文档库 最新最全的文档下载
当前位置:文档库 › 2010组合数学复习题

2010组合数学复习题

2010组合数学复习题
2010组合数学复习题

2010-2011学年《组合数学》复习题

一、填空题

1、将2n 个人分成n 组,每组两个人,共有 种不同的分组方法;

2、从1至100的整数中不重复地选取两个数组成有序对(x ,y ),使得x 与y 的乘积xy 不能被3整除,共可组成 对有序对;

3、整除88200的正整数有 个;

4、整除510510的正奇数有 个;

5、有 个能被3整除而又不含数字6的三位数;

6、一个抽屉里有20件衬衫,其中4件是蓝的,7件是灰的,9件是红的,则应从中随意取 件才能保证有4件是同颜色的;

7、由2个0、3个1和3个2作成的八位数共有 个;

8、万位数字不是5,个位数字不是2且各位数字相异的五位数共有 个;

9、在m ×n 棋盘中选取两个相邻的方格(即有一条公共边的两个方格), 共有

个;

10、1)从1至1000的整数中,有 个整数能被5整除但不能被6整除。

2)从1至1000的整数中能被14或21整除的整数个数为 ;

11、外事部门计划安排8位外宾参观4所中学和4所小学,每人参观一所学校,但外宾甲和乙要求参观中学,外宾丙要求参观小学,共有 种不同的安排方案。

12、展开式中 的系数是 。 13、由n 个相异元素,,作成的与,之间有且只有一个元素的全排列数为 。

14、10个节目中有6个演唱、4个舞蹈。今编写节目单,要求任意两个舞蹈之间至少有1个演唱,问可编写出 种不同的演出节目单。

15、由3只绿球、2只红球、2只白球和3只黄球作成的没有2只黄球相邻的全排列数是 。

16、方程154=+++4321x x x x 的非负整数解的个数是 。

17、一张币值为二角的人民币兑换为一分、二分或五分的硬币,有 种兑

换方法。

18、⑴小于10000的含数字1的正整数共有 个;

⑵小于10000的含数字0的正整数共有 个;

19、 6位男宾,5位女宾围坐一圆桌,则1)女宾不相邻的就坐方案有 种;

2)所有女宾坐在一起的方案有 种;3)某一女宾A 和两位男宾

相邻而坐的方案有 种;

20、已知01221=----n n n a a a ,)2(,26,310≥==n a a ,则n a = ;

二、计算题

1、确定由数集{2,4,6,8}所形成的全部互异整数的总和。

2、由数集{0,1,2…9}中的数可以构造出多少个不同的四位偶数?

3、学校有100名学生和3个宿舍A, B 和C ,它们分别能容纳25,35和40人。

1) 为学生安排宿舍有多少种方法?

2) 设100名学生中有50名男生和50名女生,而宿舍A 是全男生宿舍,宿

舍B 是全女生宿舍,宿舍C 男女生兼收。有多少种方法可为学生安排宿

舍?

4、15个人围坐一桌,如果B 拒绝挨着A 坐,有多少种围坐方式?如果B 只拒

绝坐在A 的右侧,又有多少种围坐方式?

5、从1到300间任取3个不同的数,使得这3个数之和正好被3整除,试问有

多少种不同方案?

6、求5位数中至少出现一个数字6,而且被3整除的数的个数。

7、 1) 确定多重集S =}5,4,3{c b a ???的11-排列个数;

(或确定多重集}3,4,1{c b a M ???=的6-排列的个数;)

2)列出多重集S =}3,1,2{c b a ???的所有3-组合和4-组合。

3) 确定多重集S =}5,4,3,4{d c b a ????的12-组合的个数。

8、⑴方程304321=+++x x x x 有多少满足条件:

1x ≥2, 2x ≥0, 3x ≥-5, and 4x ≥8的整数解?

⑵方程184321=+++x x x x 有多少满足条件:

1≤1x ≤5, -2≤2x ≤4, 0≤3x ≤5, 3≤4x ≤9的整数解?

9、⑴求{}500

,......3,2,1=U 中能被2,3和5整除的数的个数; ⑵从1至2000的整数中,至少能被2,3,5中的两个数整除的整数有多少?

10、⑴现有A,B,C 和D 四种材料分配于生产1,2,3和4 四种产品。假设A 不

宜于产品1,B 不宜于产品3和4,C 不宜于产品1和3,D 不宜于产品4。

试问有多少分配方案,使得每种产品有一种其适宜的材料?

⑵现有5间房,要安排5个人住宿,每人住一间房间,其中甲不住5号房间,

乙不住4、5号房间,丙不住3号房间,丁不住2号房间,戊不住1、2

号房间,请用棋盘多项式方法求解满足题设要求的住宿安排方法总数。

11、现要安排6个人值夜班,从星期一至星期六每人值一晚,但甲不安排在星期

一,乙不安排在星期二,丙不安排在星期三,共有多少种不同的安排值班的方法?

12、由a,b,c,d,e 这五个字符,从中取6个按字典顺序构成字符串,要求:⑴第1

个和第6个字符必为辅音字符b,c,d ;⑵每一字符串必有两个元音字符a 或e ,且

两个元音字符不相邻;⑶相邻的两个字符必不相同。求字符串的总数目。

13、求由{1,3,5,7}组成的不重复出现的整数的总和。

14、⑴n 个完全相同的球放到m (m ≤n )个有标志的盒子,不允许空盒,问共有

多少种不同的方案?

⑵求1,3,5,7,9这5个数组成的n 位数的个数,要求其中3和7出现的

次数为偶数,其它数字出现的次数无限制。

⑶如果要把棋盘上偶数个方格涂成红色,是确定用红色、白色和蓝色对1

行n 列棋盘的方格涂色的方法数。

(解题要求:利用生成函数方法分析)

15、一部由1楼上升到10楼的电梯内共有n 个乘客,该电梯从5楼开始每层楼

都停,以便让乘客决定是否离开电梯。

(1)求n 个乘客离开电梯的不同方法种数。

(2)求每层楼都有人离开电梯的不同方法的种数。

16、设有n(n≥3)个箱子A1, A2, …, A n,每个箱子A i(i=1,2,…,n)都安上一把锁,n把锁各不相同。今把n把锁的钥匙随意地放回这n个箱子中,每个箱子放一把钥匙。锁上全部箱子之后撬开A1和A2,然后取出A1和A2箱子内的钥匙去开别的箱子。如果能开出别的箱子,则把箱子内的钥匙拿出来再去开另外的箱子。如果最终能把箱子全部打开,则称这n把钥匙的放法是一种好放法。求n 把钥匙的好放法的种数.

三、论述题

1、结合本学期学习《组合数学》课程心得体会和你的研究方向,谈谈组合计数理论与方法可如何在计算机应用或软件工程领域发挥作用。

2、选择一个具体案例,结合案例分析组合计数理论与方法在计算机应用或软件工程领域的应用前景、应用特点和典型应用案例。

《组合数学》试题

《组合数学》试题 姓名 学号 评分 一、填空题(每小题3分,共18分) 1、 红、黄、蓝、白4个球在桌上排种排法。成一圈,有 2、设P 、Q 为集合,则|P ∪Q| |P| + |Q|. 3、0max i n n i ≤≤????=?? ????? 。 4. 366个人中必有 个人生日相同。 5.的系数为的展开式中,342326 41x x x x i i ?? ? ??∑= 。 6.解常系数线性齐次递推关系的常用方法称为 法 。 二、单项选择题(每小题2分,共12分) 1、数值函数f = (1,1,1,...)的生成函数F(x) =( ) A 、(1+x)n B 、1-x C 、(1-x)-1 D 、(1+x)-n 2、递推关系f(n) = 4f(n -1)-4f(n -2)的特征方程有重根2,则( )是它的一般解 。 A 、C 12n -1+C 22n B 、( C 1+C 2n)2n C 、C(1+n)2n D 、C 12n +C 22n . 3、由6颗不同颜色的珠子可以做成 ( )种手链。 A 、720 B 、120 C 、60 D 、6

4、=??? ??-∑=n k k k n 0 )1(( )。 A 、2n B 、0 C 、n2n -1 D 、1 5、设F(x),G(x)分别是f 和g 的生成函数,则以下不成立的是( ) 。 A 、F(x)+G(x) 是f+g 的生成函数 B 、F(x)G(x) 是fg 的生成函数 C 、x r F(x) 是S r (f)的生成函数 D 、F(x)-xF(x) 是?f 的生成函数. 6、在无柄茶杯的四周画上四种不同的图案,共有( )种画法。 A 、24 B 、12 C 、6 D 、3 三、 解答题(每小题10分,共70分) 1. 有4个相同的红球,5个相同的白球,那么这9个球有多少种不同的排列方 式? 2. 公司有5台电视机,4台洗衣机,7台冰箱,现要把其中3台电视机,2台洗 衣机,4台冰箱选送到展销会,试问有多少种选法? 3. 设S = {1, 3?2, 3?3, 2?4, 5}是一个多重集,那么由集合S 的元素能组成多少个 不同的四位数。 4.试求在1到300之间那些不能被3, 5和7中任何一个整除的整数个数。 5. 解非齐次递推关系 1201 693,20,1n n n a a a n a a --++=≥??==? 6. 将字母a,b,c,d,e,f,g 排成一行,使得模式beg 和cad 都不出现的排列总数是多少? 7. 某次会议有10个代表参加,每一位代表至少认识其余9位中的一位,则10位代表中至少有两位代表认识的人数相等。

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

排列组合测试题(含答案)

排例组合专题训练 1. 将3个不同的小球放入4个盒子中,则不同放法种数有A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5.在8 2 x ? ?的展开式中的常数项是A.7 B .7- C .28 D .28- 6.5 (12)(2)x x -+的展开式中3 x 的项的系数是A.120 B .120- C .100 D .100- 7.22n x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是 A .180 B .90 C .45 D .360 8.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 9.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 10.n N ∈且55n <,则乘积(55)(56)(69)n n n ---L 等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 11.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 12.把10 )x -把二项式定理展开,展开式的第8项的系数是 A .135 B .135- C .- D . 13.2122n x x ??+ ?? ?的展开式中,2 x 的系数是224,则2 1x 的系数是A.14 B .28C .56 D .112 14.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3 B .4 C .6 D .7

《组合数学》模拟练习题

《组合数学》模拟练习题

组合数学模拟练习题04 一、 填空题 1、 红、黄、蓝、白4个球在桌上排成一圈,有 种排法。 2、设P 、Q 为集合,则|P ∪Q| |P| + |Q|. 3、0max i n n i ≤≤????=?? ????? 。 4、设S = {1,2,3,4}中仅有2个定位的排列数N(2) = 。 5、依照字典序,排列(4576321)的下一个排列是 。 6. 01.n k n k =?? = ??? ∑ 。 7. 72,0,1,3,1?? = ?? ? . 8. 366个人中必有 个人生日相同。 9、 (1,2,3,4)(4)D = 的移位排列数 。 10、解递推关系 f (r) – 4f (r-1) + 4f (r-2) = 2 r 时,应设非齐次的特解 为 。

11. 的系数为的展开式中, 3 42326 41x x x x i i ?? ? ??∑= 。 12. 在14个人中至少有 个人为同月份出生。 13. 解常系数线性齐次递推关系的常用方法称为 法 。 14. 记移位排列数为D(n),则r 定位排列数N(r) = 。 15.数值函数的推迟函数 S k (f)= 。 二、 单项选择题 1、数值函数f = (1,1,1,...)的生成函数F(x) =( ) A 、(1+x)n B 、1-x C 、(1-x)-1 D 、(1+x) -n 2、递推关系f(n) = 4f(n -1)-4f(n -2)的特征方程有重根2,则( )是它的一般解 。 A 、C 12 n -1 +C 22n B 、(C 1+C 2n)2n C 、 C(1+n)2n D 、C 12n +C 22n .

组合数学试题集

组合数学试题集 一.简单题目 可以根据需要改成选择题或者填空题 1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?(参见课本21页) 解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数; (1)选1个,即构成1位数,共有15P 个; (2)选2个,即构成两位数,共有25P 个; (3)选3个,即构成3位数,共有35P 个; (4)选4个,即构成4位数,共有4 5P 个; 由加法法则可知,所求的整数共有:12345555205P P P P +++=个。 2.一教室有两排,每排8个座位,今有14名学生,问按下列不同的方式入座,各有多少种做法?(参见课本21页) (1)规定某5人总坐在前排,某4人总坐在后排,但每人具体座位不指定; (2)要求前排至少坐5人,后排至少坐4人。 解:(1)因为就坐是有次序的,所有是排列问题。 5人坐前排,其坐法数为(8,5)P ,4人坐后排,其坐法数为(8,4)P , 剩下的5个人在其余座位的就坐方式有(7,5)P 种, 根据乘法原理,就座方式总共有: (8,5)(8,4)(7,5)28449792000P P P =(种) (2)因前排至少需坐6人,最多坐8人,后排也是如此。 可分成三种情况分别讨论: ① 前排恰好坐6人,入座方式有(14,6)(8,6)(8,8)C P P ; ② 前排恰好坐7人,入座方式有(14,7)(8,7)(8,7)C P P ; ③ 前排恰好坐8人,入座方式有(14,8)(8,8)(8,6)C P P ;

各类入座方式互相不同,由加法法则,总的入座方式总数为: (14,6)(8,6)(8,8)(14,7)(8,7)(8,7)(14,8)(8,8)(8,6)10461394944000 C P P C P P C P P ++= 3.一位学者要在一周安排50个小时的工作时间,而且每天至少工作5小时,问共有多少种安排方案?(参见课本21页) 解:用i x 表示第i 天的工作时间,1,2,,7i =,则问题转化为求不定方程 123456750x x x x x x x ++++++=的整数解的组数,且5i x ≥,于是又可以转化为求不定方程123456715y y y y y y y ++++++=的整数解的组数。 该问题等价于:将15个没有区别的球,放入7个不同的盒子中,每盒球数不限,即相异元素允许重复的组合问题。 故安排方案共有:(,15)(1571,15)54264RC C ∞=+-= (种) ? 另解: 因为允许0i y =,所以问题转化为长度为1的15条线段中间有14个空,再加上前后两个空,共16个空,在这16个空中放入6个“+”号,每个空放置的“+”号数不限,未放“+”号的线段合成一条线段,求放法的总数。从而不定方程的整数解共有: 212019181716(,6)(1661,6)54264654321 RC C ?????∞=+-= =?????(组) 即共有54 264种安排方案。 4.求下列函数的母函数: {(1)}n n -;(参见课本51页) 母函数为: 2 323000222()(1)(1)2(1)(1)(1)n n n n n n x x x G x n n x n n x nx x x x ∞∞∞====-=+-=-=---∑∑∑; ? 方法二: ()()()()()220 22220 02222023 ()(1)00121121n n n n n n n n n n G x n n x x n n x x n n x x x x x x x x x x ∞∞-==∞∞ +==∞+==-=++-"=++=""????== ? ?-???? =-∑∑∑∑∑

排列组合高考专项练习题

例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有____ __种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有_______ _。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

华中师范大学组合数学期末考试试卷(A)

-可编辑修改- 华中师范大学组合数学期末考试试卷(A ) 课程名称组合数学课程编号 任课教师 王春香 题型 填空题 证明题 计算题 应用题 总分 分值 20 20 40 20 100 得分 得分 评阅人 一、填空题:(20分)(共5题,每题4分) 1. 由n 个字符组成长为m 的字符串,则相同的字符不相邻的方案数为 n n m C 1+- 。 2. 5男4女,分成两队,每队4人,要求每队至少有1位女生的方案数: 1680 。 3.求12341234+++20,3105,x x x x x x x x =≥≥≥≥,,,的整数解的个数 144 。 4.平面上有n 条直线,其中无两条平行,无三线共点,则交点数为: n-1 。 5.50!尾部有 12 个数字0 。 得分 评阅人 二、证明题(20分):(共2题,每题10分) 21211. 1n p n n p n p n =-????= ? ?-???? ∑证明: 院(系 ): 专业: 年级: 学生 姓名: 学号: --- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- -- -- -- 密 -- -- -- -- --- -- -- -- --- -- -- -- --- -- -- - 封 --- -- -- --- -- -- -- --- -- -- -- -- -- 线 ---- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --

-可编辑修改-

组合数学试题

《组合数学》期末试题(A )姓名班级学号成绩 一,把m 个负号和n 个正号排在一条直线上,使得没有两个负 号相邻,问有多少种不同的排法。 二,在1和100之间既不是某个整数的平方,也不是某个整数的 立方的数有多少个? 三,边长为1的等边三角形内任意放10个点,证明一定存在两 个点,其距离不大于1/3。 四,凸10边形的任意三条对角线不共点,试求(1)这凸10边形的 对角线交于多少个点?(2)又把所有对角线分割成多少段?五,求和=?? ???∑k-(-)k+1111n k n k 六,求解递推关系--++=??==?12016930,1 n n n a a a a a 七,用红白蓝三种颜色对1×n 的方格涂色,每个方格只能涂一种颜色,如果要求偶数个方格涂成红色,问有多少种方法? 八,用红、蓝二种颜色对1×n 的方格涂色,每个方格只能涂一种颜色,如果要求涂成红色的两个方格不能相邻,问有多少种方法?注,1-4、6题各15分,第5题10分,第7题8分,第八题7分。

北京邮电大学2005 ——2006 学年第1 学期 《组合数学》期末试题答案 一, (15) 解: 由于正负号不能相连,故先将正号排好,产生n+1个空档。 --------5分 则负号只能排在两个正号之间,这相当于从n+1个数中取m 个数的组合,故有---------10分 1n m +????? ?种方式。----15 备注:若写出m>n+1时为0,m=n+1时为1,给5分 二, (19分) 解:设A 表示是1-100内某个数的平方的集合,则 |A|=10, -----4分 设B 表示是1-100内某个数的立方的集合,则|B|=4, --8分 |A ∩B|=2, -----12分 由容斥原理得 100|||||| 100104288A B A B A ∩=??+∩=??+=B --------19分 三, (15分) 证明:将此三角形剖分成9个小的边长为1/3的等边三角形。 - ------5分 由鸽巢原理,必有两点在某一个小三角形内,----12分 此时,这两点的距离不超过小三角形边长1/3。从而得证。 -------15分 四, (15分) 解:(1)由于没有三条对角线共点,所以这凸多边形任取4点,组成的多边形内唯一的一个四边形,确定唯一一个交点,--5分 从而总的交点数为C(10,4)=210-------------10分 (2)如图,不妨取顶点1,考察由1出发的对角线被其他对角线 剖分的总数。不妨设顶点标号按顺时针排列,取定对角线1 i

同济大学组合数学期末试卷

1.用两种方法证明公式:. 2.将个相同的球放到个不同的盒子里,每个盒子至少有个球(),问有多少种放法? 3.求解递推关系: 二.(10分)用集合可以组成多少个不同的位数?其中要求1和3每个出现偶数次. 三.(10分)求在1和1000之间不能被5,6和8整除的数的个数. 四.(10分)有级台阶,一个小孩从下往上走,每次只能跨一级或两级,问他从地面走到第级台阶有多少种不同的方法? 五.(10分)设表示把元集划分成非 空子集的方法数,当元集时,求出方法数. 六.(10分)从4种水果中选出个,使得苹果数为偶数个,香蕉数为5的倍数,橘子数不超过4个,梨子数为0或1个,问选出个的选法数. 七.(18分)(1)用四颗珠子穿项链,现可对珠子染3种不同的颜色,问可得到多少个不同的项链?(注:项链可旋转或翻转) (2)设计一个由6个花瓣和1个中心花蕊组成的图案,这7个部分由3种不同的颜色组成,要求其中出现2蓝2红3黄,此花朵可以旋转,问可以有多少种不同的设计方案? 保洁员协议书 甲方:村村民委员会 乙方:,身份证号: 为了确保本村的清洁卫生得到正常有序地运行,使全村的环境卫生保持清洁.干净。切实做好全村生活垃圾的收集处置工作。经甲.乙双方协商同意,特订如下协议: 一.垃圾收集范围: 屯主要道路的路边.溪边经常保持整洁,及时清理白色污染.无明显垃圾堆积物:清除屯主要道路两边杂草:对屯内公共树木养护:沟 乱刻画.乱散发. 止和清理。 二.保洁员报酬工资合计 周清洁2 月发放。 三.保洁所需一切工具均由乙方自己承担,乙方还要自备垃圾清运车辆。在工作期间注意自身安全,如发生意外,其责任自负,甲方不承担任何责任。 四.工作要求: 1.屯内道路路段保洁要求:对屯内道路及路两旁的沟.涵管必须清理疏通,道路两旁的绿化

组合数学试卷A(2014-2015-1)答卷

2014-2015-1《组合数学》试卷(A )答案 一、填空题(每小题3分,共24分) 1.6()x y +所有项的系数和是( 64 ). 2.将5封信投入3个邮筒,有( 243 )种不同的投法. 3.在35?棋盘中选取两个相邻的方格(即有一条公共边的两个方格),有 ( 22 )种不同的选取方法. 4.把9个相同的球放入3个相同的盒,不允许空盒,则有( 7 )种不同方式. 5.把5个不同的球安排到4个相同盒子中,无空盒,共有种( 10 )不同方法. 6.一次宴会,5位来宾寄存他们的帽子,在取帽子的时候有( 44 )种可能使得没有一位来宾取回的是他自己的帽子. 7. 在边长为a 的正方形中,任意给定九点,这些顶点的三角形中必有一个三角形的面积不大于( 28a ). 8.棋盘多项式 R ( )=( x 2 +3x+1 ). 二、单项选择题(每小题3分,共24分) 9....0110p q p q p q r r r ????????????+++= ??? ??? ???-???????????? ( B ) , m i n {,}r p q ≤. A 、1p q r +?? ?-??; B 、p q r +?? ???; C 、1p q r +?? ?+??; D 、1p q r ++?? ??? . 10. ()n a b c d +++的展开式在合并同类项后一共有( B )项. A 、n ; B 、3n n +?? ???; C 、4n ?? ??? ; D 、!n . 11.多项式40123(24)x x x x +++中项2012x x x 的系数是( C ). A 、 78 ; B 、 104 ; C 、 96 ; D 、 48. 12.有4个相同的红球,5个相同的白球,则这9个球有( B )种不同的排列方式. A、 63 ; B、 126 ; C、 252 ; D、 378. 13. 设,x y 均为正整数且10x y +≤,则这样的有序数对()y x ,共有( D )个. A. 100 ; B. 81 ; C. 50 ; D. 45.

组合数学 试题及答案11

组合数学试题 共 5 页 ,第 1 页 电子科技大学研究生试卷 (考试时间: 至 ,共 2 小时) 课程名称 组合数学 教师 学时 40 学分 2 教学方式 讲授 考核日期 2011 年 11 月 日 成绩 考核方式: (学生填写) 一、(共10分) 1、(4分)名词解释:广义Ramsey 数R (H 1,H 2,…,H r )。 2、(6分)证明:R(C 4,C 4) ≥ 6,其中C 4为4个顶点的无向回路图。 解: 1、使得K n 对于(H 1,H 2,…,H r )不能r -着色的最小正整数n 称为广义Ramsey 数R (H 1,H 2,…,H r )。-----------------4分 2、如下图所示的5个顶点的完全图就没有一个纯的C 4,实线和虚线分别代表不同的颜色。 -----------------4分 故R(C 4,C 4)>=6。-----------------2分 二、(16分)未来5届欧盟主席职位只能有法国、德国、意大利、西班牙、葡萄牙五国的人当选,一个国家只能当选一次。假如法国只能当选第一届、第二届或者第三届,德国不能当选第二届和第三届,意大利不能当选第一届,西班牙不能当选第五届,葡萄牙只能能当选第二届、第四届或者第五届。问未来的5届欧盟主席职位有多少种不同的当选方案? 解:原问题可模型化为一个5元有禁位的排列. 其禁区棋盘C 如下图的阴影部分。 -----------------4分 学 号 姓 名 学 院 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………

图论与组合数学期末复习题含答案

组合数学部分 第1章 排列与组合 例1: 1)、求小于10000的含1的正整数的个数; 2、)求小于10000的含0的正整数的个数; 解:1)、小于10000的不含1的正整数可看做4位数,但0000除外.故有9×9×9×9-1=6560个.含1的有:9999-6560=3439个 2)、“含0”和“含1”不可直接套用。0019含1但不含0。在组合的习题中有许多类似的隐含的规定,要特别留神。不含0的1位数有19个,2位数有29个,3位数有39个,4位数有49个 不含0小于10000的正整数有() ()73801919999954321=--=+++个含0小于10000的正整数9999-7380=2619个。 例2: 从[1,300]中取3个不同的数,使这3个数的和能被3整除,有多少种方案? 解:将[1,300]分成3类: A={i|i ≡1(mod 3)}={1,4,7,…,298}, B={i|i ≡2(mod 3)}={2,5,8,…,299}, C={i|i ≡0(mod 3)}={3,6,9,…,300}. 要满足条件,有四种解法: 1)、3个数同属于A; 2)、3个数同属于B ; 3)、3个数同属于C; 4)、A,B,C 各取一数;故共有3C(100,3)+1003=485100+1000000=1485100。 例3:(Cayley 定理:过n 个有标志顶点的数的数目等于2-n n ) 1)、写出右图所对应的序列; 2)、写出序列22314所对应的序列; 解: 1)、按照叶子节点从小到大的顺序依次去掉节点(包含与此叶子 节点相连接的线),而与这个去掉的叶子节点相邻的另外一个点值则记入序列。如上图所示,先去掉最小的叶子节点②,与其相邻的点为⑤,然后去掉叶子节点③,与其相邻的点为①,直到只剩下两个节点相邻为止,则最终序列为51155.。 2)、首先依据给定序列写出(序列长度+2)个递增序列,即1234567,再将给出序列按从小到大顺序依次排列并插入递增序列得到:7。我们再将给出序列22314写在第一行,插入后的递增序列写在第二行。如下图第一行所示: ??→????? ??--②⑤67112223344522314??→???? ? ??--②⑥11223344672314 ??→????? ??--③②11233447314??→???? ? ??--①③11344714

大学数学组合数学试题与答案(修正版)4

组合数学期末考查卷 一、选择题。(每小题3分,共24分) 1.在组合数学的恒等式中n k ??= ??? A 11(1)1n n n k k k --????+>≥ ? ?-???? B 1(1)1n n n k k k -????+>≥ ? ?-???? C 1(1)11n n n k k k -????+>≥ ? ?--???? D (1)1n n n k k k ????+>≥ ? ?-???? 2、14321=++x x x 的非负整数解个数为( )。 A.120 B.100 C.85 D.50 3、()()=94P 。 A. 5 B. 8 C. 10 D. 6 4、递推关系12432(2)n n n n a a a n --=-+≥的特解形式是(a 为待定系数)() A 、2n an B 、2n a C 、32n an D 、22n an 5、错排方式数n D =() A 1(1)n n nD ++- B (1)(1)n n n D ++- C -1(1)n n n D +- D 1(1)(1)n n n D +++- 6、将n 个不同的球放入m 个不同的盒子且每盒非空的方式数为( )。 A(n m ) B (),P n m C m!S2(n,m) D(n m )m! 7、有100只小鸟飞进6个笼子,则必有一个笼子至少有( )只小鸟。 A 15 B 16 C 17 D 18 8、若颁发26份奖品给4个人,每人至少有3份,有( )种分法 A 55 B 40 C 50 D 39 二、填空。(每小题4分,共20分) 1、现有7本不同的书,要分给6个同学,且每位同学都要有书,有__________________种不同的分法 2、设q 1, q 2,…… ,q n 是n 个正整数,如果将q 1+ q 2+…+q n -n ﹢1件东西放入n 个盒子里,则必存在一个盒子j 0,1≤j 0≤n ,使得第0j 个盒子里至少装有0j q 件东西,我们把该定理称为__________________。 3、1S n n-1(,)=__________________。

有限集合上的组合数学问题

2012有限集合上的组合数学问题 知识点: 1.偏序集合基本概念 一个集合A 是所谓偏序的,是指它上面定义了一个二元关系“ ”满足下列条件: 1.若y x 且x y 同时成立,则y x =(反对称律) 2.若,y x z y ,则z x (传递律) 3.对于A 的每一个x ,都有x x (反身律) 4. .,y x y x y x ≠?< 特别地,如果每一对元素之间存在关系 ,则称其为一个全序集合。 这里,符号"" 读作“小于等于”。 假定),( A 是一个有限的偏序集合。由A 中两两不可比较的元素所组成的子集合称为“不可比集合”(或象一些学者所讲的,“反链”);包含元素最多的不可比集合称为“最大不可比集合”(或极大“反链”)。用 M 表示一个最大不可比集合中元素的个数。 2.偏序集合基本问题和定理。 定理1(Dilworth 定理).在将偏序集合A 分解成不相交链(相交亦可)的并时,所需要的链的最少个数m 等于A 的最大不可比集中所含元素的个数。 注意:(1)这是组合数学理论中的又一个“最大=最小”的定理,用它可以轻易地推出例7-15中的结论。 与Menger 定理,“最大流-最小割定理”和二部图中的“K ' 'o nig 定理”遥相呼应。其实,这些“最大=最小”型的结论之间存在者一定的蕴涵或等价关系。 (2)由于这个结果是如此重要,我们有必要再给出一个快捷的证明(注意:快捷而简单的证明不一定是“好”的证明!因为它的过于简单的过程会掩盖一些事务的本质。没有经验的研究人员往往忽视这一点。)下面这个证明来自于https://www.wendangku.net/doc/ca2823532.html,erberg 在1967年的篇文章。 证明2:设P 是一个有限偏序集合。P 中划分为不相交的链的最小个数m =P 中的一个反链所含元素的最大个数。 显然有M m ≥。对于||P 实行数学归纳。当||P =0时定理显然成立。令C 是一个极大链。如果C P -的每一个反链至多包含1-M 个元素,则定理成立。因此,设},...,,{21M a a a 为C P -的一个反链。我们定义: }.,|{i a x i P x S ?∈=- 类似第可以定义+ S 。因为C 的及大性,所以C 中的最大元素不再- S 里面。故,按照归纳假定,- S 是M

组合数学考试试题

第一部分:填空题。 题目1:求n 元布尔函数f (x1,x2,…,xn )的数目,其中布尔函数是指含有与(∧)、或(∨)、非(-)等基本布尔运算的函数。 解答:设有n 个布尔变元x 1,x 2,…,x n ,其中x i ∈{0,1},i =1,2,…,n ,根据乘法原理(x 1,x 2,…,x n )共有2n 种不同指派,对每个指派,布尔函数取值为{0,1},故不同的布尔函数的数目为:22n 。 (考试中会给定n 的具体数值,带入公式直接计算即可。) 题目2:n 对夫妻围一圆桌而坐,求每对夫妻相邻而坐的方案数。 解答:夫妻相邻而坐,可以将一对夫妻看成一个整体,其圆排列数为(n -1)!,由于每对夫妻可以交换位置,故所求方案数为(n -1)!×2n 。 题目3:求多重集合M = {∞·a 1, ∞·a 2, …, ∞·a n }的r 排列数。 解答:在构造的M 的一个r 排列时,第一项有n 种选择,第二项有n 种选择,……, 第r 项有n 种选择,故M 的r 排列数为n r 。 (一般地,n 元多重集合表示为:M = {k 1·a 1, k 2·a 2, …, k n ·a n }其中:a i (i = 1, 2, …, n )表示元素的种类,k i (i = 1, 2, …, n )表示元素a i 的个数。) 题目4:求多重集合M = { k 1·a 1, k 2·a 2, …, k n ·a n }的全排列数。 解答:先把M 中的所有的k 1 + k 2 + … + k n 个元素看成是互不相同的,则它的全排列数为(k 1 + k 2 + … + k n )!。但是这里k i !个a i 是相同的,所以k i !个a i 的位置相同并且同其他元素排列也相同的排列是同一个,故M 的全排列数为: ! !!)! (2121n n k k k k k k +++。 题目5:确定1054321)(x x x x x ++++的展开式中x 13 x 2 x 34 x 52的系数。 解答:??? ? ??=???? ?????? ?????? ?????? ??2,4,1,310224617310 ! 2!4!1!3!10! 0!2!2! 2!4!6! 6!1! 7!7!3! 10= ? ? ? = (? ?? ? ??r n 表示从n 中取r 个的组合,与r n C 的意义完全相同。试题中可能会改变具体的数值,例如求15 54321)(x x x x x ++++的展开式中x 15x 24 x 34 x 52的系数,只需按上述过程计算即可。) 题目6: 求正整数n 的有序k 分拆的个数,要求第i 个分部量大于等于p i 。 解答:分拆的个数为:?? ? ? ? ??---+∑=111k p k n k i i ,其中(1≤i ≤k )。 例如:9的有序3分拆,要求所有分部量都大于等于2,其个数为:

(完整版)排列组合练习题(全集)

排列组合复习题型总结 一、特殊对象问题:优先进行处理 1.有5人排成一列,其中甲不在第一的位置,有多少种排法? 2.有5人排成一列,其中甲不能在第一,乙不能在最后,有多少种排法? 二、名额分配问题:名额插挡板法 3.有10个三好学生的名额分给3个班,要求每班至少有一个名额,怎么分? 4.有7个三好学生的名额,分给3个班,怎么分? 三、分组分配问题:分配等于先分组,再把组分配出去 5.有6本不同的书,平均分给甲乙丙三人,有多少种分法? 6.有6本不同的书,平均分为三组,有多少种分法? 7.有6本不同的书,分甲1本,乙2本,丙3本,有多少种分法? 8.有6本不同的书,分三组,一组1本,一组2本,一组3本,有多少分法? 9.有6本不同的书,分给三个人,一人1本,一人2本,一人3本,有多少种分法? 10.有9本不同分成三组,一组5本,另外两组各2本,有多少种分法? 11.有9本不同的书,分给甲乙均2本,丙5本,有多少种分法? 12.有9本不同的书,分给两人各2本,另一人5本,有多少种分法? 四、相邻问题:捆绑法 13.8人排成一列,甲乙丙三人必须相邻,有多少种排法? 14.8人排成一列,甲乙两人必须相邻,且都不和丙相邻,有多少种排法? 15.一排8个座位,3人坐,5个空座位相邻,有多少种坐法? 16.一排8个座位,3人坐,其中恰有4个空座位相邻,有多少种坐法? 五、不相邻问题:插空法 17.某人射击训练,8枪命中3枪,恰好没有任何2枪连续命中,有多少情况? 18.8人排成一列,甲乙丙三人不可相邻,有多少种排法? 19.8盏灯关掉3盏,不许关掉相邻的,也不许关掉两端,多少种方法? 20.某人射击训练,8枪命中3枪,恰好2枪连续命中,有多少种情况? 六、成双成对问题:先按双取出,再从各双分别取出一只,自然不成双 21.从6双不同鞋子中取出4只,要求都不许成双,有多少种方法? 22.从6双不同鞋子中取出4只,要求恰好有一双,有多少种方法? 七、可(不可)重复使用的对象:问题中有两组对象,解决问题时要以不可重复使用的对象作为分步的标准(住店、投信、映射、冠亚军等) 23.5人住3家店,有多少种住法? 24.若有4项冠军在3个人中产生,没有并列冠军,问有多少种不同的夺冠可能性。

排列组合练习试题和答案解析86421

《排列组合》 一、排列与组合 1.从9人中选派2人参加某一活动,有多少种不同选法 2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 个个个个 5.用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数 (2)可以组成多少个数字允许重复的三位数 (3)可以组成多少个数字不允许重复的三位数的奇数 (4)可以组成多少个数字不重复的小于1000的自然数 (5)可以组成多少个大于3000,小于5421的数字不重复的四位数 二、注意附加条件 人排成一列(1)甲乙必须站两端,有多少种不同排法 (2)甲乙必须站两端,丙站中间,有多少种不同排法 2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数 3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是

4. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 种 种 种 种 5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 种 种 种 种 6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 种 种 种 种 7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。 三、间接与直接 1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法 2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种 3.已知集合A 和B 各12个元素,A B I 含有4个元素,试求同时满足下列两个条件的集合C 的个数:(1)()C A B ?U 且C 中含有三个元素;(2)C A ≠?I ,?表示空集。 4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 种 种 种 种 5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种 6. 以正方体的8个顶点为顶点的四棱锥有多少个 7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对 四、分类与分步 1.求下列集合的元素个数. (1){(,)|,,6}M x y x y N x y =∈+≤; (2){(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.

2010组合数学复习题

2010-2011学年《组合数学》复习题 一、填空题 1、将2n个人分成n组,每组两个人,共有种不同的分组方法; 2、从1至100的整数中不重复地选取两个数组成有序对(x,y),使得x与y的乘积xy不能被3整除,共可组成对有序对; 3、整除88200的正整数有个; 4、整除510510的正奇数有个; 5、有个能被3整除而又不含数字6的三位数; 6、一个抽屉里有20件衬衫,其中4件是蓝的,7件是灰的,9件是红的,则应从中随意取件才能保证有4件是同颜色的; 7、由2个0、3个1和3个2作成的八位数共有个; 8、万位数字不是5,个位数字不是2且各位数字相异的五位数共有个; 9、在m×n棋盘中选取两个相邻的方格(即有一条公共边的两个方格), 共有 个; 10、1)从1至1000的整数中,有个整数能被5整除但不能被6整除。 2)从1至1000的整数中能被14或21整除的整数个数为;11、外事部门计划安排8位外宾参观4所中学和4所小学,每人参观一所学校,但外宾甲和乙要求参观中学,外宾丙要求参观小学,共有种不同的安排方案。 12、错误!未找到引用源。展开式中错误!未找到引用源。的系数是。 13、由n个相异元素错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。作成的错误!未找到引用源。与错误!未找到引用源。错误!未找到引用源。,之间有且只有一个元素的全排列数为。 14、10个节目中有6个演唱、4个舞蹈。今编写节目单,要求任意两个舞蹈之间至少有1个演唱,问可编写出种不同的演出节目单。 15、由3只绿球、2只红球、2只白球和3只黄球作成的没有2只黄球相邻的全排列数是。

16、方程154=+++4321x x x x 的非负整数解的个数是 。 17、一张币值为二角的人民币兑换为一分、二分或五分的硬币,有 种兑 换方法。 18、⑴小于10000的含数字1的正整数共有 个; ⑵小于10000的含数字0的正整数共有 个; 19、 6位男宾,5位女宾围坐一圆桌,则1)女宾不相邻的就坐方案有 种; 2)所有女宾坐在一起的方案有 种;3)某一女宾A 和两位男宾 相邻而坐的方案有 种; 20、已知01221=----n n n a a a ,)2(,26,310≥==n a a ,则n a = ; 二、计算题 1、确定由数集{2,4,6,8}所形成的全部互异整数的总和。 2、由数集{0,1,2…9}中的数可以构造出多少个不同的四位偶数? 3、学校有100名学生和3个宿舍A, B 和C ,它们分别能容纳25,35和40人。 1) 为学生安排宿舍有多少种方法? 2) 设100名学生中有50名男生和50名女生,而宿舍A 是全男生宿舍,宿 舍B 是全女生宿舍,宿舍C 男女生兼收。有多少种方法可为学生安排宿 舍? 4、15个人围坐一桌,如果B 拒绝挨着A 坐,有多少种围坐方式?如果B 只拒 绝坐在A 的右侧,又有多少种围坐方式? 5、从1到300间任取3个不同的数,使得这3个数之和正好被3整除,试问有 多少种不同方案? 6、求5位数中至少出现一个数字6,而且被3整除的数的个数。 7、 1) 确定多重集S =}5,4,3{c b a ???的11-排列个数; (或确定多重集}3,4,1{c b a M ???=的6-排列的个数;) 2)列出多重集S =}3,1,2{c b a ???的所有3-组合和4-组合。 3) 确定多重集S =}5,4,3,4{d c b a ????的12-组合的个数。

相关文档
相关文档 最新文档