文档库 最新最全的文档下载
当前位置:文档库 › 六。一元微积分的应用

六。一元微积分的应用

六。一元微积分的应用
六。一元微积分的应用

一. 选择题

1. 设f(x)在(-∞, +∞)内可导, 且对任意x1, x2, x1 > x2时, 都有f(x1) > f(x2), 则

(a) 对任意x, (b) 对任意x,

(c) 函数f(-x)单调增加 (d) 函数-f(-x)单调增加

解. (a) 反例:, 有; (b) 显然错误. 因为, 函数单减;

(c) 反例:,单调减少; 排除(a), (b), (c)后, (d)为答案. 具体证明如下:

令F(x) = -f(-x), x1> x2, -x1< -x2. 所以F(x1) =-f(-x1) > -f(-x2) = F(x2).

2. 设f(x)在[-π, +π]上连续, 当a为何值时, 的值

为极小值.

(a) (b)

(c) (d)

解.

为a的二次式.

所以当a =, F(a)有极小值.

3. 函数y = f(x)具有下列特征:

f(0) = 1; , 当x ≠ 0时, ;

, 则其图形

(a) (b) (c) (d)

1 1 1 1 解. (b)为答案.

4. 设三次函数

, 若两个极值点及其对应的两个极值均

为相反数, 则这个函数的图形是

(a) 关于y轴对称 (b) 关于原点对称 (c) 关于直线y = x轴对称 (d) 以上均错解. 假设两个极值点为x = t及 x = -t (t ≠ 0), 于是f(t) =-f(-t). 所以

, 所以

b + d = 0

的根为 x = ± t, 所以 b = 0. 于是d = 0. 所以

为奇函数, 原点对称. (b)为答案.

5. 曲线

与x轴所围图形面积可表示为

(a)

(b)

(c) (d) 解.

0 1 2

由图知(c)为答案.

二. 填空题

1. 函数

(x > 0)的单调减少区间______.

解. , 所以0 < x < .

2. 曲线

与其在

处的切线所围成的部分被y轴分成两部分, 这两部分

面积之比是________.

解. , 所以切线的斜率为k =

切线方程: , 曲线和切线的交点为. (解曲线和切线的联立方

程得, 为其解, 所以可得, 解得

.)

比值为

3. 二椭圆, ( a > b > 0)之间的图形的面积______.

解.

二椭圆的第一象限交点的x坐标为. 所以所求面积为

=

=

= 4πabα

=

4. x2 + y2 = a2绕x =-b(b > a > 0)旋转所成旋转体体积_______. 解.

-b a

由图知

=

=

(5) 求心脏线ρ = 4(1+cosθ)和直线θ = 0, θ =

围成图形绕极轴旋转所成旋转体体积

_____.

解. 极坐标图形绕极旋转所成旋转体体积公式

所以

=

三. 计算题

1. 在直线x-y + 1=0与抛物线的交点上引抛物线的法线, 试求由两法线及连接两交点的弦所围成的三角形的面积.

解. 由联立方程解得交点坐标,

由求得二条法线的斜率分别为, . 相应的法线为

, . 解得法线的交点为.

已知三点求面积公式为

所以

.

2. 在抛物线y = x2上一点P(a, a2)作切线, 问a为何值时所作切线与抛物线y =-x2 + 4x-1所围图形面积最小

解. 切线和抛物线的交点为

3. 求通过点(1, 1)的直线y = f(x)中, 使得为最小的直线方程. 解. 过点(1, 1)的直线为

y = kx + 1-k

所以

F(k) =

=

=

=

k = 2

所求直线方程为y = 2x-1

4. 求函数的最大值与最小值.

解. , 解得

x = 0, x =

, , =1

所以, 最大值, 最小值.

(5) 求曲线y = x3-2x与y = x2所围阴影部分面积S, 并将此面积绕y轴旋转, 求此旋转体体积.

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

一元函数微积分学在物理学上的应用1

一元函数微积分学在物理学上的应用速度、加速度、功、引力、压力、形心、质心 用导数描述某些物理量1.速度是路程对时间的导数.加速度是速度对时间的导数。????(t),内转过的角度则物体在时刻?2.设物体绕定轴旋转,在时间间隔t0,t的???(t).(t)?角速度3.当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度T与时间?(t).Tt 的冷却速度为t的函数关系为T=T(t),则物体在时刻??段干的质量为m?m(x),0点算起,则杆在点0,x x处的3.一根杆从一端??(x).(x)=m线密度是??这段 时间内通过导线横截面的电量为Q?Q(t4.一根导线在),0,t则导线?(t).t的电流强度 I(t)=Q在时刻5.某单位质量的物体从某确定的温度升高到温度T时所需的热量为 q(T),?(T).时的比热C(T)=q则物体在温度T???(t).t时刻的功率为w?w(t),6. 某力在0,t 则时间内作的功w例1 . 设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离x的平 方52成正比,杆的全部质量为360g,则杆的质量的表达式m(x)?x,杆在任一点2 ?(x)=5x M处的线密度 5522??(x)m?x)?x5,x(x)=(m(x)=kx解:?,令x?12,m360得k?,所以m22 ?dx)F(?wx)(xF a b所作的功到b变力沿直线运动从a变力作功: 例2(1)(功1.)一圆柱形的注水桶高为5m,底圆半径为3m,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作x轴如图所示取深度x为积分变量,它的变化区间为[0,5]相应于[0,上任一小区间5][x,x?dx]的一薄层水的高度为dx,因此如x的单位为m,2??dxkN,这薄层水的重力为9.8把这层水吸出桶外需作的功近似为 ?3?dx?x88dw??2525????3462(kJ?8dx?w?所求的功为?882x?82?)20. 例2(2)(功2)设有一半径为.R,长度为l的圆柱体平放在深度为2R的水池中,???1))(圆柱体的侧面与水面相切,设圆柱体的比重为(,现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至x?2R处,计算位于[x,x?1]上的体积微元移至[2R?x,2R?x?dx]时所作的微元功。由于在水面上方与下方所受力不同,所以应分开计算,注意到介于x与x?dx之间的体积微元为2222dx(长?宽lR??x2R高?x)dx?l?2它在水面下方需移动R?x,上方需移动R?x RR 2222????dxx?R?x2)R?xdx?l)R(w?2l(?1)?(Rx?R?RR

微积分在经济生活中的应用

微积分在经济生活中的应用 人们面对着规模越来越大的经济和商业活动,逐渐转向用数学方法来帮助自己进行分析和决策,而且正越来越广泛地应用数学理论进行经济理论研究.在经济生活中经常涉及成本、收入、利润等问题,解决这些问题与微积分有着紧密联系. 1 导数及微分的应用 导数及微分在经济生活中的应用主要有边际分析与弹性分析等. 1.1 边际问题[1](37)P - 1.1.1 边际成本 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数. 设成本函数为()C C x =,产量从x 改变到x x +?时,成本相应改变 ()()C C x x C x ?=+?- 成本的平均变化率为 ()() C C x x C x x x ?+?-= ?? 若当0x ?→时,0lim x C x ?→??存在,则这个极限值就可反映出产量有微小变化时,成本的变化情 况.因此,产品在产量x 时的边际成本就是: 00()() ()lim lim x x dC C C x x C x C x dx x x ?→?→?+?-'= ==?? 如果生产某种产品100个单位时,总成本为5000元,单位产品成本为50元.若生产101个时,其总成本5040元,则所增加一个产品的成本为40元,即边际成本为40元. 在经营决策分析中,边际成本可以用来判断产量的增减在经济上是否合算.当企业的生产能力有剩余时,只要增加产量的销售单位高于单位边际成本,也会使得企业利润增加或亏损减少.或者说,只要边际成本低于平均成本,也可降低单位成本.由上面知当产量100x =时,这时候有 (100)40C '= (100) 50100 C = 即边际成本低于平均成本,此时提高产量,有利降低单位成本. 1.1.2 边际收入 边际收入是指在某一水平增加或减少销售一个单位商品的收入增加或减少的量.实际上就是收入函数的瞬时变化率.而从数学的角度来看,它是一个导数问题. 设收入函数为()R R x =,则边际收入函数就是

一元函数微积分重点

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。 一、熟记基本内容 事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。对基本内容的复习不能只注重速度而忽视质量。在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。 二、紧抓内容重点 在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。 三、检测学习效果 大量做题是学习数学区别与其他文科类科目的最大区别。在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。 高考数学中关于一元函数微积分学所考查的知识点高考数学中关于一元函数微积分学所考查的知识点:

微积分及经济学应用

第3章 微积分及其经济学应用 3.1 一元函数和多元函数 在数学上,函数的定义为:如果在一个变化过程中有两个变量x 和y ,对任意给定的x 值,仅存在一个y 值与其对应,则称y 是x 的函数,表示为)(x f y =。 其中x 为自变量,y 为因变量。由于函数关系中仅有一个自变量,因此该函数称为一元函数。x 能够取得的所有值的集合称为函数定义域,y 能够取得的所有值的集合称为函数值域。 在对经济问题的分析过程中,我们通常用函数来描述经济变量之间的变化关系。例如,在商品的供求关系中,定义某种商品价格为P ,需求量为D Q ,供给量为S Q 。那么,需求与价格的函数关系可以表示为:)(P f Q D =,)(P g Q S =。 然而我们所处的经济环境是非常复杂的,每一个经济变量都要受到多种因素的影响。因此,采用一元函数来分析经济问题就会有很大的局限性。所以我们常常采用多元函数来研究经济问题。多元函数是在一个函数关系中函数值是由多个变量确定的,用 ),,,(21n x x x f y =的形式来表示,它表示因变量y 的值取决于n 个自变量n x x x ,,,21 的大小。 例如在消费理论的基本假设中,每个消费者都同时对多种商品有需求,“效用”取决于所消费的各种商品的数量,效用函数就可以表示为),,,(21n x x x f U =,其中U 表示消费者的效用,n x x x ,,,21 是对n 种商品的消费量。这个函数称为效用函数。同样,生产函数常表示为),(K L f y =,y 为产出水平,K 表示资本,L 表示劳动力。它说明产出水平既取决于劳动力又取决于资本。 Q=A*L^ alpha *K^ belta A=1;alpha=0.5;belta=0.5;

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

一元函数微积分学内容提要

第四部分 一元函数微积分 第11章 函数极限与连续[内容提要] 一、函数:(138-141页) 1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。 2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反 三角函数的统称);复合函数([()]y f x ?=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。 3、函数的特性:奇偶性;单调性;周期性;有界性. 二、极限: 1、极限的概念:(141-142页) 定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向 于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞ →lim ,若{}n x 没有极限,则称数列{} n x 发散。 定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,) U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于 A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0 。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0 0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0 0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义, 若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,

一元微积分的应用

第九讲 一元微积分的应用 §1 函数单调增减性的判别 定理:设函数()f x 在(),a b 内恒有()'0f x >(()'0f x <),则()f x 在(),a b 内是单调增 的(或单调减的),记为: (或 )。 注意:个别点处()'0f x =不影响()f x 的单调性。 例:3'2,3,0y x y x x ===时'0y =,但是3y x = 应用: 一.判别单调性: 例1:设函数()f x 在[]0,a 0a ≥连续,()0f x =。在()0,a 内可导,()'f x 单调增, 令()()f x F x x =。证明:在()F x 在()0,a 内单增。 证明:()()() ()'00f x f x f xf x ξξ=- <<= 拉氏定理 ()()()()()()()()' ' ' ''' ' 2 2 f x xf x f x xf x xf f x f F x x x x x ξξ---??==== ≥???? ( ()' f x 单调增,0x >) ; 故在()F x 在()0,a 内单增。 二.求单调区间 例2:设()() 1 10x f x dt x ?= > ? ? ,求()f x 的单减区间。 解:()' 1f x =()' 0f x =1x ?=; ∴当()0,1x ∈时,()' 0f x <,所以()f x 单调减; 当()1,x ∈∞时,()' 0f x >,所以()f x 单调增; ∴()f x 的单减区间为:()0,1或者(]0,1。 三.证明不等式 例3:证明:1x >时,() ()2 2 1ln 1x x x ->- 证明:令:()() ()2 2 1ln 1F x x x x =---,则:

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

高数在经济学中的应用演示版.doc

《高等数学》知识在经济学中的应用举例 由于现代化生产发展的需要,经济学中定量分析有了长足的进步,数学的一些分支如数 学分析、线性代数、概率统计、微分方程等等已进入经济学,出现了数理统计学、经济计量学、经济控制论等新分支,这些新分支通常成为数量经济学。数量经济学的目的在于探索客观经济过程的数量规律,以便用来知道客观经济实践。应用数量经济学研究客观经济现象的关键就是要把所考察的对象描述成能够用数学方法来解答的数学经济模型。这里我们简单介绍一下一元微积分与多元微积分在经济中的一些简单应用。 一、复利与贴现问题 1、复利公式 货币所有者(债权人)因贷出货币而从借款人(债务人)手中所得之报酬称为利息。利 息以“期”,即单位时间(一般以一年或一月为期)进行结算。在这一期内利息总额与贷款额(又称本金)之比,成为利息率,简称利率,通常利率用百分数表示。 如果在贷款的全部期限内,煤气结算利息,都只用初始本金按规定利率计算,这种计息方法叫单利。在结算利息时,如果将前一期之利息于前一期之末并入前一期原有本金,并以此和为下一期计算利息的新本金,这就是所谓的复利。通俗说法就是“利滚利”。 下面推出按福利计息方法的复利公式。 现有本金A 0,年利率r=p%,若以复利计息,t 年末A 0将增值到A t ,试计算A t 。 若以年为一期计算利息: 一年末的本利和为A 1=A 0(1+r ) 二年末的本利和为A 2=A 0(1+r )+A 0(1+r )r= A 0(1+r )2 类推,t 年末的本利和为A t = A 0(1+r )t (1) 若把一年均分成m 期计算利息,这时,每期利率可以认为是 r m ,容易推得 0(1) mt t r A A m =+ (2) 公式(1)和(2)是按离散情况——计息的“期”是确定的时间间隔,因而计息次数有限——推得的计算A t 的复利公式。 若计息的“期”的时间间隔无限缩短,从而计息次数m →∞,这时,由于 000lim (1)lim[(1)]m mt rt rt r m m r r A A A e m m →∞→∞+=+= 所以,若以连续复利计算利息,其复利公式是 0rt t A A e =

微积分——多元函数及二重积分知识点(教学内容)

教育类别+ 241 第四章 矢量代数与空间解析几何 微积分二大纲要求 了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图 形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影. 会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、 垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程. 理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法, 平面方程和直线方程及其求法. 第一节 矢量代数 一、内容精要 (一) 基本概念 1.矢量的概念 定义4.1 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。长度为1的矢量称为单位矢量。 定义4.2两个矢量a 与b ,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a . 换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。 k a j a i a a 3211( 称为按照k j i ,,的坐标分解式,},,{321a a a a 称为坐标式。 .||2 32221a a a a 若,0 a 记| |0a a a 。知0a 是单位矢量且与a 的方向一致,且0||a a a 。 因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a 方向一致的单位矢量0 a ,则 .||0a a a 若},{321a a a a ,知 },cos ,cos ,{cos }, , { 2 3 2 22 13 2 3 2 22 12 2 3 2 22 11 0 a a a a a a a a a a a a a 其中 ..是a 分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而 ,cos ,cos ,cos 2 3 2 22 13 2 3 2 22 12 3 3 22211 a a a a a a a a a a a a 且.1cos cos cos 2 2 2 2.矢量间的运算 设}.,,{},,,{},,,{321321321c c c c b b b b a a a a

第四章 一元函数微积分的应用

第四章一元函数微积分的应用 内容提要:一元函数微分学的应用很广:导数与切线的关系直接从导数的定义上就可以得到,它也进一步反应了微分学的基本思想:“以曲代直”;导数与单调性的关系是中值定理的推论,它不但可以帮助我们很方便地计算函数的单调区间,还是我们证明很多不等式的重要思路;函数的极值点与拐点是重要的考点,考生需要理解并掌握它们的定义和判别定理,它们也都可以通过函数的单调性来理解。一元函数微分学的应用在考试中出现的频率很高,但总体难度不大,只要记住相应的定理和计算公式即可。 定积分的应用分为几何应用和物理应用两部分。几何应用包括通过定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积和侧面积;物理应用主要是通过定积分计算一些物理量:变力做的功,液体的静压力,平面图形的质心或形心等。定积分的应用的理论基础是定积分的定义,它的基本思想是微元法,微元法可以概括为分割、近似、求和、取极限,其中近分割和近似是这四步的关键。考生复习时应该掌握常见的几何量和物理量的计算公式,同时还要深入理解微元法的思想,对主要公式要掌握其推导过程。 第一节导数的应用 Ⅰ考点精讲 1.导数与切线 设函数可导,则曲线在任意一点的切线斜率等于该点的导数值。也就是说,曲线在处的切线方程可表示为,该点的法线方程可表示为。 2.单调性定理:设函数在上连续,在上可导。 (1)如果在上有,那么函数在上单调递增。 (2)如果在上有,那么函数在上单调递减。

(单调性定理也是中值定理的推论,考生可以尝试自行推导) 3.函数极值点及其判定方法 1).极值点 设函数在点的某领域内有定义,如果对任意的,有 ,则称是函数的一个极大值(或极小值)。2).极值点的判别定理 a.(必要条件)设函数在处可导,并在处取得极值,那么。(罗尔定理 的推论) b.(第一充分条件)设函数在处连续,并在的某去心邻域内可导。 ⅰ)若时,而时,则在处取得极大值; ⅱ)若时,而时,则在处取得极小值; ⅲ)若时,符号保持不变,则则在处没有极值; c.(第二充分条件)设函数在处存在二阶导数且,那么 ⅰ)若则在处取得极小值; ⅱ)若则在处取得极大值。 4.函数的凹凸性 1)凹函数与凸函数的定义

微积分在经济学中的若干应用

微积分在经济学中的若干应用 微积分在经济学中的若干应用 1微积分的基本思想 微积分是微分论文联盟学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。 1.1微分学的基本思想:微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线--该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。 1.2积分的基本思想:积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。现在我们来举一个例子——物理中运动物体经过的路程:设速度函数已知,求运动物体所经过的路程也是上述两大步骤:(1)“局部求近似”:非均匀量近似于均匀量只有在微小局部才能成立.因此要处理这一非匀速变化的整体量,首先必须划分时间区间为若干小时间区间,再在各小时间区间上以“匀”代“不匀”,因此,这一思想需分为两步来实现:论文网

①“分割”:将区间任意划分成n份,考察微小区间上的小段; ②“求近似”:在上将运动近似看作匀速运动,用处理相应均匀量的乘法得:,,. (2)“极限求精确”:由于所求的是整体量,因此先将局部的近似值累加起来再向精确值转化(利用极限法实现“精确”的过程),所以实现精确的思想也分为两步: ①“求和”:; ②“求极限”:,其中. 可见,微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:(1)微小局部求近似值; (2)利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。 2微积分在经济学中的基本应用 (1)一般均衡理论中的微积分方法:经济均衡理论是瓦尔拉斯创立的。所谓瓦尔拉斯均衡,就是对每一个商品市场的供给和需求相等的所有均衡条件进行描述。即寻求在经济生活中消费者追求效用最大化,生产者追求利润最大化的过程中,均衡价格体系存在的条件。一般均衡分析是在构建多变量方程组的前提下,运用微积分理论对商品

一元函数积分知识点完整版

一元函数积分知识点完整版

牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知?+=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 一.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在 ]1,0[上连续,A dx x f =?20)cos (π,则 ==?π 20)cos (dx x f I _______。 二.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑?=∞→--+=n i n b a n a b n a b i a f dx x f 1))((lim )( ∑?=∞→---+=n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5:

求∑=∞→+=n i n i n n i n w 12tan lim 三.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 四.考察分项积分方法 讲解:利用不定积分(定积分)线性性质把复杂函数分解成几个简单函数的和,再求积分。 问题6: 求下列不定积分: dx x x ?++2cos 1cos 12 五.考察定积分的分段积分方法 讲解:利用定积分的区间可加性把复杂的区间分解成几个简单区间的和,再求积分。 问题7: 计算以下定积分: {}?-+22cos ,5.0min )1(ππdx x x 六.考察不定积分的分段积分方法 讲解:有时被积函数是用分段函数的形式表示的,这时应该采用分段积分法。 问题8:

一元微积分在经济上的运用

一元微积分在经济上的运用 近几年来,我国的经济学界和经济部门越来越意识到用数学方法来解决经济问题的重要性,正在探索经济问题中应用数学的规律。鹤壁职业技术学院李兰军老师在《商场现代化》2008年10月(下旬刊)上作了概率统计在经济问题中的应用研究。实践证明,一元微积分也是对经济和经济管理问题进行量的研究的有效工具。本文将利用一元微积分方法解决一些经济问题,分析生产量、成本与利润和需求量(销售量)、价格与收益的关系,研究怎样确定或变动产品的生产量、销售量,以及商品的价格。 一、微分在经济学中的应用 由微分的定义知,当很小时,有近似公式,而所以,这个公式可用来计算函数在某一点附近的函数值的近似值。 例1设某国的国民经济消费模型为。其中:y为总消费(单位:十亿元);x为可支配收入(单位:十亿元)。当x=100.05时,问总消费是多少? 解令因为相对于较小,可用上面的近似公式来求值。 由此可以通过统计可支配收入来预测总消费是多少,以便确定产品的生产量。 二、最值在经济学中的应用 在经济分析中,经常遇到利润最大,成本最低等问题 1.最大利润问题 利润是衡量企业经济效益的一个主要指标。在一定的设备条件,如何安排生产才能获得最大利润,这是企业管理中的现实问题。 例2某厂生产某种产品,其固定成本为3万元,每生产一百件产品,成本增加2万元。其总收入R(单位:万元)是产量q(单位:百件)的函数,,求达到最大利润时的产量。 解由题意,成本函数为,于是,利润函数 , 令,得(百件).又,所以当时,函数取得极大值,因为这里极值点是惟一的,所以极大值又是最大值,即产量为300件时取得最大利润。 2.最小成本问题 例3 已知某个企业的成本函数为:, 其中C——成本(单位:千元)q——产量(单位:t).求平均可变成本y(单位:千元/t)的最小值。 解平均可变成本,令,得。 又,所以时,y取得极小值,由于因为这里极值点是惟一的,所以极小值又是最小值。(千元/t), 即产量为4.5t时平均可变成本取得最小值9750元/t. 导数概念在经济学中有两个重要的应用——边际分析和弹性分析。 1.边际分析 边际概念是经济学中的一个重要概念,一般指经济函数的变化率。当经济函数的自变量改变很小时,经济函数的边际函数是指它的导函数。利用导数研究经济变量的边际变化的方法,称为边际分析方法。 例4设某产品的需求函数为q=100-5p,求边际收益函数,以及q=20,50和70时的边际收益。 解收入函数为R(q)=pq,式中的销售价格p需要从需求函数中反解出来,即, 于是收入函数为,边际收入函数为,

微积分及经济学应用

第3章 微积分及其经济学应用 3、1 一元函数与多元函数 在数学上,函数的定义为:如果在一个变化过程中有两个变量x 与y ,对任意给定的x 值,仅存在一个y 值与其对应,则称y 就是x 的函数,表示为)(x f y =。 其中x 为自变量,y 为因变量。由于函数关系中仅有一个自变量,因此该函数称为一元函数。x 能够取得的所有值的集合称为函数定义域,y 能够取得的所有值的集合称为函数值域。 在对经济问题的分析过程中,我们通常用函数来描述经济变量之间的变化关系。例如,在商品的供求关系中,定义某种商品价格为P ,需求量为D Q ,供给量为S Q 。那么,需求与价格的函数关系可以表示为:)(P f Q D =,)(P g Q S =。 然而我们所处的经济环境就是非常复杂的,每一个经济变量都要受到多种因素的影响。因此,采用一元函数来分析经济问题就会有很大的局限性。所以我们常常采用多元函数来研究经济问题。多元函数就是在一个函数关系中函数值就是由多个变量确定的,用 ),,,(21n x x x f y K =的形式来表示,它表示因变量y 的值取决于n 个自变量n x x x ,,,21K 的 大小。 例如在消费理论的基本假设中,每个消费者都同时对多种商品有需求,“效用”取决于所消费的各种商品的数量,效用函数就可以表示为),,,(21n x x x f U K =,其中U 表示消费者的效用,n x x x ,,,21K 就是对n 种商品的消费量。这个函数称为效用函数。同样,生产函数常表示为),(K L f y =,y 为产出水平,K 表示资本,L 表示劳动力。它说明产出水平既取决于劳动力又取决于资本。 Q=A*L^ alpha *K^ belta A=1;alpha=0、5;belta=0、5;

考研数学之微积分在经济学中的应用

考研数学之微积分在经济学中的应用 来源:文都教育 这一部分内容,数一和数二都不考,只有数三考试,考试内容比较简单。这一部分和常微分方程联系紧密,只要常微分法方程学的好,这一部分都不会困难,主要是计算量比较大一些。一下是文都数学老师总结的这一部分的主要内容,希望对数三考生有所帮助。 一、 差分方程 1、定义 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(.2)()(12112t t t t t t t y y y y y y y +-=---=+++++ 类似可定义三阶差分, 四阶差分,…… ),(),(3423t t t t y y y y ??=???=? 2、差分方程的概念 一般形式:0),,,,,(2=???t n t t t y y y y t F 或.0),,,,,(21=+++n t t t t y y y y t G 差分方程中所含未知函数差分的最高阶数称为该差分方程的阶. 特别的,称1(x)y (x)x x y P f ++=为一阶差分方程,同样的,(x)0f ≠为非齐次的,反之为其次的;若为常数,我们称之为一阶常系数差分方程. 3、一阶常系数线性差分方程的解法 一阶常系数线性差分方程的一般形式为:)(1t f ay y t t =++, 其中常数0≠a ,)(t f 为t 的已知函数,当)(t f 不恒为零时,称为一阶非齐次差分方程; 当0)(≡t f 时,差分方程:01=++t t ay y 称为与一阶非次线性差分方程对应的一阶齐

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小,

微积分在经济中的应用分析

一、经济分析中常用的函数 (一)需求函数和供给函数】【2 1.需求函数。需求函数是描述商品的需求量与影响因素,其影响因素很多,例如收入、价格、消费者的喜好等。我们这里先不考虑其他因素,假设商品的需求量只受市场价格的影响,记Q=Q (p )(Q 表示某种商品的需求量,P 表示此种商品的价格)一般来说,需求函数为价格p 的单调减少函数.例如,某鸡蛋的价格从10元/千克降到8元/千克时,相应的需求量就从1500千克增到2000千克,显然需求是和价格相关的一个变量。一般来说,需求函数为价格p 的单调减少函数(如图一)。 需求曲线是从左上方向右下方倾斜的具有负斜率的曲线;曲线表明了需求量与价格之间呈反方向变动的关系。当价格下降时,需求量上升;当价格上升时,需求量下降。 2.供给函数。一种商品的市场供给量与商品的价格存在一一对应的关系,记S=S (p ),例如,当鸡蛋收购价为4.5元/千克时,某收购站每月能收购5 000 kg .若收购价每4.6元/千克时,收购量为5400kg 。一般来说,供给函数为价格的单调增加函数。(如图二)

供给函数特征:横轴S为供给量,纵轴P为自变量价格;供给曲线是从左下方向右上方倾斜的具有正斜率的曲线。当价格上升时,供给增加;当价格下降时,供给减少。 (二)、市场均衡 在市场中,当一种商品满足Q=S即需求量等于供给量时,这种商品就达到了市场均衡,当Q=S时的价格称为均衡价格,当市场价格高于均衡价格时,供给量就会增加而需求量就会减少,这是出现“供过于求”的现象;当市场价格低于均衡价格时,需求量就会增加而供给量减少,这是出现“供不应求”的现象。 (三)、价格函数、收入函数、利润函数 1.价格函数。一般来说,价格是销售量的函数。在我们的生活中是随处可见的,就像我们去买东西,买的越多就可以把价格讲得越低。例如,平和一家茶叶批发公司,批发50千克茶叶给零售商,批发价是50元每千克,若每次多批发20千克茶叶,那么相应的批发价格就可以降低4元,很明显价格和销售量是相关的一个变量。在厂商理论中,强调的是既定需求下的价格。在这种情况下,价格是需求量的函数,表示为P=P(Q)。要注意的是需求函数 Q=f(P)与价格函数 P=P(Q)是互为反函数的关系。 2.收入函数。在商业活动中,一定时期内的收益,就是指商品售出后的收入,记为R。销售某商品的总收入取决于该商品的销售量和价格。因此,收入函数为R=R(Q)=PQ。其中 Q 表示销售量,P表示价格。 3.利润函数。利润是指收入扣除成本后的剩余部分,记为L。则L=L(Q)=R (Q)-C(Q)。其中Q 表示产品的的数量,R(Q)表示收入,C(Q)表示成本。总收入减去变动成本称为毛利,再减去固定成本称为纯利润。 三、导数的经济学意义及其在经济分析中的应用 (一)、边际分析 经济学中的“边际”这一术语是指“新增”的或“额外”的意思。例如,当 【3。消费者多吃一单位的冰淇淋时,会获得“新增”的效用或满足,即边际效用】【4:设函数y=f(x)可导,则导函数f'(x)在经济学中称为边际函数。 定义】 在经济学中,我们经常用到边际函数,例如边际成本函数、边际收益函数、边际利润函数,它们都是表示一种经济变量相对于另一种经济变量的变化率问题,都反映了导数在经济学中的应用。成本函数C(P)表示生产P个单位某种产品时的总成本。平均成本函数c(P)表示生产P个单位某种产品时平均每个单位的成本,即c(P)=c(P)/P。边际成本函数是成本函数C(P)相对于P的变化率,即C(x)的导函数) (p C 。 边际成本的变动规律:最初在产量开始增加时由于各种生产要素的效率为得到充分发挥,所以,产量很小;随着生产的进行,生产要素利用率增大,产

相关文档