文档库 最新最全的文档下载
当前位置:文档库 › 第三节 逆矩阵

第三节 逆矩阵

第三节 逆矩阵
第三节 逆矩阵

一个方阵的逆矩阵可采用伴随矩阵法和初等变化法求得,这两种方法的运算都十分复杂,大家在理论课中都已经学习,这里介绍用R 语言求逆矩阵的方法。

在R 语言中用solve()函数求方阵的逆矩阵。

例1 用R 语言求矩阵??

????=1021A 的逆矩阵B ,并验证。 > A <- matrix(c(1,2,0,1),2,2,T)

> B <- solve(A)

> B

[,1] [,2]

[1,] 1 -2

[2,] 0 1

> A %*% B

[,1] [,2]

[1,] 1 0

[2,] 0 1

> B %*% A

[,1] [,2]

[1,] 1 0

[2,] 0 1

例2 在R 语言中求如下三个矩阵的逆矩阵。

??????????--=523012101A ,??????????--=523012012B ,?????

???????--=201

1130226101301C > A <- matrix(c(1,0,1, 2,1,0, -3,2,-5),3,3,T)

> solve(A)

[,1] [,2] [,3]

[1,] -2.5 1 -0.5

[2,] 5.0 -1 1.0

[3,] 3.5 -1 0.5

> B <- matrix(c(2,1,0,2,1,0,-3,2,-5),3,3,T)

> solve(B)

错误于solve.default(B) : Lapack 例行程序dgesv: 系统正好是奇异的: U[3,3] = 0

> C <- matrix(c(1,0,3,1, 0,1,6,2, 2,0,3,1, 1,-1,0,-2),4,4,T)

> solve(C)

[,1] [,2] [,3] [,4]

[1,] -1.0000000 0.0000000 1.0000000 0.0000000

[2,] -4.0000000 1.0000000 2.0000000 0.0000000

[3,] 0.1666667 0.1666667 -0.1666667 0.1666667 [4,] 1.5000000 -0.5000000 -0.5000000 -0.5000000

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快 捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩 阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称 为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个阶下三角矩阵,而则是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 A 12 ,如果A ii (i=1,2)的逆存在,则 A 22 A 11 B 12 * A 12B 22 A 21B 11 A 22B 21 A 21 B 12 A 22B 22 将B 22代入方程(2)可以得到: B q 厂-A -1|A 12F 2 将B/弋入方程(1)可以得到: B qi = A ;;(I iq + A 12F 2A 21A ;1) 证毕。 同理可得,A ;1的另外一种表达形式为: F -F -1A A -1 1 A I ;;; ;; 1 12 22 ,其中 F 广(A ii-A i2A 22;;A 2i ) A - -1 -1 -1 化 1 A 11 (I + A 12F 2A 21A 11 ) _A 11A 12F 2 ; -F 2A 21A 11 F 2 其中 F 2= (A 2^A 21A 11A 12 F 1 证明: 设A 的逆为B 二 B 11 _B 21 B B :,其中B 与A 分块形式相同'则: A 11 A 12 B 11 A 22 _ -B 21 B q? I 11 B 22H 22 - A 11B 11 A 12B 21 111 (1 ) 定理: A= A 11 A 21 ⑷- A 21A -?⑵二 A 22 B 22 -1 - A 21A 11B 22 -1 1 1 22 = B 22 二(A 22 一 A 21A 11A 12) F 2 (3) - A 21A 11 (1) — A 22B 21 - A 21A 11A 12B 21 =-A 21A -1 二 B 21 二一 B 22A 21A 11

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

求逆矩阵的方法

求逆矩阵的方法与矩阵的秩 一、矩阵的初等行变换 (由定理2.4给出的求逆矩阵的伴随矩阵法,要求计算矩阵A 的行列式A 值和它的伴随矩阵*A .当A 的阶数较高时,它的计算量是很大的,因此用伴随矩阵法求逆矩阵是不方便的.下面介绍利用矩阵初等行变换求逆矩阵的方法.在介绍这种方法之前,先给出矩阵初等行变换的定义.) 定义2.13 矩阵的初等行变换是指对矩阵进行下列三种变换: (1) 将矩阵中某两行对换位置; (2) 将某一行遍乘一个非零常数k ; (3) 将矩阵的某一行遍乘一个常数k 加至另一行. 并称(1)为对换变换,称(2)为倍乘变换,称(3)为倍加变换. 矩阵A 经过初等行变换后变为B ,用 A →B 表示,并称矩阵B 与A 是等价的. (下面我们把)第i 行和第j , ”;把第i 行遍乘k k ”;第j 行的k 倍加至第i 为“ + k ”. 例如,矩阵 A = ????? ?????321321321c c c b b b a a a ???? ? ?????321 3 21321 c c c a a a b b b ???? ??????32 1 321321c c c b b b a a a ???? ? ?????32 1321321 kc kc kc b b b a a a ???? ? ?????32 1 321321 c c c b b b a a a ??? ? ? ??? ??+++32 1 332 2113 21 c c c ka b ka b ka b a a a (关于初等矩阵内容请大家自己阅读教材) 二、运用初等行变换求逆矩阵 由定理2.7的推论“任何非奇异矩阵均能经过初等行变换化为单位阵”可知,对于任意一个n 阶可逆矩阵A ,经过一系列的初等行变换可以化为单位阵I ,那么用一系列同样的初等行变换作用到单位阵I 上,就可以把I 化成A -1.因此,我们得到用初等行变换求逆矩阵的方法:在矩阵A 的右边写上一个同阶的单位矩阵I ,构成一个n ?2n 矩阵 ( A , I ),用初等行变换将左半部分的A 化成单位矩阵I ,与此同时,右半部分的I 就被化成了1-A .即 ( A , I )初等行变换 ?→???( I , A -1 ) 例1 设矩阵 A = ???? ? ?????--23 2 311111 ③k ①,② ②+①k

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

总结求逆矩阵方法

总结求逆矩阵方法 直接算会死人的。根据矩阵特点用不用的分解,写成几个例程,每次实验之前进行尝试,根据尝试结果在算法里决定里决定用哪个。 irst 我想问: 1.全阶矩阵A的求逆运算inv(A) 和稀疏矩阵B(阶数和a一样) 的求逆运算inv(B)是不是采取一样的方法啊?也就是说他们的 计算量是不是一样的啊?不会因为是稀疏矩阵就采取特殊的 方法来处理求逆吧? 我电脑内存256M ,做4096*4096的矩阵求逆还可以,上万阶的 就跑不动了 稀疏存储方式会减少不必要的计算,虽然原理还是一样,不过 计算量大大减少了。 2.如果一个矩阵C非零元素都集中在主对角线的周围,那么对C求逆最好 应该采用什么样的方法最好呢? 一般还是用LU分解+前后迭代的方法,如果矩阵对角占优就更好办了。 只不过还是需要稀疏存储。 稀疏矩阵的逆一般不会是稀疏矩阵,所以对高阶的稀疏矩阵求逆, 是不可行的,对1万阶的全矩阵需要的内存差不多已经达到了pc的 极限,我想最好的办法就是迭代,既然是稀疏,乘法的次数就有限, 效率还是很高的。 不过求逆运算基本上就是解方程,对稀疏矩阵,特别是他那种基本上非零元素都在对角线附近的矩阵来说,LU分解不会产生很多的注入元,所以用LU分解解方程方法的方法是可行的。 如果用迭代法,好像也就是共轭梯度法了。 C的资源网络上有很多google一下 或者到https://www.wendangku.net/doc/cb2715415.html,,https://www.wendangku.net/doc/cb2715415.html,上找找 或者用IMSL for C 或者用Lapack 或者用Matlab+C混合编程 有现成代码,但要你自己找了

也可以使用程序库 second 30,000*30,000的稀疏矩阵求逆如何实现? 试试基于krylov子空间方法的算法吧。 如arnoldi和GMRES方法。 matlab中有函数可以直接调用。 直接help gmres就可以了。 如果效果还不好。 就用用预处理技术。 比如不完全lu预处理方法。。等等。。 各种各样的预处理+GMRES是现在解决大规模稀疏矩阵的主力方法。。 维数再多还是用不完全LU分解预处理+CG or Gmres 我一个同学这么求过200W阶的矩阵 求逆一般是不可取的,无需多说。但稀疏矩阵的直接解法还是不少的。基本上都是对矩阵进行重新排序以期减少填充或运算量。 在matlab里面,有许多算法可以利用: colamd, colmmd, colperm, spparms, symamd, symmmd, symrcm. 根据是否对称,采用LU分解或者chol分解。 这些算法在internet上搜一下,很多都有相应的C或fortran版本。 稀疏矩阵的存储最常见的是压缩列(行)存储,最近发现一种利用hash表来存储的,其存取复杂度是O(1),很是不错。有幸趣的可以看看下面网页咯,作者提供了源程序。 事实上Hash表存储的效率也跟Hash算法有关,弄不好的话,不见得比直接按行或者列 顺序检索快。而且规模越大,效率肯定越来越低。 https://www.wendangku.net/doc/cb2715415.html,rmatik.hs-bremen.de/~brey/ 对称正定的稀疏矩阵很好办啊,用LU分解就可以了。 如果维数实在太大,比如超过10^4量级,那就只能用 共轭梯度法之类的迭代法求解了。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 12:,1,2)()()i -??=???? ??+-==- ?-?? 1112ii 2122-1-1-1-1-11112221111112222211112-1221112A A A =A A A A I A F A A A A F A F A A A A F A A F 定理 如果(的逆存在,则,其中??=???? ??????=?=???????????? +=??+=???+=?+=?1112212211121112112122212222111112211111121222211122212112222222B B A B B A B B A A B B I 0AB I A A B B 0I A B A B I A B A B 0A B A B 0A B A B I 证明: 设的逆为,其中与分块形式相同,则:(1) (2)(3) (4) ? 11(4)(2)()--??-=?=-=-1-1-122111222221112222222221112A A A B A A B I B A A A A F 11121(3)(1)-??-=-?=--1-1-1-121112222111122211122211 A A A B A A A B A A B B A A 2 2(2)(1)()=-=+-122121112-1-121111*********B B A A F B B A I A F A A 将代入方程可以得到: 将代入方程可以得到:  证毕。 同理可得,A -1的另外一种表达形式为: 11,()()--??-==-??-+??-1-1-1111222111122221-1-122211 222221112F F A A A F A A A A A A F A I A F A 其中

分块矩阵求逆及其应用

. . . . . 目录 摘要 (1) 引言 (2) 一、概述 (2) 二、分块矩阵的求逆及其应用 (5) 第一节2×2分块矩阵的可逆性存在条件和求逆公式及其应用 (5) 第二节3×3分块矩阵的可逆性存在条件和求逆公式及其应用 (14) 结束语 (21)

分块矩阵求逆及其应用 东生 (渤海大学数学系 121000 中国) 摘要:对于分块矩阵,我们比较熟悉分块矩阵的乘法,而对于分块矩阵的求逆,经常遇到的是22?分块矩阵的逆的证明问题,很少涉及分块矩阵逆的计算,并且我们在实际问题中还会遇到33?分块矩阵(或更高阶的分块矩阵)的求逆问题,所以我们研究这样的分块矩阵的可逆性存在条件以及求逆公式显得很有意义。分块是否合理是分块矩阵运算是否简便的关键,所以本文开头便对分块方法做了总结。接着,本文研究了较为简单的22?分块矩阵的可逆性存在条件以及求逆公式,并予以证明,总结了研究方法,还深入探讨了22?分块矩阵中含有零块时的可逆性存在条件以及求逆公式。以22?分块矩阵的研究方法为基础,探讨研究了33?分块矩阵的可逆性存在条件以及求逆公式,并试证成功,还总结出研究更高阶分块矩阵求逆方法。此外本文不仅侧重理论研究,而且侧重于实际应用,在文中列举了大量典型的阶数较高的矩阵,对他们如何分块才能使求逆过程更为简单作出分析,并给出了求解过程,真正做到了“理论联系实际”。 关键字:分块方法,分块矩阵,逆矩阵,可逆条件 Begging the negative matrix to a matrix of the cent and it ′s applying Li Dongsheng (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract: For a matrix of the cent, we relatively know with the multiplication of dividing a matrix. But for begging the negative matrix to a matrix of the cent, we usually meet is 2 the negative certificate problem of a matrix of cent of rank. It is seldom to involve to divide the calculation that a matrix inverse, and we also will meet in actual problem begging 3 the negative certificate problem of a matrix of cent of rank.(or a matrix of more high-level cent).So it is very meaningfully to study this character of inverse of existence condition of such a matrix of cent; to beg the negative formula whether cent is reasonable is the key of whether a matrix operation is simple. What is more, the beginning of thesis does the summary to a method of cent. Immediately, the thesis has studied simple 2 ranks to divide a piece of matrix and the existence condition of inverse character. Finally the thesis gives the evidence. The method has been given, and when there are zero-pieces in a matrix, the character of inverse condition and begging the

逆矩阵的几种求法与解析(很全很经典)

E-A) 1= E + A + 2 K1 + … +A (E- A )(E+A + A 2+…+ A K 1)= E-A K (E-A) (E+A+A 2 + …+A K 1)=E, 逆矩阵的几种求法与解析 矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 . 1. 利用定义求逆矩阵 定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A 为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用. 例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且 证明因为E与A可以交换,所以 因A K= 0 ,于是得 同理可得( E + A + A 2 + … +A K 1 )(E-A)=E , 因此E-A是可逆矩阵,且 (E-A) 1 = E + A + A 2 +…+A K 1 同理可以证明 (E+ A) 也可逆,且

E-A 的逆矩阵. (E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1 . 由此可知,只要满足A K =0,就可以利用此题求出一类矩阵E A 的逆矩阵. 例2 设 A = 00 20 00 03 ,求 0003 0000 分析 由于A 中有许多元素为零,考虑A K 是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵. 解 容易验证 00 2 0 0 0 0 6 2 00 0 6 3 0 0 0 0 4 A 2 = ■ A 3= , A 4 =0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 而 (E-A)(E+A+ A 2 + A 3 )=E , 所以 1 1 2 6 1 2 3 0 1 2 6 (E-A) E+A+ A 2 + A . 0 0 1 3 0 0 0 1 2. 初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法 ?如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使 (1) p 1 p 2 p s A=I ,用 A 1 右乘上式两端,得: (2) p 1 p 2 p s I= A 1 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1. 用矩阵表示( A I ) 为( I A 1 ),就是求逆矩阵的初等行变换法, 它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等

分块矩阵求逆及其应用

目录 摘要 (1) 引言 (2) 一、概述 (2) 二、分块矩阵的求逆及其应用 (5) 第一节2×2分块矩阵的可逆性存在条件和求逆公式及其应用 (5) 第二节 3×3分块矩阵的可逆性存在条件和求逆公式及其应用 (14) 结束语 (21)

分块矩阵求逆及其应用 李东生 (渤海大学数学系 辽宁 锦州 121000 中国) 摘要:对于分块矩阵,我们比较熟悉分块矩阵的乘法,而对于分块矩阵的求逆,经常遇到的是22?分块矩阵的逆的证明问题,很少涉及分块矩阵逆的计算,并且我们在实际问题中还会遇到33?分块矩阵(或更高阶的分块矩阵)的求逆问题,所以我们研究这样的分块矩阵的可逆性存在条件以及求逆公式显得很有意义。分块是否合理是分块矩阵运算是否简便的关键,所以本文开头便对分块方法做了总结。接着,本文研究了较为简单的22?分块矩阵的可逆性存在条件以及求逆公式,并予以证明,总结了研究方法,还深入探讨了22?分块矩阵中含有零块时的可逆性存在条件以及求逆公式。以22?分块矩阵的研究方法为基础,探讨研究了33?分块矩阵的可逆性存在条件以及求逆公式,并试证成功,还总结出研究更高阶分块矩阵求逆方法。此外本文不仅侧重理论研究,而且侧重于实际应用,在文中列举了大量典型的阶数较高的矩阵,对他们如何分块才能使求逆过程更为简单作出分析,并给出了求解过程,真正做到了“理论联系实际”。 关键字:分块方法,分块矩阵,逆矩阵,可逆条件 Begging the negative matrix to a matrix of the cent and it ′s applying Li Dongsheng (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract: For a matrix of the cent, we relatively know with the multiplication of dividing a matrix. But for begging the negative matrix to a matrix of the cent, we usually meet is 2 the negative certificate problem of a matrix of cent of rank. It is seldom to involve to divide the calculation that a matrix inverse, and we also will meet in actual problem begging 3 the negative certificate problem of a matrix of cent of rank.(or a matrix of more high-level cent).So it is very meaningfully to study this character of inverse of existence condition of such a matrix of cent; to beg the negative formula whether cent is reasonable is the key of whether a matrix operation is simple. What is more, the beginning of thesis does the summary to a method of cent. Immediately, the thesis has studied simple 2 ranks to divide a piece of matrix and the existence condition of inverse character. Finally the thesis gives the evidence. The method has been given, and when

矩阵的分块求逆及解线性方程组

实验4:矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构造范德蒙矩阵,高阶非奇异矩阵的分块求逆,非齐次线性方程组的通解 二、 实验目的 1. 学会使用MATLAB 编程,实施初等变换将矩阵化为上三角矩阵 2. 掌握用循环语句由已知向量构造范德蒙矩阵 3. 了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析 4. 能根据由MATLAB 所求得的非齐次线性方程组增广矩阵的阶梯形的行最简形式写出线性方程组的通解 三、 预备知识 (一) 线性代数知识 1212n 22212n 111121.[,,,]111n n n n n x x x x n x x x x x x x x x ---=? ? ? ? ? ? ? ??? 由向量作出的阶范德蒙矩阵为 11121121 221112-12122111222221111212111222 111 212221111111122111A A 2.A =,A A B B A =,B B (),,A B A A A A B A A B B B A A B A B A A ------?? ????? ??? =-=-=-=- 分块矩阵其中为方的可逆矩阵块,求逆有如下公式:设则 122113. Frobenius A ()n n ij F i j a ===∑ ∑常用的矩阵范数为范数: (二)相关命令提示: 1. 输入语句:变量名=input (‘提示信息’) 2. for 循环 3. if 结构 4. 矩阵与向量的范数:norm(A) 5. 求矩阵A 的秩:rank(A) 6. 求矩阵A 的标准阶梯形:rref(A)

n阶矩阵求逆矩阵(C++面向对象)

课程设计报告

信息系统开发语言(一)课程设计 ——n 阶方阵求逆的实现 一、课程设计目的 1、了解什么是矩阵及逆矩阵。 2、通过VC++6.0编写一个实现求矩阵逆矩阵的程序。 3、巩固和加深学生对算法课程基本知识的理解和掌握。 4、培养利用算法知识解决实际问题的能力。 5、掌握利用程序设计语言进行算法程序的开发、调试、测试. 6、掌握书写算法设计说明文档的能力。 7、提高综合运用算法、程序设计语言、数据结构知识的能力。 二、问题描述 给出任意一个维数大于1小于256的矩阵,通过程序求出其逆矩阵。 如???? ??????=2221 20 1211 10 020100 a a a a a a a a a A ,存在矩阵B ,使得矩阵A 与B 的乘积为单位矩阵,则称矩阵B 为矩阵A 的逆矩阵。 三、问题分析 根据矩阵与逆矩阵的定义,即矩阵A 与矩阵B 相乘等于单位矩阵的思路,编辑程序。 为使问题更加简单明了化,现举除一个具体例子,便于理解,我们在求解数学题

目中,经常会遇到这一类的题目: 如求方阵A 的逆矩阵 ??????????=2221 20 1211 10 020100a a a a a a a a a A 拿到这个题,我们首先应该是理解什么叫矩阵及逆矩阵,我们根据定义可知,一个矩阵如果存在逆矩阵,那么这个矩阵的秩一定不会小于该矩阵的维数,拿到一个题,要求一个逆矩阵的方法是很多的,比较常用的还是先把矩阵化为上三角或者下三角矩阵,,判断矩阵是否存在逆矩阵,然后,然后根据矩阵与逆矩阵之积等于单位矩阵从而得出逆矩阵,这是比较一般的思路,我们一下设计基本上也是以此为基础的。 四、算法分析、设计与描述 1.算法分析和设计 对于矩阵求逆,逆矩阵的定义是:对于n 阶方阵A ,若存在矩阵B ,使得 AB=BA=E ,则称A 为可逆矩阵,简称A 可逆,并称B 为A 的逆矩阵。A 存在逆矩阵的充要条件是|A|≠0。若用定义的方法求解,计算量大,当矩阵的阶数很大时很浪费时间,为了节省时间,通过查阅资料和上网搜索,决定采用高斯-约旦发来进行方阵的求逆操作。 对于矩阵的乘法,利用矩阵乘法定义即可实现,矩阵的乘法的定义是:若A 是一个m*n 阶矩阵,B 是一个n*p 阶矩阵,则AB=C 是一个m*p 阶矩阵,而C 中的每一个(i,j )元都等于A 的第i 行中的各元和B 的第j 列的各对应元之乘积的和。只要按照该定义就可以求出两个矩阵的乘积。 2.算法描述 a.高斯-约旦法求解逆矩阵的算法描述如下:

相关文档