文档库 最新最全的文档下载
当前位置:文档库 › 09MnNiDR钢板冲击韧性不合的原因分析

09MnNiDR钢板冲击韧性不合的原因分析

09MnNiDR钢板冲击韧性不合的原因分析
09MnNiDR钢板冲击韧性不合的原因分析

常用钢材型号和性能特性(精)

国内钢材生产专家: 1分钟搞懂常用钢材型号、性能特性 45——优质碳素结构钢,是最常用中碳调质钢。 主要特征 : 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例 : 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 Q235A(A3钢——最常用的碳素结构钢。 主要特征 : 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例 : 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征 : 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到 100~150℃ ,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 国内钢材生产专家: 应用举例 :调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主

轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 HT150——灰铸铁应用举例 :齿轮箱体,机床床身,箱体,液压缸,泵体, 阀体,飞轮,气缸盖,带轮,轴承盖等 35——各种标准件、紧固件的常用材料 主要特征 : 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例 : 适于制造小截面零件, 可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 65Mn——常用的弹簧钢 应用举例 :小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 0Cr18Ni9——最常用的不锈钢 (美国钢号 304,日本钢号 SUS304 国内钢材生产专家: 特性和应用 : 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备 Cr12——常用的冷作模具钢 (美国钢号 D3,日本钢号 SKD1 特性和应用 : Cr12钢是一种应用广泛的冷作模具钢,属高碳高铬类型的莱氏体钢。该钢具有较好的淬透性和良好的耐磨性 ; 由于 Cr12钢碳含量高达 2.3%,所以冲击韧度较差、易脆裂,而且容易形成不均匀的共晶碳化物 ;Cr12钢由于具有良好的耐磨性,多用于制造受冲击负荷较小的要求高耐磨的冷冲模、冲头、下料模、冷镦模、冷挤压模的冲头和凹模、钻套、量规、拉丝模、压印模、搓丝板、拉深模以及粉末冶金用冷压模等 DC53——常用的日本进口冷作模具钢

材料的冲击韧性

材料的冲击韧性 一、冲击韧性的定义 冲击韧性:当试验机的重摆从一定高度自由落下时,在试样中间开V型缺口,试样吸收的能量等于重摆所作的功W。若试件在缺口处的最小横截面积为A,则冲击韧性αk为: 式中αk的单位为J/cm2 。 冲击实验有两种:V型和U型,一般情况下V 型冲击功测的数据小于U 型的冲击功值。 钢材的冲击韧性越大,钢材抵抗冲击荷载的能力越强。αk值与试验温度有关。有些材料在常温时冲击韧性并不低,破坏时呈现韧性破坏特征。但当试验温度低于某值时,αk突然大幅度下降,材料无明显塑性变形而发生脆性断裂,这种性质称为钢材的冷脆性 冲击韧性是一个对材料组织结构相当敏感的量,所以提高材料的冲击韧性的途径有:改变材料的成分,如加入钒,钛,铝,氮等元素,通过细化晶粒来提高其韧性,尤其是低温韧性;提高材料的冶金质量,减少偏析,夹渣等。 二、缺口冲击试验的应用 缺口冲击韧性试验的应用,主要表现在两方面: 1.用于控制材料的冶金质量和铸造,锻造,焊接及热处理等热加工工艺的质量。

2.用来评定材料的冷脆倾向。而评定脆断倾向的标准常常是和材料的具体服役条件相联系的。在这种情况下所提出的材料冲击韧性值要求,虽然不是一个直接的服役性能,但应理解为和具体服役条件有关的性能指标。 材料因温度的降低导致冲击韧性的急剧下降并引起脆性破坏的现象叫作冷脆。可将材料的冷脆倾向归结为3种类型,如图2-15所示。 三.冷脆转化温度的评定 工程上希望确定一个材料的冷脆转化温度,在此温度以上只要名义应力还处于弹性范围,材料就不会发生脆性 破坏。在冷脆转化温度的确定标准 一旦建立之后,实际上是按照冷脆 转化温度的高低来选择材料。例如, 有两种材料A和B,在室温以上A 的冲击韧性高于B,但当温度降低 时,A的冲击韧性就急剧下降了,如 按冷脆转化温度来选择材料时应选 材料B,见图2-16。

钢结构习题第一章 绪论及第二章钢材习题

第一章绪论、第二章钢材习题 一、名词解释 1、承载能力的极限状态:结构或构件达到最大承载能力或不适于继续承载的变形时所对应的极限状态。 2、正常使用极限状态:结构或构件达到正常使用或耐久性能的某项限值时所对应的极限状态。 3、钢材的韧性:钢材抵抗冲击荷载的能力,用冲击韧性值指标来衡量。 4、时效硬化:轧制钢材放置一段时间后,其机械性能会发生变化,强度提高,塑性降低,这种现象称为时效硬化。 5、冷作硬化:钢材受荷超过弹性范围以后,若重复地卸载、加载,将使钢材弹性极限提高,塑性降低,这种现象称为冷作硬化。 6、钢材的冷脆:在负温度范围,随温度下降,钢材的屈服强度、抗拉强度提高,但塑性变形能力减小,冲击韧性降低,这种现象称为钢材的冷脆。 7、应力集中:构件由于截面的突然改变,致使应力线曲折、密集,故在空洞边缘或缺口尖端处,将局部出现应力高峰,其余部分则应力较低,这种现象称为应力集中。 8、塑性破坏:破坏前有显著的变形,吸收很大的能量,延续时间长,有明显的塑性变形,断裂时断口呈纤维状,色泽发暗。 9、脆性破坏:破坏前无明显变形,破坏突然发生,断裂时断口平齐,呈有光泽的晶粒状。脆性破坏危险性大。 10、蓝脆:钢材总得趋势是随着温度的提高,钢材强度及弹性模量下降;但是在250℃附近,钢材强度有所提高,塑性相应降低,钢材性能转脆,由于在这个温度下钢材表面氧化膜呈蓝色,故称为蓝脆。 二、填空题 1.钢材的三项基本力学性能指标分别为:屈服强度、抗拉强度伸长率和伸长率。2.Q235-BF表示屈服强度为235MPa的B级常温冲击韧性沸腾钢。 3.普通工字钢用符号I 及号数表示,其中号数代表高度的厘米数。 4.根据应力-应变曲线,低碳钢在单向受拉过程中的工作特性,可以分为弹性阶段、弹塑性阶段、屈服阶段、强化阶段、颈缩阶段。 5.钢材在当温度下降到负温的某一区间时,其冲击韧性急剧下降,破坏特征明显地由塑性破坏破坏转变为脆性破坏破坏,这种现象称为冷脆。 6.钢结构有耐腐蚀性差和_ 耐火性__差的弱点。 7.钢结构目前采用的设计方法是_以概率论基础的极限状态_设计方法。 8.当温度达到600℃时,强度几乎降为零,完全失去了承载力,这说明钢材的_耐火_性能差。 9.钢材标号Q235B中的235表示材料的屈服强度为235N/mm2。 10.钢材在连续的循环荷载作用下,当循环次数达到某一定值时,钢材会发生突然断裂破坏

超高强度钢

超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AFl410二次硬化 型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410 钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 一超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0.30~0.45%。钢中合金元素总量约在5%左右,Cr、Ni和Mn在钢中的主要作用是提高钢的淬透性,以保证较大的零件在适当的冷却条件下获得马氏体组织,Mo、W和v的主要作用是提高钢的抗回火能力和细化晶粒等。几种典型钢种的化学成分如表2·12.1。 该类钢通过淬火处理,在Ms点温度以下发生无扩散相变,形成马氏体组织。采用适宜的温度进行回火处理,析出ε—碳化物,改善钢的韧性,获得强度和韧性的最佳配合。提高回火温度(250—450℃回火)时,板条马氏体的ε—碳化物发生转变和残留奥氏体分解形成Fe3C渗碳体,钢的韧性明显下降,此现象称为回火马氏体脆性。产生此种回火脆性的原因主要是由于钢中的硫、磷等杂质元素在奥氏体晶界偏聚和渗碳体沿晶界分布,降低了晶界结合强度。300M钢等含有1.5%硅,能有效地仰制ε—碳化物转变和残留奥氏体分解,使钢的回火马氏体脆性温度提高到350~500℃。硅在钢中只能提高回火马氏体脆性区的温度,但

钢材韧性及断裂原因研究

钢材韧性及断裂原因 用于各行业的钢材品种达数千种之多。每种钢材都因不同的性能、化学成分或合金种类和含量而具有不同的商品名称。虽然断裂韧性值大大方便了每种钢的选择,然而这些参数很难适用于所有钢材。 主要原因有: 第一,因为在钢的冶炼时需加入一定数量的某种或多种合金元素,成材后再经简单热处理便可获得不同的显微组织,从而改变了钢的原有性能; 第二,因为炼钢和浇注过程中产生的缺陷,特别是集中缺陷(如气孔、夹杂等)在轧制时极其敏感,并且在同一化学成分钢的不同炉次之间,甚至在同一钢坯的不同部位发生不同的改变,从而影响钢材的质量。 由于钢材韧性主要取决于显微结构和缺陷的分散(严防集中缺陷)度,而不是化学成分。所以,经热处理后韧性会发生很大变化。要深入探究钢材性能及其断裂原因,还需掌握物理冶金学和显微组织与钢材韧性的关系。 1.铁素体-珠光体钢断裂 铁素体-珠光体钢占钢总产量的绝大多数。它们通常是含碳量在0.05%~0.20%之间的铁-碳和为提高屈服强度及韧性而加入的其它少量合金元素的合金。 铁素体-珠光体的显微组织由BBC铁(铁素体)、0.01%C、可溶合金和Fe3C组成。在碳含量很低的碳钢中,渗碳体颗粒(碳化物)停留在铁素体晶粒边界和晶粒之中。但当碳含量高于0.02%时,绝大多数的Fe3C形成具有某些铁素体的片状结构,而称为珠光体,同时趋向于作为“晶粒”和球结(晶界析出物)分散在铁素体基体中。含碳量在0.10%~0.20%的低碳钢显微组织中,珠光体含量占10%~25%。 尽管珠光体颗粒很坚硬,但却能非常广泛地分散在铁素体基体上,并且围绕铁素体轻松地变形。通常,铁素体的晶粒尺寸会随着珠光体含量的增加而减小。因为珠光体球结的形成和转化会妨碍铁素体晶粒长大。因此,珠光体会通过升高d-1/2(d为晶粒平均直径)而间接升高拉伸屈服应力δy。 从断裂分析的观点看,在低碳钢中有两种含碳量范围的钢,其性能令人关注。一是含碳量在0.03%以下,碳以珠光体球结的形式存在,对钢的韧性影响较小;二是含碳量较高时,以球光体形式直接影响韧性和夏比曲线。 2.处理工艺的影响

第一章 绪论及第二章钢材习题

第一章绪论及第二章钢材习题 一、名词解释 1、承载能力的极限状态: 2、钢材的韧性: 3、时效硬化: 4、钢材的冷脆 5、正常使用极限状态 6、应力集中 7、塑性破坏 8、脆性破坏 二、填空题 1.钢材的三项基本力学性能指标分别为:、和 。 2.Q235-BF表示。3.普通工字钢用符号及号数表示,其中号数代表的厘米数。 4.根据应力-应变曲线,低碳钢在单向受拉过程中的工作特性,可以分为、 、、、。5.钢材在当温度下降到负温的某一区间时,其冲击韧性急剧下降,破坏特征明显地由破坏转变为破坏,这种现象称为。 6.钢结构有耐腐蚀性差和_______差的弱点。 7.钢结构目前采用的设计方法是______设计方法。 8.当温度达到600℃时,强度几乎降为零,完全失去了承载力,这说明钢材的_____________性能差。 9.钢材标号Q235B中的235表示材料的为235N/mm2。 10.钢材在连续的循环荷载作用下,当循环次数达到某一定值时,钢材会发生突然断裂破坏的现象,称为钢材的___________。 11.钢结构中采用的各种板件和型材,都是经过多次辊轧而成的,一般薄钢板的屈服点比厚钢板___________。 12.当钢材受荷载作用进入弹塑性阶段及以后时,间歇重复加载将使弹性变形范围扩大,这种现象称为钢材的__________。

13.Q235A级钢材的__________不作为钢厂供货的保证项目,因而这种钢材不宜在焊接承重结构中使用。 14.钢结构设计规范(GB50017—2003)将钢材分为四组,钢板越厚,设计强度越________。 15.钢材承受动力荷载作用时,抵抗脆性破坏的性能用______指标来衡量。 16.钢材的设计强度是根据材料的_______确定的 三、单项选择 1、钢结构更适合于建造大跨结构,这是由于() A.钢材具有良好的耐热性 B.钢材具有良好的焊接性 C.钢结构自重轻而承载力高 D.钢结构的实际受力性能和力学计算结果最符合 2、钢结构发生脆性破坏是由于() A.钢材是塑性较差的材料 B.钢材的强度较高 C.结构的构造不合理或工作条件差 D.材料的使用应力超过屈服点 3、在承受动荷的下列连接构造中,不合理 ...的是() 4、钢材的冲击韧性A KV值代表钢材的() A.韧性性能 B.强度性能 C.塑性性能 D.冷加工性能 5、钢材的伸长率指标是通过下列哪项试验得到的?() A.冷弯试验 B.冲击功试验 C.疲劳试验 D.单向拉伸试验 6、钢材所含化学成分中,需严格控制含量的有害元素为( ) A.碳、锰 B.钒、锰 C.硫、氮、氧 D.铁、硅 7、随着钢材中含碳的增加会使钢材的_____提高。 A、强度 B、塑性 C、韧性 D、强度和塑性 8.钢材具有良好的焊接性能是指() A.焊接后对焊缝附近的母材性能没有任何影响 B.焊缝经修整后在外观上几乎和母材一致

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

钢材的冲击功Akv是什么意思

钢材的冲击功Akv是什么意思 钢材在进行缺口冲击试验时,摆锤冲击消耗在试样上的能量,称为冲击功,用Ak表示,单位为焦耳(J)。当为V形缺口时,即为AKV,当为U形缺口时,即为AKU。 冲击试验时摆锤消耗在试样单位截面上的冲击功称为冲击韧性(也称为冲击值),用αk表示。即:ak=Ak/F,其单位为kJ/m2或J/cm2。 由于冲击功仅为试样缺口附近参加变形的体积所吸收,而此体积又无法测定,且在同一断面上每一部分的变形也不一致,因此用单位截面积上的冲击功αk来判断韧性的方法国内外已逐渐被淘汰。 工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。 而用试样缺口处的截面积F去除Ak,可得到材料的冲击韧度(冲击值)指标,即ak=Ak/F,其单位为kJ/m2或J/cm2。 因此,冲击韧度ak表示材料在冲击载荷作用下抵抗变形和断裂的能力。ak值的大小表示材料的韧性好坏。 一般把ak值低的材料称为脆性材料,ak值高的材料称为韧性材料。 ak值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。ak值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使ak 值明显降低;同种材料的试样,缺口越深、越尖锐,缺口处应力集中程度越大,越容易变形和断裂,冲击功越小,材料表现出来的脆性越高。因此不同类型和尺寸的试样,其ak或Ak值不能直接比较。 材料的ak值随温度的降低而减小,且在某一温度范围内,ak值发生急剧降低,这种现象称为冷脆,此温度范围称为“韧脆转变温度(Tk)”。 冲击韧度指标的实际意义在于揭示材料的变脆倾向。 什么是夏比冲击试验?夏比是音译:Charpy,夏比冲击试验(英文标准名称:Charpy Imapc t Test)是用以测定金属材料抗缺口敏感性(韧性)的试验。制备有一定形状和尺寸的金属试样(通常为10×10×55mm),使其具有U形缺口或V形缺口,在夏比冲击试验机上处于简支梁状态,以试验机举起的摆锤作一次冲击,使试样沿缺口冲断,用折断时摆锤重新升起高度差计算试样的吸收功,即为Aku(U型缺口)和Akv(V型缺口)。可在不同温度下作冲击试验。吸收功值(焦耳)大,表示材料韧性好,对结构中的缺口或其他的应力集中情况不敏感。对重要结构的材料近年来趋向于采用更能反映缺口效应的V形缺口试样做冲击试验 冲击试验:一种动态力学性能试验,主要用来测定冲断一定形状的试样所消耗的功,又叫冲击韧性试验。 根据试样形状和破断方式,冲击试验分为弯曲冲击试验、扭转冲击试验和拉伸冲击试验三种。横梁式弯曲冲击试验法操作简单,应用最广,其试验原理见图1。 冲击试样世界各国常用的弯曲冲击试样如图2所示。中国有关标准规定采用横梁式试验法,所用标准试样以U形缺口试样和V形缺口试样为主。 冲击试样所消耗的功,称为冲击功Ak。将Ak除以缺口处横截面积F,则得冲击韧度ak,单位为J/c

Q235钢的强韧性综合实验

Q235钢改性综合实验论文 孙菲 (齐鲁工业大学机械与汽车工程学院201301021026) 摘要: 在Q235钢的热处理实验中,通过四种不同的淬火条件(水冷淬火、60℃水浴淬火到400℃、60℃水浴淬火到300℃、60℃水浴淬火到200℃)对三种试样进行不同温度(200℃、250℃、300℃)的回火处理。并将热处理后的硬度试样进行磨制、抛光、腐蚀,然后在显微镜中观察每一个试样的金相组织图片;将热处理后的拉伸试样进行拉伸处理,记录每一根试样的延伸率、抗拉强度等;将热处理后的韧性试样进行打击韧性处理,记录每一根试样被打击后吸收的能量。实验显示:通过热处理工艺Q235钢的组织结构发生变化,强度和韧性得到提高;普通水冷淬火后在低温回火时Q235钢的强度、韧性和硬度均高于水浴淬火后在低温回火的强度、韧性和硬度。 关键词:Q235钢的性能;热处理;水浴淬火;强度和韧性 Abstract: Through four different quenching conditions(water quenching and60 DEG C water bath quenching to400DEG C and60DEG C water bath quenching to300DEG and60DEG C water bath quenching to200DEG C)of three samples of(200DEG C,the temperature of250DEG,300DEG C)at different temperature and tempering treatment in Q235steel heat treatment experiments.And heat treatment the hardness of samples for grinding, polishing,etching,and then observe every specimen microstructure pictures in the microscope.After heat treatment,the tensile process, record each root sample elongation and tensile strength of the;against the toughness of treatment after heat treatment of toughness specimen, the record of each root sample was hit after the absorption of energy. Experiments show that by heat treatment process of Q235steel structure change,the strength and toughness is improved;ordinary water quenched at low temperature tempering of Q235steel strength,toughness and hardness were higher than that of water bath quenching after in low temperature tempering strength,toughness and hardness. Keywords:properties of Q235steel;heat treatment;water quenching; strength and toughness

低温钢材的韧性要求

低温钢材的韧性要求 (1)试验方法 低温压力容器及其受压元件所采用的钢材,必须进行低温夏比(V形缺口)冲击试验。 钢材的冲击试验方法,应符合GB 4159《金属低温夏比冲击试验方法》的有关规定。冲击试样按GB 2106《金属夏比V形缺口冲击试验方法》规定的 10mm×10mm×55mm标准试样。若无法制备标准试样时,也可采用 7.5mm×10mm×55mm、5mm×10mm×55mm的小尺寸试样,小尺寸试样的试样宽度一般应不小于钢材名义厚度的80%。试样的缺口应沿厚度方向(棒材沿径向)切取,并以3个试样为1组。 (2)取样规则 根据需要,钢材可按批进行冲击试验取样,其分批要求及试样截取应遵循以下规定。 ①钢板每批钢板由同一牌号、同一炉罐号、同一规格和同一热处理制度组成。每批钢板质量按厚度分类:6-16mm钢板应不大于15t;大于16mm钢板应不大于25t。每批取1组试样,试样方向为横向。 ②钢管每批钢管由同一牌号、同一炉罐号、同一规格和同一热处理制度组成。每批钢管按直径分类: 外直径大于351mm的钢管每批不超过50根;外直径小于或等于351mm 的钢管每一批不超过200根。在每批中的任意两根钢管上各取1组试样。 用于制造容器圆筒,且厚度大于16mm的钢管,按批抽10%,且不少于两根,每根取1组试样。 取样位置应靠近钢管内壁,一般为纵向,对大直径厚壁管可沿切向取样。缺口应沿厚度方向切取。

③锻件按照JB 4727《低温压力容器用碳素钢和低合金锻件》规定的取样数 量和取样部位切取试样。 ④钢棒每批钢棒由同一牌号、同一炉罐号、同一尺寸、同炉热处理组成。在经最终热处理的每批钢棒中任选两根,各取1组试样。试样方向为纵向,试样的纵轴应尽量位于钢棒半径的处。 (3)试验温度 低温压力容器用钢的冲击试验温度必须小于或等于容器或其受压元件的设计温度。当容器或其受压元件使用在低温应力工况时,钢材的冲击试验温度必须小于或等于调整后的设计温度。 (4)冲击功指标 钢材试验温度下的冲击功指标,按钢材标准规定的最低抗拉强度确定,具体要求必须满足表13-4的规定。小试样的冲击功指标根据试样宽度按比率缩减。 表13-4低温夏比(V形缺口)冲击试验最低冲击功规定值 钢材标准的最低抗拉强度 σb/Mpa ≤4503个试样的冲击功平均值钢材标准的最低抗拉 (10mm×10mm×55mm) 18强度σb/Mpa >515-6503个试样的冲击功平均值(10mm×10mm×55mm)27>450-51520奥氏体钢焊接接头区31注: 1、试验温度下3个试样的冲击功平均值不得低于表中规定;其中单个试样的冲击功可小于平均值,但不得小于平均值的70%。

高韧性耐磨钢板

一直以来耐磨钢板被广泛应用于工作条件恶劣,要求强度高、采矿、建筑、农业、水泥生产、港口、耐磨性好的工程、电力及冶金等机械产品上,为了适应严酷的工作环境,提高设备的使用寿命,具有更好的强韧性耐磨钢板被使用,受到很多行业的认可。 其综合性能如下: 1.很高的耐磨性能: 耐磨钢板耐磨层厚度3-12㎜,耐磨性能是普通钢板的15-20倍以上,是低合金钢板性能5-10倍以上,是高铬铸铁耐磨性能2-5倍以上,耐磨性远远高于喷焊和热喷涂等方法。 2.较好的冲击性能: 耐磨钢板是双层金属结构,耐磨层和基材之间是冶金结合,结合强度高,可在受冲击的过程中吸收能量,耐磨层不会脱落,可以应用到振动、冲击较强的工况条件下,这一点是铸造耐磨材料和陶瓷材料所不及的。 3.很好的耐温性能: 耐磨钢板合金碳化物在高温下有很强的稳定性能,耐磨钢板可以在500℃内使用,其他

特殊要求温度可以定制生产,能够满足1200℃以内条件下使用;陶瓷、聚氨脂、高分子材料等采取粘贴方式耐磨材料无法满足如此高温要求。 4.很好的连接性能: 耐磨钢板基材是普通钢板,保证耐磨钢板具有韧性和塑性,提供抵抗外力的强度,可以采取焊接、塞焊、螺栓连接等多种方式和其他结构进行联系,连接牢固,不容易脱落,连接方式多于其他材料; 5.很好的选择性能: 耐磨钢板选择不同厚度基材,堆焊不同层数和厚度的合金耐磨层,可以得到不同厚度和不同用途的钢板,最大厚度可达到30㎜以上; 6.很好的加工性能: 耐磨钢板能够按要求加工成不同规格尺寸,可以进行加工、冷弯成型、焊接、弯曲等,方便使用;可以现场拼焊成型,使维修更换工作变得省时、方便,大大降低工作强度。 7.很好的性价格比:

WH70焊接结构用高强韧性钢板

WH70焊接结构用高强韧性钢板 1 WH70钢板范围 本标准规定了焊接结构用高强韧性钢板的尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志及质量证明书。 本标准适用于厚度为8-60mm、屈服强度级别550MPa的钢板,本标准中的钢板共包括四个质量等级(B、C、D、E). 2 WH70钢板规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T222 钢的成品化学成分允许偏差 GB/T223.3 钢铁及合金化学分析方法二胺替呲啉甲烷磷钼酸重量法测定磷量 GB/T223.11 钢铁及合金化学分析方法过硫酸铵氧化容量法测定铬量 GB/T223.14 钢铁及合金化学分析方法钽试剂萃取光度法测定钒含量 GB/233.23 钢铁及合金化学分析方法丁二酮污分光光度法镍量 GB/1223.16 钢铁及合金化学分析方法变色酸光度法测定钛量 GB/T223.18 钢铁及合金化学分析方法硫代硫酸钠分离一碘量法测定铜量 GB/T223.24 钢铁及合金化学分析方法萃取分离二丁二酮污分光光度法测定镍量 GB/T223.26 钢铁及合金化学分析方法硫氰酸盐直接光度法测定钼量 GB/T223.27 钢铁及合金化学分析方法硫氰酸盐-乙酸丁酯萃取分光光度法测定钼量 GB/T223.39 钢铁及合金化学分析方法氯磺酚S光度法测定铌量 GB/T223.54 钢铁及合金化学分析方法火焰原子吸收分光光度法测定镍量 GB/T223.58 钢铁及合金化学分析方法亚砷酸钠-亚硝酸钠滴定法测定锰量 GB/T223.59 钢铁及合金化学分析方法锑磷钼蓝光度法测定磷量 GB/T223.60 钢铁及合金化学分析方法高氯酸脱水重量法测定硅量 GB/T223.61 钢铁及合金化学分析方法磷钼酸铵容量法测定磷量 GB/T223.62 钢铁及合金化学分析方法乙酸丁酯萃取光度法测定磷量 GB/T223.63 钢铁及合金化学分析方法高碘酸钠(钾)光度法测定锰量 GB/T223.64 钢铁及合金化学分析方法火焰原子吸收光谱法测定锰量 GB/T223.67 钢铁及合金化学分析方法还原蒸馏一次甲基蓝光度法测定硫含量 GB/T223.68 钢铁及合金化学分析方法管式炉内燃烧磺酸钾滴定法测定硫含量 GB/T223.69 钢铁及合金化学分析方法管式炉内燃烧后气体容量法测定碳含量 GB/T223.71 钢铁及合金化学分析方法管式炉内燃烧后重量法测定碳含量 GB/T223.72 钢铁及合金化学分析方法氧化铝色层分离-硫酸钡重量法测定硫量 GB/T223.74 钢铁及合金化学分析方法非化合碳含量的测定 GB/T223.75 钢铁及合金化学分析方法甲醇蒸馏-姜黄素光度法测定硼量 GB/T223.76 钢铁及合金化学分析方法火焰原子吸收光谱法测定钒量 GB/T228 金属拉伸试验方法 GB/T229 金属夏比缺口冲击实验方法 GB/T247 钢板和钢带检验、包装、标志及质量证明书的一般规定 GB/T709 热轧钢板和钢带的尺寸、外形、重量及允许偏差 GB/T2975 钢及钢产品力学性能实验取样位置及试样制备 GB/T4336 碳素钢和中低合金钢的光电发射光谱分析方法 GB/T20066 钢和铁化学成分测定用试样的取样和制样方法

各种元素对钢材性能的影响.

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削

3 金属材料的冲击韧性实验

实验3 金属材料的冲击韧性实验 一、实验目的 1、了解冲击韧性的含义。 2、测定低碳钢和铸铁的冲击韧性,比较两种材料的冲击性能和破坏断口的形貌。 二、实验概述 衡量材料抗冲击能力的指标用冲击韧度来表示。冲击韧度是通过冲击实验来测定的。这种实验在一次冲击载荷作用下显示试件缺口处的力学特性(韧性或脆性)。虽然试验中测定的冲击吸收功或冲击韧度不能直接用于工程计算,但它可以作为判断材料脆化趋势的一个定性指标,还可作为检验材质热处理工艺的一个重要手段。 测定冲击韧度的试验方法有多种。国际上大多数国家所使用的常规试验为简支梁式的冲击弯曲试验。在室温下进行的实验一般采用GB/T229-1994标准《金属夏比冲击试验方法》,另外还有“低温夏比冲击实验”,“ 高温夏比冲击实验”。 由于冲击实验受到多种内在和外界因素的影响。 1.实验原理 冲击实验机由摆锤、机身、支座、度盘、指针等几部分组成(图3-1)。实验时,将带有缺口的受弯试样安放于试验机的支座上,举起摆锤使它自由下落将试样冲断。若摆锤的重量为G ,冲击中摆锤的质心高度由H0变为H1,势能的变化为G(H0-H1),它等于冲断试样所消耗的功W ,亦即冲击中试样所吸收的功为 )(10H H G W A k -== 图1 冲击实验机及原理图

A 值可由指针指示的位置从度盘上读出。因为试样缺口处的高度应力集k 的绝大部分为缺口局部所吸收。 中,A k 依据GB/T229-1994《金属夏比缺口冲击试验方法》,夏比缺口冲击试验 的原理是:用扬起一定高度的摆锤一次性打击处于简支梁状态的缺口试样, 测定试样折断时所吸收的功。 冲击过程中所消耗的能量,除大部分为试样断裂所吸收外,还有一小 部分消耗于机座振动等方面,只因这部分能量相对较小,一般可以省略。2.实验设备 冲击试验机,如上图所示。 游标卡尺 3.冲击试样 冲击韧性的数值与试样的尺寸、缺口形状和支撑方式有关。国家标准规定两 种形式的试样:(1)U型缺口试样(梅氏试样),尺寸形状如图3-2所示;(2)V 型缺口试样,尺寸形状如下图所示。两者皆为简支梁形式。式样上开有缺口是为 了使缺口区形成高度应力集中,吸收较多的能量。本次试验采用冲击试样,尺寸 及偏差应根据GB/T229-1994规定。加工缺口试样时,应严格控制其形状﹑尺寸 精度以及表面粗糙度。试样缺口底部应光滑﹑无与缺口轴线平行的明显划痕。 (a) V型缺口试样 (b) U型缺口试样 图2 冲击试样要求

厚钢板焊缝强度匹配对韧度影响的试验方法

厚钢板焊缝强度匹配对韧度影响的试验方法 苗张木陶德馨吴卫国李永信 武汉理工大学,武汉,430063 摘要:提出了研究厚钢板焊缝强度匹配对韧度影响的试验方法:用“直接测量法”确定焊缝强度匹配系数;用裂纹尖端张开位移(C TOD )断裂韧度作为焊缝材料韧度的指标。用“直接测量法”确定了低合金高强钢S355ML 钢板(厚65mm )自动埋弧焊和手工电弧焊的焊缝强度匹配系数,同时将这两项焊接工艺的对接焊缝制成全厚度断裂韧度试样,运用裂纹尖端张开位移试验方法测定其焊缝中心的断裂韧度。结果表明,厚钢板焊态对接焊缝,低匹配焊缝具有较高的韧度,高匹配焊缝的韧度比较低。 关键词:焊缝强度匹配系数;断裂韧度;裂纹尖端张开位移(C TOD );厚钢板中图分类号:T G404;T G115.5 文章编号:1004-132X (2006)09—0958—05 Experimental Method of the Influence of Strength Mismatch on Toughness in Thick Sheet Steel Miao Zhangmu Tao Dexin Wu Weiguo Li Y ongxin Wuhan University of Technology ,Wuhan ,430063 Abstract :A testing met hod of exploring t he influence of st rengt h mismatch on toughness in t hick sheet steel welds was developed.By means of t his met hod ,t he mismatching factors can be determined wit h “direct measurement met hod ”,and t he crack tip opening displacement (C TOD )should be selected to be as index characterized t he toughness of welds.First ,t he mismatching factors of submerged arc welding (SAW )and shielded metal arc welding (SMAW )of S355ML steel (65mm t hickness )were de 2termined wit h “direct measurement met hod ”.Then ,t he butt welds of SAW and SMAW were made to f ull t hickness f ract ure toughness specimens and t he fract ure toughness in welds cent re were measured by C TOD test.The result s indicate t hat t he welds po ssess higher toughness for lower mismatch ,whereas t he welds possess lower toughness for higher mismatch for butt welds of t hick sheet steel. K ey w ords :mismatching factor of toughness ;f ract ure toughness ;crack tip opening displacement (C TOD );t hick sheet steel 收稿日期:2005—11—30 0 引言 焊接结构设计必须确定焊缝金属的强度和韧度。强度和韧度是焊接结构安全中密切联系的两个问题。韧度是材料在断裂前所经历的弹塑性变形过程中吸收能量的能力[1],是强度和塑性的综合指标,它比强度这个单一指标更应受到关注,特别是对于焊接接头。焊缝强度对其韧度的影响,已经有许多文献进行了讨论,但存在一些分歧[2,3],如文献[3]指出了两种不同观点:一是在保证焊缝常规延性、韧性(如使焊缝金属与母材具有相同延伸率)的条件下,适当选用屈服点较高的焊缝金属,即高匹配是有利的;二是着眼于焊缝的韧性或延性,而其强度与母材相比可适当降低,即低匹配。已有的研究多限于较薄钢板的焊接,厚钢板焊缝强度对韧度的影响研究的文献较少。随着经济发展和科学技术不断进步,海洋结构、桥梁结构、现代建筑及水电核电等工程项目的规模越 来越大,焊接结构呈厚壁化、大型化趋势,所用厚钢板焊接接头破坏的主要原因是由于韧度不足。 因此,研究厚钢板焊缝强度匹配对韧度的影响具有重要的意义。 研究厚钢板焊缝强度匹配对韧度的影响,一是要能够准确测量并计算焊缝强度匹配系数,二是要选择恰当的指标来评价焊缝韧度。本文针对厚钢板特点,结合低合金高强钢S355ML (相当于国产Q345钢)厚钢板(厚65mm )自动埋弧焊和手工电弧焊焊缝强度对韧度的影响研究,提出了研究厚钢板焊缝强度匹配对韧度影响的试验方法:用“直接测量法”确定焊缝强度匹配系数;用裂纹尖端张开位移(C TOD )断裂韧度作为综合度量焊缝韧度的指标。 1 焊接工艺 1.1 母材 本研究采用厚65mm 的S355ML 热轧钢板,系从日本进口。其化学成分见表1,最大碳当量为 8 59

相关文档