下所受的总拉力(F2)一定不与轴向外载荷(F)相等。( ×)螺栓的总拉力等于残余预紧力与工作拉力之和,且b b m C F F C C ?=+,则螺栓的总拉力为F0+△F ,有可能相等。 受横向变载荷的普通螺栓联接中,螺栓所受的力为静载荷。( ×)会有变化 双向传力的滑动螺旋采用的螺纹类型中,以梯形和锯齿形螺纹应用最广。( ×) 锯齿形与梯形螺纹应用广,但是锯齿形只能单向传力,矩形的效率最高。 承受横向载荷作用的螺栓联接中,螺栓一定是受剪切作用的。( ×) 普通螺栓所受应为扭转切应力,剪切作用的是铰制孔螺纹

二、单项选择题 1.键的长度主要根据______来选择。 (a )传递转矩的大小 (b )轮毂的长度 (c )轴的直径 2.键的剖面尺寸通常是根据______按标准选择。 (a )传递转矩的大小 (b )传递功率的大小 (c )轮毂的长度 (d )轴的直径 3.轴的键槽通常是由______加工而得到的。 (a )插削 (b )拉削 (c )钻及铰 (d )铣削 5.当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用______。 (a )螺栓联接 (b )螺钉联接 (c )双头螺柱联接 (d )紧定螺钉联接 6.当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆装时,往往采用______。 (a )螺栓联接 (b )螺钉联接 (c )双头螺柱联接 (d )紧定螺钉联接 7.承受预紧力p Q 的紧螺栓联接在受工作拉力F 时,残余预紧力为'p Q ,则螺栓所受的总拉力Q 为______。 (a )P Q F Q += (b )'+=P Q F Q (c )'+=p P Q Q Q (d )F C C C Q Q m b b p ++'= 8.对于外载荷是轴向变载荷的螺栓联接,螺栓所受总拉力在Q Q P ~之间变化,则螺栓的应力变化 规律按______。 (a )常数=r (b )常数=min σ (c )常数=m σ 9.若螺纹的直径和螺旋副的摩擦系数一定,则拧紧螺母时的效率取决于螺纹的_____ _。 (a )螺距和牙型角(或牙形斜角) (b )线数与升角 (c )导程与牙型角(或牙形斜角) (d )螺距与升角 10.在常用的螺旋传动中,传动效率最高的螺纹是______。

铁路客车车体钢结构设计技术(精)

铁路客车车体钢结构设计技术 作者杜彦品 内容提要:本文叙述了铁路客车车体钢结构的特点及分类,重点介绍了25型客车碳钢车体钢结构的组成部分、结构设计及主要技术要求,对铁路客车车体钢结构材料的选用及结构设计将有积极的帮助。 ※※※ 1概述 车体钢结构是铁路客车最基本的结构,为铁路客车走行部、制动装置、连接缓冲装置、车辆内部设备以及内装提供了安装的空间和基础。新造25型客车车体钢结构为碳钢车体全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成,俗称薄壁筒形车体结构。目前我国的新造25型车有两种承载结构:一种是无中梁薄壁筒型整体承载结构,另一种是有中梁薄壁筒型整体承载结构(如行李车和邮政车。随着车辆的用途和生产工艺条件的不同,各种25型客车的结构不全相同,但其外形尺寸和结构形式则基本一致。 2 车体结构的分类 车体结构按车体所用材料分为以下三种: 碳素结构钢车体——我国新造25型客车车体; 不锈钢车体——我公司正在研制的200km/h客车车体, CRH1“和谐号”动车组的车体; 铝合金车体——部分地铁车体、CRH2、CRH3、CRH5“和谐号”动车组的车体。 3 车体钢结构组成

车体钢结构按部位可分为四个大部件:底架钢结构、侧墙钢结构、车顶钢结构、端墙钢结构。车钩缓冲装置、风挡、脚蹬等安装在大部件上。现就YZ25G(T 型硬座车(无中梁薄壁筒型整体承载结构和XL25G型行李车(有中梁薄壁筒型整体承载结构来详细说明车体钢结构的构造和特点。YZ25G硬座车车体钢结构如图1所示。 4 底架钢结构 4.1 底架结构组成 底架钢结构由端牵枕、枕内横梁、枕外横梁、枕后纵向梁、侧梁、枕外铁地板和枕内波纹地板等组成,如图2所示。 端牵枕分为端梁、牵引梁和枕梁,如图3所示。 4.2 底架结构设计 4.2.1 端梁 端梁由6mm厚钢板压制而成,断面为“[”,YZ25G型硬座车端梁高400mm靠近侧梁处高180mm,称为“转角”。在转角下翼面焊有3mm的围板,围板可以在端部遮挡脚蹬,起到美观的作用。在端梁中部开有安装车钩用的缺口,宽度为345mm,俗称“钩门”。YZ25T型硬座车端梁高度为458mm,钩门的宽 度尺寸为790mm,端梁在钩门处与牵引梁相互组焊。 4.2.2 牵引梁 自枕梁到端梁间的中梁称为牵引梁,YZ25G型硬座车牵引梁由两根30b型槽钢及牵引梁上下盖板组焊而成。其上盖板厚4mm,宽464mm,下盖板厚8mm,宽 490mm。为了符合在牵引梁腹板间安装车钩和缓冲器的尺寸要求,两槽钢腹板间距为350mm,并将牵引梁靠近端梁的一端加高到400。在牵引梁两槽钢腹板内侧铆接有前后从板座、焊有磨耗板和防跳板。YZ25T型硬座车牵引梁由两根8mm的钢板

螺纹连接习题解答(讲解)

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力:[σ]=σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: /(4×1.3)=178 ×π×8.3762/5.2 N F′=[σ]πd2 1 =7535 N (2)求牵引力F R: =7535×0.15×2×由式(11—25)得F R=F′fzm/K f

1/1.2N=1883.8 N (取K =1.2) f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、= = σb200MPa 。 (a)确定许用剪应力

铁道车辆车轮和制动技术的发展趋势

文章编号:100227610(2004)0120008205 铁道车辆车轮和制动技术的发展趋势 Francois Batisse(法) 摘 要:介绍了欧洲对铁道车辆车轮和制动性能所进行的改进,探讨了美国货车ECP制动技术在欧洲运用的可能性。 关键词:铁道车辆;车轮;制动;发展 中图分类号:U270133;U270.35 文献标识码:B Development T endency of Wheels and Braking on Rolling Stock Francois Batisse(France) Abstract:The improvements made for the rolling stock wheels and braking performance in Europe are de2 scribed1The possibility of application of the ECP braking technology of freight cars in the United States to cars in Europe is discussed1 K ey w ords:rolling stock;wheel;braking;development 2001年9月17日—21日,在罗马举行了国际轮轴会议,共有来自29个不同国家的444名车轮专家参加,给所有对铁道车辆感兴趣的人留下了深刻的印象。事实上,铁道车辆的运行和制动是专业性极强的问题,属于铁路行业的重点研究范畴。普通人可能认为车轮是一成不变的,没有任何“重新发明”的可能。而各届国际轮轴大会的交流论文都不公开发表,因此,大部分铁路行业的人员以及专业报刊的读者,并不了解铁道车辆车轮一直在本质上不断进行的演变。200多年以收稿日期:2003206209来,铁道车辆的车轮并不是一成不变的如同乔治斯蒂芬时代一样,只是“在钢轨上运行的钢轮”(该定义是英语国家对车轮的最原始定义,也用来嘲讽那些妄图改变众所周知的事物的人,即“重新设计车轮”的人)。但是,专业人员确实在不断地重新设计车轮。 事实上,在谈及高速列车及其舒适性和现代线路时,首先应该提到的是车轮和制动,尤其是速度达到甚至超过300km/h的线路,例如马德里和巴塞罗那联线,以及未来的TGV东欧线。同时,目前美国正在进行着一场制动革命,而欧洲尚未开始, 即对轴重越来越 初衷是为了解决轮对的蛇行问题,以提高车辆的临界 速度,独立旋转车轮正好为低地板的实现提供了必要条件,这一技术本身目前还不尽成熟。而城市轨道车辆的稳定性并不是主要矛盾,相对而言曲线通过才是值得关注的问题。 其次,国外的地面有轨电车交通已日益暴露了载客量不足及速度难以提高的问题,城市公共交通运输的根本解决之道是避免线路的平面化交叉,那种与汽车同时在街道路面行驶的有轨交通模式是与这种原则不相符的。 近年来我国的城市轨道交通发展较快,但无论是在系统规划、基础建设、设备选型及运营管理等方面还处于初级阶段,既面临着认识不深、缺乏经验的不足,同时又具有可以直接采用最新技术、避免走弯路及起点高的优势。参考文献: 赵云生 校

机械设计--螺栓组连接的设计

螺栓组连接的设计 各位评委老师: 上午好,今天我要进行说课的题目是《螺栓组连接的设计》。首先我们来进行教材分析。 一、教材分析 本节课出自本节课出自高等教育出版社出版的《机械设计》第八版第二篇连接中的第五章的第5节。本节贯穿了机械设计以后的整个教学,同时也是形成学生合理知识链的重要环节。学好本节知识不仅能使学生认识螺栓组连接的结构设计和学会螺栓组连接的受力分析,并且为后续的机械设计课程设计打下扎实的理论基础。 二、教学目标 根据上述教材分析,考虑到学生已有的认知结构心理特征,结合《机械设计》教学大纲要求,制定如下的教学目标: 1、知识目标 (1)了解键连接的主要类型和应用特点; (2)掌握平键连接的强度校核方法。 2、能力目标 (1)通过讲练结合,培养学生分析和解决问题的能力。 (2)通过本节课的教学使学生掌握键连接的设计方法。 (3)通过分组学习方式,培养学生与他人沟通交流,分工合作的能力。 3、情感目标 培养学生认真、细致的学习态度和从事工程技术工作认真、严谨的工作作风。 三、教学重点和难点 1、教学重点 在了解键连接的功能和平键连接的结构形式及应用后如何进行平键连接的强度校核。2、教学难点 如何根据实际要求进行键连接的选择和平键连接的强度校核方法。 为了讲清本节的重点和难点,使学生能达到本节课设定的教学目标,接下来我谈谈本节课的教法和学法。 四、教法 我们知道机械设计制造类专业是为了培养学生实际动手,解决现实生产中实际问题的能力。因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识,解决实际问题的思维过程。 考虑到大二的学生对专业知识的认知,我主要采取讲授法和互动法相结合,培养学生将课堂教学和自己主动认知学习结合起来的能力,引导学生全面地观察身边的事物,养成严谨细致、一丝不苟的科学态度。 当然教师自身也是非常重要的教学资源。教师应该通过课堂教学感染和鼓励学生的运用,充分调动学生参与课堂教学互动的积极性,激发学生对解决实际问题的渴望,并且要培养学生理论联系实际的能力,从而达到最佳的教学效果。 基于本节的内容特点,我主要采用以下的教学方法: 直观演示法:利用多媒体课件的手段进行直观的演示,激发学生学习兴趣,活跃课堂气氛,促进学生对知识的掌握。 案例分析法:以具体的工程案例引导学生对实际问题解决的能力。

jgj8291 钢结构高强度螺栓连接的设计、施工及验收规程

钢结构高强度螺栓连接的设计、施工及验收规程JGJ82-91 目录 第一章总则 第二章连接设计 第一节一般规定 第二节摩擦型连接的计算 第三节承压型连接的计算 第四节接头设计 第五节连接构造要求 第三章施工及验收 第一节高强度螺栓连接副的储运和保管 第二节高强度螺栓连接构件的制作 第三节高强度螺栓连接副和摩擦面的抗滑移系数检验 第四节高强度螺栓连接副的安装 第五节高强度螺栓连接副的施工质量检查和验收 第六节油漆 附录一非法定计量单位与法定 附录二本规程用词说明 附加说明 主编单位:湖北省建筑工程总公司 批准部门:中华人民共和国建设部 施行日期:1992年11月1日 关于发布行业标准《钢结构高强度螺栓连接的设计、施工及验收规程》的通知 建标〔1992〕231号 各省、自治区、直辖市建委(建设厅),计划单列市建委,国务院有关部、委: 根据原国家建工总局(82)建工科字第14号文的要求,由湖北省建筑工程总公司主编的《钢结构高强度螺栓连接设计、施工及验收规程》,业经审查,现批准为行业标准,编号JGJ82-91,自一九九二年十一月一日起施行。 本标准由建设部建筑工程标准技术归口单位中国建筑科学研究院归口管理,其具体解释等工作由湖北省建筑工程总公司负责。 本标准由建设部标准定额研究所组织出版。 中华人民共和国建设部 一九九二年四月十六日 主要符号 作用和作用效应 F——集中荷载; M——弯矩; N——轴心力; P——高强度螺栓的预拉力; V——剪力。 计算指标

——每个高强度螺栓的受拉、受剪和承压承载力设计值; f——钢材的抗拉、抗压和抗弯强度设计值; ——高强度螺栓的抗拉、抗剪和承压强度设计值; σ——正应力。 几何参数 A——毛截面面积; An——净截面面积; I——毛截面惯性矩; S——毛截面面积矩; α——间距; D——直径; D0——孔径; L——长度; Lz——集中荷载在腹板计算高度边缘上的假定分布长度。 计算系数及其它 n——高强度螺栓的数目; n1——所计算截面上高强度螺栓的数目; nf——高强度螺栓传力摩擦面数目; μ——高强度螺栓摩擦面的抗滑移系数; Ψ——集中荷载的增大系数。 第一章总则 第1.0.1条为使在钢结构工程中,高强度螺栓连接的设计、施工做到技术先进、经济合理、安全适用、确保质量,制定本规程。 第1.0.2条本规程适用于工业与民用建筑钢结构工程中高强度螺栓连接的设计、施工与验收。 第1.0.3条高强度螺栓连接的设计、施工及验收,除按本规程的规定执行外,尚应符合《钢结构设计规范》(GBJ17)、《冷弯薄壁型钢结构技术规范》(GBJ18)及《钢结构工程施工及验收规范》(GBJ205)的有关规定。 设计在特殊环境(如高温或腐蚀作用)中应用的高强度螺栓连接时,尚应符合现行有关专门标准的要求。 第1.0.4条本规程采用的高强度螺栓连接副,应分别符合《钢结构用大六角头螺栓》(GB1228)、《钢结构用高强度大六角螺母型式与尺寸》(GB1229)、《钢结构用高强度垫圈型式与尺寸》(GB1230)、《钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件》(GB1231)或《钢结构用扭剪型高强度螺栓连接副形式尺寸》(GB3632)和《钢结构用扭剪型高强度螺栓连接副技术条件》(GB3633)的规定。 第1.0.5条在设计图、施工图中均应注明所用高强度螺栓连接副的性能等级、规格、连接型式、预拉力、摩擦面抗滑移系数以及连接后的防锈要求。当设计中选用两种或两种以上直径的高强度螺栓时,还应注明所选定的需进行抗滑移系数检验的螺栓直径。 第1.0.6条在高强度螺栓施拧、构件摩擦面处理及安装过程中,应遵守国家劳动保护和安全技术等有关规定。 第二章连接设计 第一节一般规定

铁道车辆设计车体部分

二、车体设计部分 本车体设计参考手册主要收集敞车、平车、漏斗车、罐车方面的常用资料,其它车种的资料有待于今后增补充实。 1 车体设计参数(见表1) 表1 车体设计参数 底架中梁内侧距/ mm 350 中间垫板处/mm 33012+- 前后从板座两冲击面间的距离/mm 62503- 上心盘下平面至上旁承下平面之距离 间隙旁承/mm 66 弹性旁承/mm 76 制动主管两端部中心与车钩中心线的左右水平距离 13型车钩/mm 365 17型车钩/mm 365、390、457 折角塞门软管接口中心与车钩水平中心线的垂直距离/mm 30~60 折角塞门中心与钩舌内侧面连接线的前后水平距离/mm 350 解钩链松余量/mm 45~55 车钩高度(空车)/mm 880±10 平车相邻柱插中心距离/mm ≤2000 链式手制动机制动轴中心线与车钩中心线的左右水平距离/mm 490~500 脚蹬距轨面高度(空车)/mm Max 500 Min 430 NSW 手制动轮中心与踏板上平面距离(AAR 标准)/mm 标准(30″) 762 最大(40″) 1016 最小(25″) 635 普通手制动轮顶面与踏板上平面距离/mm (平车除外) 950~1050 手制动轮外面与端板之距离/mm (棚车、敞车) ≥80 两扶手间距离/mm 350~450

2 车体与转向架相关位置的确定 车体的高度尺寸是按空车时标注的,车体各部的高度取决于转向架下心盘(包括磨耗盘)面的高度,由下心盘高减去车体自重使转向架弹簧下沉量,就是车体上心盘下平面的高度。据此算出车体各部高度尺寸。 采用弹性旁承的转向架时,车体上心盘下平面至上旁承下平面的垂直距离由转向架下心盘面至弹性旁承的距离来确定。根据铁运[2000]12号文《关于加快既有铁路货车120km/h 提速改造的通知》,上心盘下平面至上旁承下平面的距离为:敞车、棚车7642 +-mm ,罐车76mm ±1mm ,平车76mm ±2mm ,现新设计车一般采用76mm ±2mm 。 3 车钩缓冲装置在车体上安装位置的确定 3.1 13型车钩缓冲装置 3.1.1 13型车钩缓冲装置主要尺寸 13型车钩缓冲装置主要尺寸见图1。 图1 13型车钩缓冲装置 3.1.2 钩尾框托板压型高度尺寸(H )的确定 钩尾框托板压型高度尺寸(H )的确定见图2。

铁路货车车辆制动技术

铁路货车车辆制动技术 发表时间:2019-01-08T10:32:59.450Z 来源:《电力设备》2018年第24期作者:赵宏伟 [导读] 摘要:针对铁路货车普遍的闸瓦磨耗不均匀及不易缓解等现象,运用解析法和多体动力学仿真分析法,预测了集成制动系统的制动和缓解性能。 (中车齐齐哈尔车辆有限公司质量管理部高级工程师黑龙江齐齐哈尔 161002) 摘要:针对铁路货车普遍的闸瓦磨耗不均匀及不易缓解等现象,运用解析法和多体动力学仿真分析法,预测了集成制动系统的制动和缓解性能。首先,根据其结构组成和工作原理,计算各闸瓦压力和缓解阻力;然后,在RecurDyn软件中建立虚拟样机,针对制动、缓解两种工况分别进行仿真试验,分析各闸瓦的压力分布、缓解时间、缓解阻力、缓解位移,从而预测制动系统的制动和缓解性能。研究发现集成制动装置制动时,L1位制动力比L2位大8.47%,L1位比R1位大5.51%,可能导致踏面磨耗不均匀;缓解时,各闸瓦缓解时间基本相同,当摩擦系数设为0.15时,可保证缓解时各闸瓦的缓解位移均匀及各轮瓦的间隙相同。预测结果为铁路货车集成制动系统的运用改善及国产化提供理论参考依据。 关键词:集成制动系统;制动和缓解性能预测;多体动力学分析;RecurDyn 引言 通过多年研究与发展,我国货车转向架已基本定型,所以改善制动装置成为铁路货车发展的关键。我国传统的制动装置受结构位置的限制,甚至需要多级杠杆进行传动,制动装置的布局较为复杂,不但降低了传动效率,也降低了制动与缓解的可靠性,不能满足我国货车发展的需求。集成制动系统是指制动缸集成在转向架上,每个转向架可作为独立的制动单元控制车辆制动与缓解的制动系统,由于省去了大量的杠杆结构,具有结构紧凑、传动效率高、安装方便、质量轻等优点。 1结构与工作原理分析 1.1组成结构 集成制动装置主要由主制动梁、副制动梁、主制动杠杆、副制动杠杆、制动缸、推杆、闸瓦间隙调节器(闸调器)、闸瓦等部件组成。制动缸固装在制动梁上,主、副制动杠杆通过制动梁支柱水平安装,缸内推出的制动力通过主制动杠杆、闸调器、副制动杠杆和推杆在同一水平面内传递。 1.2工作原理分析 当车辆实施制动时,压力空气充入制动缸内推动活塞运动,制动力通过活塞杆传出带动主制动杠杆绕制动梁支柱转动,同时主制动梁有向轮对方向的运动趋势。主制动杠杆推动闸调器,将制动力传递到副制动杠杆端,带动副制动梁向车轮方向运动,使闸瓦与踏面接触实施后轮对的制动。副制动杠杆转动的同时带动推杆移动,将力传递到制动缸后侧,推动前制动梁实施前轮对的制动[1]。当车辆实施缓解时,在主、副制动梁自身重力的作用下滑块沿滑槽方向下滑,同时制动缸内的缓解弹簧被压缩后产生回复力,推动活塞反向运动,促使制动梁带动闸瓦与轮对踏面分离,使得制动装置缓解。 2仿真实验方案设计 2.1建立多体动力学模型 首先,建立集成制动装置虚拟样机模型。在Pro-E软件中建立好制动装置的三维模型,保存为SETP格式后导入到RecurDyn软件中。 然后,对虚拟样机进行简化处理。为提高仿真速度,突出研究重点,需简化虚拟样机模型,如删掉虚拟样机中不影响制动缓解运动的固定部件,对理论上不存在相对运动的部件进行合并及布尔加操作等。 最后,对虚拟样机模型添加接触、约束和外载荷。在各接触面间添加接触,定义相应的刚度、阻尼、摩擦因素,对需要限制自由度的部件添加约束,如滑槽、轮对与大地间添加固定副等。外部载荷即制动力与缓解力。在制动试验中,添加由制动缸直接对活塞杆施加的外部载荷—制动力P,按制动缸内压强值和活塞面积计算出P=19445N,由于制动缸内进出气是渐变的过程,所以通过STEP函数控制制动力变化。实际缓解弹簧需提供的缓解力为700N,实验中通过定义弹簧的自由长度、刚度、阻尼等参数来实现[2]。 2.2试验工况设计 (1)制动试验。制动力函数从0逐渐增大到P,然后保持最大值不变,使机构最终达到动态平衡状态。由于制动时,各位闸瓦压力不均会导致车轮轮缘和踏面磨耗不均,甚至轮径超差,影响车辆的正常运行,引发事故,因此以同轴和同侧的闸瓦压差为评价指标,分析闸瓦压力的分布均匀性,从而预测制动装置的制动性能。 (2)缓解试验。制动力函数从0逐渐增大到P,然后逐渐减小到0,缓解弹簧受压缩后施加反向力于活塞杆上实施缓解。缓解时间反映各闸瓦缓解的同步性,缓解阻力反映各闸瓦缓解的难易程度,缓解位移的大小反映各闸瓦的缓解状态。因此以各闸瓦的缓解时间、缓解阻力、缓解位移为评价指标,分析制动装置的缓解性能。实验定义闸瓦与车轮踏面间的接触正压力连续为0时为缓解,考虑滑槽磨耗板与滑块间摩擦系数的改变对机构缓解性能的影响,根据《铁路货车组合式制动梁滑块磨耗套技术条件(试行)》,分别设置0.05、0.07、0.09、0.11、0.13和0.15六种摩擦系数进行对比实验。 3试验结果分析 3.1制动试验结果分析 (1)同侧闸瓦正压力分布情况:L1位比L2位大8.47%,R1位比R2位大3.44%,制动装置L侧轮瓦压差较大,R侧分布较为均匀; (2)同轴两瓦压力分布情况:L1位比R1位大5.51%,L2位比R2位大0.62%,主制动梁轮瓦压差较大,副制动等压力分布均匀。由此可见,集成制动装置轮瓦压力分布不均匀,主制动梁上有制动缸侧L1位闸瓦正压力明显偏大,副制动梁侧两闸瓦正压力大小基本相当。在实际运行时,经过反复多次制动后,易产生车轮踏面不同程度的磨耗现象,导致轮径差超差。 3.2缓解试验结果分析 (1)各位闸瓦的缓解时间:同一制动梁两闸瓦的缓解时间基本相同,副制动梁两闸瓦缓解同步性更好,主制动梁闸瓦R1位的缓解时间比L1位略短;总体上各位闸瓦缓解时间相差甚微,几乎同时缓解; (2)各位闸瓦的缓解阻力:主制动梁的摩擦阻力大于副制动梁,且主制动梁有制动缸端L1位的摩擦阻力略大于无制动缸端R1位,副制动梁R2位摩擦阻力略大于L2位;随着摩擦系数的增大,各制动梁的摩擦阻力基本呈线性增长,且主制动梁比副制动梁增长幅度大,主、

西南交大二年第2学期铁道车辆制动技术第1次作业

铁道车辆制动技术第1次作业 16. 在制动距离计算中,列车制动距离是由和两部分组成。 答:空走距离,有效制动距离 17. 列车换算制动率是与列车所受重力之比值,是反映列车制动能力的参数。 答:列车换算闸瓦压力 18. 附加阻力主要有和。 答:坡道附加阻力,曲线附加阻力,隧道附加阻力 19. 在铁路牵引与制动计算中,将阻力与其相应重力之比称为。 答:单位阻力 20. 机械式防滑器是由和两部分组成。 答:传感器,排风阀 21. 常用制动和紧急制动各有什么特点? 答:常用制动:正常情况下为调速或进站停车所施行的制动。特点是作用缓和,制动力可调,只用到列车制动能力的20%~80%,一般只用50%。紧急制动:紧急情况下,为了尽快停车而施行的制动,也称非常制动。作用迅猛,用尽所有的制动能力。 22. 简述现有《技规》对列车紧急制动距离限制的规定。 答: 23. 为何要用粘着的概念代替静摩擦?粘着系数的影响因素有哪些? 答:车轮和钢轨在很高的压力作用下部有少许变形,轮轨间实际并非点接触,而是椭圆形面接触;列车运行中不可避免地要发生各种冲击和振动;车轮踏面是圆锥形的,车轮在钢轨上滚动的同时,必然伴随着微量的轮轨间的纵向和横向滑动。所以,轮轨接触面不是纯粹的静摩擦状态,而是“静中有微动”或“滚中有微滑”的状态。因此,在铁路牵引和制动理论中,轮轨间的这种接触状态称为“粘着状态”。粘着系数的影响因素主要有两个:列车运行速度和车轮和钢轨的表面状况。 24. 什么是制动率?制动率的取值为什么不能太大也不能太小? 答:制动率用来表示车辆制动能力的大小。分为以下三种: 1) 轴制动率:一个制动轴上的全部闸瓦压力与该轴轴重的比值,用表示。公式为:;为一根制动轴上全部闸瓦压力之和;为一根制动轴的轴重。2) 车辆制动率:一辆车总闸瓦压力与该车总重的比值,用表示。公式为3) 列车制动率:全列车总闸瓦压力与列车总重量之比值,用表示。公式为:-机车计算重量总和(t);G-牵引重量(t)。车辆制动率太大,会造成车轮被抱死在钢轨上滑行;车辆制动率太小,列车在规定的距离内听不了车。 25. 影响闸瓦摩擦系数的因素有哪些? 答:闸瓦摩擦系数的影响因素主要有四个:闸瓦材质、列车运行速度、闸瓦压强 和制动初速。 26. 与闸瓦制动相比,盘形制动有哪些优缺点? 答:(与闸瓦制动相比),盘形制动有下列主要优点:优点:①大大减轻车轮踏面的热负荷和机械磨耗。②可按制动要求选择最佳摩擦副(采用闸瓦制动时,车轮作为摩擦副的一方,其构造和材质不能根据制动的要求来选择) ,盘形制动的制动盘可以设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为采用摩擦性能较好的合成材料闸片创造了有利的条件,适用于高速列车。③制动平稳,几乎没有噪声。缺点:①车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,可通过加装踏面清扫器或采用以盘形为主、盘形加闸瓦的混合制动方式来改善粘着,加装防滑器并不能改善粘着。②制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。这恰恰与高速列车的要求相反。 27. 什么是磁轨制动?磁轨制动的特点是什么?

高强度螺栓连接的设计计算.

第39卷第1期建筑结构2009年1月 高强度螺栓连接的设计计算 蔡益燕 (中国建筑标准设计研究院,北京100044) 1高强度螺栓连接的应用 高强度螺栓连接分为摩擦型和承压型。《钢结构 (G设计规范》B50017—2003)(简称钢规)指出“目前制 造厂生产供应的高强度螺栓并无用于摩擦型和承压型连接之分”“,因高强度螺栓承压型连接的剪切变形比摩擦型的大,所以只适用于承受静力荷载和间接承受动力荷载的结构”。因为承压型连接的承载力取决于钉杆剪断或同一受力方向的钢板被压坏,其承载力较之摩擦型要高出很多。最近有人提出,摩擦面滑移量不大,因螺栓孔隙仅为115~2mm,而且不可能都偏向一侧,可以用承压型连接的承载力代替摩擦型连接的,对结构构件定位影响不大,可以节省很多螺栓,这算一项技术创新。下面谈谈对于这个问题的认识。 在抗震设计中,一律采用摩擦型;第二阶,摩擦型连接成为承压型连接,要求连接的极限承载力大于构件的塑性承载力,其最终目标是保证房屋大震不倒。如果在设计内力下就按承压型连接设计,虽然螺栓用量省了,但是设计荷载下承载力已用尽。如果来地震,螺栓连接注定要破坏,房屋将不再成为整体,势必倒塌。虽然大部分地区的设防烈度很低,但地震的发生目前仍无法准确预报,低烈度区发生较高烈度地震的概率虽然不多,但不能排除。而且钢结构的尺寸是以mm计的,现代技术设备要求精度极高,超高层建筑的安装精度要求也很高,结构按弹性设计允许摩擦面滑移,简直不可思议,只有摩擦型连接才能准确地控制结构尺寸。总体说来,笔者对上述建议很难认同。2高强度螺栓连接设计的新进展 钢规的715节“连接节点板的计算”中,提出了支撑和次梁端部高强度螺栓连接处板件受拉引起的剪切破坏形式(图1),类似破坏形式也常见于节点板连接,是对传统连接计算只考虑螺栓杆抗剪和钉孔处板件承压破坏的重要补充。 1994年美国加州北岭地震和1995年日本兵库县南部地震,是两次地震烈度很高的强震,引起大量钢框架梁柱连接的破坏,受到国际钢结构界的广泛关注。

螺栓连接设计步骤1

步骤: 1.受力分析;2.强度计算 普通螺栓 一、当螺栓同时受预紧力和工作拉力时 1.受力分析 计算初拉力0F 和工作拉力z F F ∑= 2.计算螺栓总拉力 F C C C F F m b b ++=02 3.螺栓危险截面拉伸强度条件 []σπσ≤=2124 3.1d F ca 二、当螺栓同时受横向载荷和转矩时 1.受力分析 将力向形心简化以找出受力最大的螺栓及其所受的力; 由横向载荷z F F ∑=1max ,由转矩∑==z i i S r f T K F 1 2max (即防滑条件),求得最大的受力αcos 22max 1max 22max 21max 0max F F F F F ++= 2.螺栓危险截面拉伸强度条件 []σπ σ≤=2 10 43.1d F ca 说明: 1.上述2种情况较简单,请思考普通螺栓受力的组合形式下螺栓设计分析方法,如①轴向载荷+倾覆力矩;②横向载荷+倾覆力矩;③轴向载荷+横向载荷+倾覆力矩(教材P92例题);④以上三种情况中分别再增加旋转力矩又如何? 2.切记不要对受力分析公式死记硬背,应侧重理解。如课堂上讲过公式5-9和5-10中结合面数i 的使用。

铰制孔用螺栓 一、当螺栓受横向载荷和转矩时 1.受力分析 将力向形心简化以找出受力最大的螺栓及其所受的力; 由横向载荷z F F ∑=1max ,由转矩∑==z i i r Tr F 1 2 max 2max ,求得最大的受力αcos 22max 1max 22max 21max max F F F F F ++= 2.螺栓危险截面挤压强度条件 [] p p L d F σσ≤=min 0max 3.螺栓危险截面剪切强度条件 []τπ τ≤=2 0max 4d F 说明: 因铰制孔螺栓连接仅能承受横向载荷(包括旋转力矩、横向载荷+旋转力矩),它的设计分析方法相比普通螺栓连接要简单得多。

相关文档
相关文档 最新文档