文档库 最新最全的文档下载
当前位置:文档库 › Virtual Compton scattering off the nucleon at low energies

Virtual Compton scattering off the nucleon at low energies

Virtual Compton scattering off the nucleon at low energies
Virtual Compton scattering off the nucleon at low energies

a r

X

i

v

:n u

c

l

-

t h /

9

6

5

3

v

1

2

1

M

a y

1

9

9

6

MKPH-T-96-4Virtual Compton scattering o?the nucleon at low energies S.Scherer ?Institut f¨u r Kernphysik,Johannes Gutenberg-Universit¨a t,55099Mainz,Germany A.Yu.Korchin National Scienti?c Center Kharkov Institute of Physics and Technology,310108Kharkov,Ukraine J.H.Koch National Institute for Nuclear Physics and High-Energy Physics,1009DB Amsterdam,The Netherlands Abstract We investigate the low-energy behavior of the four-point Green’s function Γμνdescribing virtual Compton scattering o?the https://www.wendangku.net/doc/c53080156.html,ing Lorentz invariance,gauge invariance,and crossing symmetry,we derive the leading terms of an expansion of the operator in the four-momenta q and q ′of the ini-tial and ?nal photon,respectively.The model-independent result is expressed in terms of the electromagnetic form factors of the free nucleon,i.e.,on-shell information which one obtains from electron-nucleon scattering experiments.Model-dependent terms appear in the operator at O (q αq ′β),whereas the orders O (q αq β)and O (q ′αq ′β)are contained in the low-energy theorem for Γμν,i.e.,no new parameters appear.We discuss the leading terms of the matrix element

and comment on the use of on-shell equivalent electromagnetic vertices in the

calculation of “Born terms”for virtual Compton scattering.

13.40.Gp,13.60.Fz,14.20.Dh

Typeset using REVT E X

I.INTRODUCTION

Low-energy theorems(LET)play an important role in studies of properties of parti-cles.Based on a few general principles,they determine the leading terms of the low-energy amplitude for a given reaction in terms of global,model-independent properties of the par-ticles.Clearly,this provides a constraint for models or theories of hadron structure:unless they violate these general principles they must reproduce the predictions of the low-energy theorem.On the other hand,the low-energy theorems also provide useful constraints for experiments.Experimental studies designed to investigate particle properties beyond the global quantities and to distinguish between di?erent models must be carried out with suf-?cient accuracy at low energies to be sensitive to the higher-order terms not predicted by the theorems.Another option is,of course,to go to an energy regime where the low-energy theorems do not apply anymore and model-dependent terms in the theoretical predictions are important.

The best-known low-energy theorem for electromagnetic interactions is the theorem for “Compton scattering”(CS)of real photons o?a nucleon[1–3].Based on the requirement of gauge invariance,Lorentz invariance,and crossing symmetry,it speci?es the terms in the low-energy scattering amplitude up to and including terms linear in the photon momentum.The coe?cients of this expansion are expressed in terms of global properties of the nucleon:its mass,charge and magnetic moment.In experiments,one can make the photon momentum –the kinematical variable in which one expands–small to ensure the convergence of the expansion and to allow for a direct comparison with the data.By increasing the energy of the photon one will become sensitive to terms that depend on details of the structure of the nucleon beyond the global properties.Terms of second order in the frequency,which are not determined by this theorem,can be parameterized in terms of two new structure constants, the electric and magnetic polarizabilities of the nucleon(see,for example,[4]).

As in all studies with electromagnetic probes,the possibilities to investigate the structure of the target are much greater if virtual photons are used.A virtual photon allows one to vary the three-momentum and energy transfer to the target independently.Therefore it has recently been proposed to also use“virtual Compton scattering”(VCS)as a means to study the structure of the nucleon[5–7].The proposed reaction is p(e,e′p)γ,i.e.,in addition to the scattered electron also the recoiling proton is detected to completely determine the kinematics of the?nal state consisting of a real photon and a proton.It is the purpose of this note to extend the standard low-energy theorem for Compton scattering of real photons to the general case where one or both photons are virtual.The latter would be the case,e.g., in the reaction e?+p→e?+(e?+e+)+p.We will refer to both possibilities as“VCS”.

There are several di?erent approaches to derive the LET for Compton scattering of real photons.One was?rst used by Low[1].It made use of the fact that in terms of“unitarity diagrams”the scattering amplitude is dominated by the single-nucleon intermediate state. In such unitarity diagrams–not to be confused with Feynman diagrams–all intermediate states are on their mass shell[8].Lorentz invariance and gauge invariance then allow a prediction for the amplitude to?rst order in the frequency.Another approach[2,3],?rst used by Gell-Mann and Goldberger[2],relies on a completely covariant description in terms of the basic building blocks of electromagnetic vertices and nucleon propagators.They split the amplitude into two classes,A and B:class A consists of one-particle-reducible contributions

that can be built up from dressed photon-nucleon vertices and dressed nucleon propagators. Class B contains all one-particle-irreducible two-photon diagrams,where the second photon couples into the dressed vertex of the?rst one.Application of two Ward-Takahashi identities, one relating the photon-nucleon vertex operator to the nucleon propagator,the other relating the irreducible two-photon vertex to the dressed one-photon vertex,then lead to the same result for the leading powers of the low-energy amplitude.One can use yet another technique introduced by Low[9]to describe bremsstrahlung processes.This technique relies on the observation that poles in the photon momentum can only be due to photon emission from external nucleon lines of the scattering amplitude.Low’s method has,in a modi?ed form, also been widely used in the framework of PCAC[10].

So far,there have been only a few investigations of the general VCS matrix element, since most calculations were restricted to the Compton scattering of real photons.In[11] electron-proton bremsstrahlung was calculated in?rst-order Born approximation.The pho-ton scattering amplitude,for one photon virtual and the other one real,was analyzed in terms of12invariant functions of three scalar kinematical variables.In[12]it was shown that the general VCS matrix element–virtual photon to virtual photon–requires18invari-ant amplitudes depending on four scalar variables.In[13]the reactionγp→p+e+e?was investigated.Sizeable e?ects on the dilepton spectrum from the timelike electromagnetic form factors of the proton were found.Very recently the low-energy behavior of the VCS matrix element was investigated[14].Using Low’s approach[9]the leading terms in the outgoing photon momentum were derived.It was shown that the virtual Compton scatter-ing amplitude at low energies involves10“generalized polarizabilities”which depend on the absolute value of the three-momentum of the virtual photon.These new polarizabilities were estimated in a nonrelativistic quark model.In[15]the VCS amplitude was calculated in the framework of a phenomenological Lagrangian including baryon resonances in the s and u channel as well asπ0andσexchange in the t channel.A prediction for the| q|dependence of the electromagnetic polarizabilitiesαandβwas made.

The purpose of this work is to identify,in an analogous form to the real CS case,those terms of VCS which are determined on the basis of only gauge invariance,Lorentz invari-ance,crossing symmetry,and the discrete symmetries.In the following,we will refer to such terms not?xed by this LET for simplicity as“model dependent”.By introducing additional constraints,such as chiral symmetry,also statements about these terms become possible.This is,however,beyond the scope of the present work.In our study of low-energy virtual Compton scattering,below the onset of pion production,we will mainly work on the operator level.This allows us to work without specifying a particular Lorentz frame or a gauge.We combine the method of Gell-Mann and Goldberger[2]with an e?ective La-grangian approach.Class A is obtained in the framework of a general e?ective Lagrangian describing the interaction of a single nucleon with the electromagnetic?eld[4].In the spe-ci?c representation we choose,this turns out to be a simple covariant and gauge invariant “modi?ed Born term”expression,involving on-shell Dirac and Pauli nucleon form factors F1 and F2.The Ward-Takahashi identities then allow us to determine the leading-order term of the unknown class B contribution in an expansion in both the initial and?nal photon momenta.Furthermore,with the help of crossing symmetry a de?nite prediction can be made concerning the order at which one expects model-dependent terms.

Our work is organized as follows.We start out in Sec.II by outlining the general structure

of the VCS Green’s function in the framework of Gell-Mann and Goldberger.We state the ingredients for the derivation of the LET,namely,crossing symmetry and gauge invariance. Section III derives the LET for virtual photon Compton scattering and we discuss the leading terms of the matrix element for the reaction e?+p→e?+p+γin the center-of-mass frame. As the notion of“Born terms”is important for the LET,we comment on this aspect in Sec. IV and point out ambiguities that arise in their de?nition,both for real and virtual photons. Our results are summarized and put into perspective in Sec.V.

II.STRUCTURE OF THE VIRTUAL COMPTON SCATTERING TENSOR AND

GAUGE INV ARIANCE

In this section we will de?ne the Green’s functions and the kinematical variables relevant for the discussion of VCS o?the proton.We will consider the constraints imposed by the fundamental requirements of gauge invariance,Lorentz invariance and crossing symmetry. We do this in the framework of a manifestly covariant description,incorporating gauge invariance in its strong version,namely,in the form of the Ward-Takahashi identities[16,17]. The approach is similar to that of[3]using,however,a somewhat more modern formulation.

The electromagnetic three-point and four-point Green’s functions are de?ned as

Gμαβ(x,y,z)=<0|T(Ψα(x)ˉΨβ(y)Jμ(z))|0>,(2.1) Gμναβ(w,x,y,z)=<0|T(Ψα(w)ˉΨβ(x)Jμ(y)Jν(z))|0>,(2.2)

where Jμis the electromagnetic current operator in units of the elementary charge,e>0, e2/4π=1/137,and whereΨdenotes a renormalized interpolating?eld of the proton; T denotes the covariant time-ordered product[18].Electromagnetic current conservation,?μJμ=0,and the equal-time commutation relation of the charge density operator with the proton?eld,

[J0(x),Ψ(y)]δ(x0?y0)=?δ4(x?y)Ψ(y),(2.3) are the basic ingredients for deriving Ward-Takahashi identities[16,17].

Using translation invariance,the momentum-space Green’s functions corresponding to Eqs.(2.1)and(2.2)are de?ned through a Fourier transformation,

(2π)4δ4(p f?p i?q)Gμαβ(p f,p i)= d4xd4yd4z e i(p f·x?p i·y?q·z)Gμαβ(x,y,z),(2.4) (2π)4δ4(p f+q′?p i?q)Gμναβ(P,q,q′)= d4wd4xd4yd4ze i(p f·w?p i·x?q·y+q′·z)Gμναβ(w,x,y,z),(2.5)

where p i and p f refer to the four-momenta of the initial and?nal proton lines,respectively, P=p i+p f,and where q and?q′denote the momentum transferred by the currents Jμand Jν,respectively.We note that Gμαβdepends on two independent four-momenta,e.g.,p i and p f.In particular,it is not assumed that these momenta obey the mass-shell condition p2i= p2f=M2.Similarly,Gμναβdepends on three four-momenta which are completely independent as long as one considers the general o?-mass-shell case.This will prove to be an important ingredient below when analyzing the general structure of the VCS tensor.

Finally,the truncated three-point and four-point Green’s functions relevant for our dis-cussion of VCS are obtained by multiplying the external proton lines by the inverse of the corresponding full(renormalized)propagators,

Γμ(p f,p i)=[iS(p f)]?1Gμ(p f,p i)[iS(p i)]?1,(2.6)

Γμν(P,q,q′)=[iS(p f)]?1Gμν(P,q,q′)[iS(p i)]?1,(2.7) where,for convenience,from now on we omit spinor https://www.wendangku.net/doc/c53080156.html,ing the de?nitions above,it is straightforward to obtain the Ward-Takahashi identities

qμΓμ(p f,p i)=S?1(p f)?S?1(p i),(2.8) qμΓμν(P,q,q′)=i S?1(p f)S(p f?q)Γν(p f?q,p i)?Γν(p f,p i+q)S(p i+q)S?1(p i) .(2.9) Following Gell-Mann and Goldberger[2],we divide the contributions toΓμνinto two classes,A and B,Γμν=ΓμνA+ΓμνB,where class A consists of the s-and u-channel pole terms; class B contains all the other contributions.We emphasize that this procedure does not restrict the generality of the approach.The separation into the two classes is such that all terms which are irregular for qμ→0(or q′μ→0)are contained in class A,whereas class B is regular in this limit.Strictly speaking,one also assumes that there are no massless particles in the theory which could make a low-energy expansion in terms of kinematical variables impossible[1];furthermore,the contribution due to t-channel exchanges,such as aπ0,has not been considered.

The contribution from class A,expressed in terms of the full renormalized propagator and the irreducible electromagnetic vertices,reads

ΓμνA=Γν(p f,p f+q′)iS(p i+q)Γμ(p i+q,p i)+Γμ(p f,p f?q)iS(p i?q′)Γν(p i?q′,p i).

(2.10) Note thatΓμνA is symmetric under crossing,q??q′andμ?ν,i.e.,

ΓμνA(P,q,q′)=ΓνμA(P,?q′,?q).(2.11) Since also the totalΓμνis crossing symmetric,this must also be true for the contribution of class B separately[2].Using the Ward-Takahashi identity,Eq.(2.8),one obtains the following constraint for class A as imposed by gauge invariance:

qμΓμνA(P,q,q′)=i(Γν(p f,p f+q′)?Γν(p i?q′,p i)

+S?1(p f)S(p i?q′)Γν(p i?q′,p i)?Γν(p f,p f+q′)S(p i+q)S?1(p i)

≡fνA(P,q,q′).(2.12) Similarly,contraction ofΓμνA with q′νresults in

q′νΓμνA(P,q,q′)=?i(Γμ(p f,p f?q)?Γμ(p i+q,p i)

+S?1(p f)S(p i+q)Γμ(p i+q,p i)?Γμ(p f,p f?q)S(p i?q′)S?1(p i) =?fμA(P,?q′,?q),(2.13)

which is,of course,the same constraint which one obtains from Eq.(2.12)using the crossing-symmetry property ofΓμνA:

q′νΓμνA(P,q,q′)=?(?q′ν)ΓνμA(P,?q′,?q)=?fμA(P,?q′,?q).(2.14) Combining Eqs.(2.9)and(2.12)generates the following constraint for the contribution of class B:

qμΓμνB=qμ(Γμν?ΓμνA)=i(Γν(p i?q′,p i)?Γν(p f,p f+q′)),(2.15) relating it to the one-photon vertex[3].Once again,the second gauge-invariance condition, obtained by contracting with q′ν,is automatically satis?ed due to crossing symmetry.

The4×4matrixΓμνB of class B is a function of the three independent four-momenta P,q,and q′.It is important to realize that the twelve components of these momenta are independent variables only for the complete o?-shell case,i.e.,if one allows for arbitrary values of p2i and p2f.This will be important when making use of the constraints imposed by gauge https://www.wendangku.net/doc/c53080156.html,ing Lorentz invariance,gauge invariance,crossing symmetry,parity and time-reversal invariance,it was shown in[12]that the generalΓμνfor VCS o?a free nucleon with both photons virtual consists of18independent operator structures.The functions associated with each operator depend on four Lorentz scalars,e.g.,q2,q′2,ν=P·q=P·q′, and t=(p i?p f)2.When allowing the external nucleon lines to be o?their mass shell,one will have an even more complicated structure[19].

However,in our derivation of the low-energy behavior of the electromagnetic four-point Green’s function we will not require the full structure as discussed in[12].At low energies we expandΓμνB in terms of the four-momenta qμand q′μ,

ΓμνB=aμν(P)+bμν,ρ(P)qρ+cμν,σ(P)q′σ+···,(2.16) where the coe?cients are4×4matrices and can be expressed in terms of the16independent Dirac matrices1,γ5,γμ,γμγ5,σμν.An expansion of the type of Eq.(2.16)is expected to work below the lowest relevant particle-production threshold,in this case the pion-production threshold;we refer the reader to,e.g.,[20]where a similar discussion for the case of pion photoproduction can be found.

So far we have considered general features of the operators entering into the description of VCS.It is clearly one of the advantages of using a covariant description of the type of Eq.

(2.16)that it neither uses a particular Lorentz system nor a speci?c gauge.When referring to powers of q or q′,we mean the ones coming from the Dirac structures and their associated functions.This is di?erent when one works on the level of nucleon matrix elements or the invariant amplitude,where also kinematical variables from the spinors or normalization factors enter into the power counting.

We conclude this section by noting that the above framework can easily be applied to VCS o?a spin-0particle,such as the pion.In that caseΓμν,of course,has no complicated spinor structure.The building blocks for class A are simply the corresponding irreducible, renormalized electromagnetic vertex for a spinless particle and the full,renormalized prop-agator?(p)[21].

III.LOW-ENERGY BEHA VIOR OF VCS

In a two-step reaction on a single nucleon,such asγ?N→γ?N,the intermediate nucleon lines in the s-and u-channel pole diagrams of class A are o?mass shell,while the external nucleons are on shell.The early,manifestly covariant derivations of the low-energy theorem for Compton scattering[2,3]took into account that the associated half-o?-shell electromag-netic vertex of the nucleon has a di?erent and more complicated structure than the free vertex.However,it was shown that the model-and representation-dependent properties of an o?-shell nucleon do not enter in the leading terms of the full Compton scattering ampli-tude when the irreducible two-photon amplitude of class B is included consistently.This was explicitly shown by expanding Eq.(2.10)to?rst order in qμand by constructing the leading-order term ofΓμνB with the help of Eq.(2.15)and crossing symmetry or,equivalently, the second gauge-invariance constraint.The?nal result for the amplitude was given in the laboratory frame and in Coulomb gauge.

In order to obtain the LET for VCS,we will proceed on the operator level and combine the method of[2,3]with ideas of an e?ective Lagrangian approach to Compton scattering [4].Let us?rst recall that the electromagnetic three-point and four-point Green’s functions of Eqs.(2.1)and(2.2)depend on the choice of the interpolating?eldΨof the proton,i.e., are“representation dependent”.Therefore,the truncated Green’s functions in momentum space,Eqs.(2.6)and(2.7),are in general not directly related to observables,except for p2i= p2f=M2.Consequently,the separation into class A and class B is necessarily representation dependent,since the total Green’s function,Eq.(2.6),as well as the individual building blocks of class A are representation dependent;this has of course no e?ect on the?nal on-shell result,which is representation independent.This was explicitly shown in[22]for the case of real Compton scattering o?the pion.On the other hand,for any given appropriate interpolating?eld satisfying the equal-time commutation relation of Eq.(2.3)the Ward-Takahashi identities,Eqs.(2.8)and(2.9),hold,providing important consistency relations between the di?erent Green’s functions.In the following we will make use of these relations for arbitrary P,q,and q′,which,in particular,includes arbitrary p2i and p2f.Only at the end,the observable on-shell case will be considered.

A.Derivation of the Low-Energy Theorem

We will derive this theorem by using a convenient representation,the“canonical form”, of the most general and gauge invariant e?ective Lagrangian.In the framework of e?ective Lagrangians,a canonical form is de?ned as a representation with the minimal number of independent structures(see,e.g.,[23]).For the class A terms,we need the electromagnetic vertex and the propagator of the nucleon.Below the pion-production threshold,the La-grangian for a single proton,interacting with an electromagnetic?eld,can be brought into the canonical form[4]

LγNN=ˉΨ(iD/?M)Ψ?e∞ n=1((?2)n?1?νFμν)F1nˉΨγμΨ

?e

where DμΨ=(?μ+ieAμ)Ψ,Fμν=?μAν??νAμ.The electromagnetic structure of the proton is accounted for through the Dirac and Pauli form factors,F1and F2,respectively, which are expanded according to

F1(q2)=1+

n=1(q2)n F1n,F2(q2)=κ+∞ n=1(q2)n F2n,κ=1.79.(3.2)

To this representation of the Lagrangian belongs,of course,a particular canonical La-grangian of order e2that generates the class B terms.However,as will be seen below,we do not need to know it in detail for this derivation.Clearly,Eq.(3.1)is invariant under the gauge transformationΨ→exp(?ieα(x))Ψ,and Aμ→Aμ+?μα.In order to arrive at Eq.

(3.1),use has implicitly been made of the method of?eld transformations(see,e.g.,[23–26]). It should be stressed that all ingredients needed for Eq.(3.1)are on-shell quantities that can be determined model independently from electron-proton scattering.Any explicit o?-shell dependence of the irreducible three-point Green’s function has been transformed away and will thus not show up in the class A contribution.Such transformations,however,generate concomittant irreducible class B terms for the amplitude that must be treated consistently (see[4]for details).

Using standard Feynman rules,the irreducible vertex associated with the e?ective La-grangian of Eq.(3.1)is found to be

Γμeff(p f,p i)=Γμeff(p f?p i)=γμF1(q2)+1?F1(q2)2M F2(q2),q=p f?p i.

(3.3) Since it is an important ingredient in our derivation of the LET,we emphasize that the vertex of Eq.(3.3)satis?es the Ward-Takahashi identity of Eq.(2.8);the corresponding propagator in the representation that yields Eq.(3.1)is the Feynman propagator of a point proton.As a consequence of gauge invariance,Eq.(3.1)automatically generates a term in the vertex proportional to qμ.

We note that the e?ective Lagrangian approach provides a natural explanation for the vertex of Eq.(3.3)which has previously been used by several authors as a simple means to restore gauge invariance in the form of the Ward-Takahashi identity(see,for example, [27]).However,it is not an independent building block for any amplitude,but must be used together with the corresponding irreducible class B terms for the reaction in question!

In principle,we could now proceed to construct the most general e?ective Lagrangian relevant to generate the corresponding class B terms for VCS.This would allow us,together with a calculation of the pole terms involving the vertex of Eq.(3.3),to determine the model-dependent terms ofΓμνat low energies.However,at this point it is more straightforward to apply the results of the last section.We obtain forΓμνA in the framework of Eqs.(3.1)and (3.3)

ΓμνA,eff=Γνeff(?q′)iS F(p i+q)Γμeff(q)+Γμeff(q)iS F(p i?q′)Γνeff(?q′).(3.4) Making use of Eq.(2.15)to obtain the gauge-invariance constraint for class B in our repre-

sentation,we see that it has the simple form1

qμΓμνB=0.(3.5)

This is due to the fact that the vertex of Eq.(3.3)depends on the momentum transfer,only. Note that Eq.(3.5)is still an operator equation,valid for arbitrary P,q,and q′.

Class A is de?ned to contain for any representation the pole terms ofΓμνwhich are singular in the limit qμ→0;we will come back to this point in the next section.We thus can make for class B the following ansatz for the q dependence:

ΓμνB(P,q,q′)=aμ,ν+bμρ,νqρ+cμρσ,νqρqσ+···.(3.6)

The coe?cients aμ,ν,···are4×4matrices which have to be constructed from the16Dirac matrices,the metric tensor gαβ,the completely antisymmetric Levi-Civita pseudo tensor ?αβγδ,and the remaining independent variables Pα,and q′α.The form of these coe?cients will be constrained by Lorentz invariance,gauge invariance,crossing symmetry and the discrete symmetries,C,P,and T.Contracting this ansatz with qμ,the condition for the class B operator,Eq.(3.5),becomes

qμΓμνB=aμ,νqμ+bμρ,νqρqμ+···=0.(3.7)

Multiple partial di?erentiation of Eq.(3.7)with respect to qαresults in the following condi-tions for the coe?cients,

aμ,ν=0,bμρ,ν+bρμ,ν=0, 6perm.(μ,ρ,σ)cμρσ,ν=0,···.(3.8)

Since current conservation is expected to hold for arbitrary q,the technique of partial di?er-entiation to obtain conditions for the coe?cients can easily be extended to obtain constraints for higher-order coe?cients.The simple constraints of Eq.(3.8)are based on the fact that Pα,qα,and q′αare independent variables;an implicit dependence would make matters more complicated.

From aμ,ν=0we can already conclude that the operator of class B contains no contri-butions which involve powers of q′only,without powers of q.Taking Eq.(3.8)into account, we now expand with respect to q′,

ΓμνB(P,q,q′)=Bμρ,νqρ+Bμρ,ναqρq′α+···+Cμρσ,νqρqσ+Cμρσ,ναqρqσq′α+···.(3.9)

If we apply crossing symmetry to Eq.(3.9)we?nd,as expected,that indeed all terms vanish that involve powers of q′only.Thus we?nd for the leading term of the model-dependent class B,

ΓμνB(P,q,q′)=Bμρ,να(P)qρq′α+O(qqq′,qq′q′),Bμρ,να=?Bρμ,να=Bνα,μρ,(3.10)

where the conditions for Bμρ,ναresult from gauge invariance and crossing symmetry,re-spectively.To be speci?c,after imposing the constraints of Eq.(3.10)and of the discrete symmetries one obtains three possible structures for Bμρ,ναon the operator level: Bμρ,να(P)=i(gμνgρα?gρνgμα)f1(P2)

+i(gμνPρPα+gραPμPν?gρνPμPα?gμαPρPν)f2(P2)

+?μρναγ5f3(P2),?0123=1.(3.11) In summary,we have shown that on the operator level

?the terms of order O(q?1α),O(q′?1α),O(1),O(qα)and O(q′α)are contained inΓμνA,eff,Eq.

(3.4).They are therefore determined model independently through on-shell quantities;?model-dependent terms?rst appear in the order O(qαq′β);

?all operators which contain either only powers of q or only powers of q′can entirely be obtained from thisΓμνA,eff.

In the next section we will discuss the implications of these?ndings for the on-shell VCS matrix element.

B.Application

We now want to apply the above result to the observable case where the nucleons are on mass shell,i.e.,we consider the matrix element.For that purpose we?rst de?ne the matrix element ofΓμνbetween positive-energy spinors as

(P,q,q′)=ˉu(p f,s f)Γμν(P,q,q′)u(p i,s i).(3.12) Vμνs

i s f

At this point we have to keep in mind that for the variables we use,P,q,and q′,the on-shell condition p2i=p2f=M2is equivalent to P·(q?q′)=0,and P2+(q?q′)2=4M2.In other words,the four-momenta chosen for the description of the o?-shell Green’s function will no longer be independent for the on-shell invariant amplitude.In particular,the distinction between powers of q only or,respectively,of q′only inΓμνis not valid anymore for the matrix element since q·P=q′·P.

Let us consider as an application the case where the initial photon is virtual and spacelike and the?nal photon is real,γ?(q,?)+p(p i,s i)→γ(q′,?′)+p(p f,s f).The following discussion does not include the Bethe-Heitler terms of the physical process p(e,e′p)γ,where the real photon is radiated by the initial or?nal electron,since these terms are not part ofΓμν.For the?nal photon the Lorentz condition q′·?′=0is automatically satis?ed,and we are free to choose,in addition,the Coulomb gauge?′μ=(0, ?′)which implies q′· ?′=0.We write the invariant amplitude in the convention of[28]as M=?ie2?μMμ,where?μ=eˉuγu u/q2is the polarization vector of the virtual photon.With a suitable choice for the reference frame, qμ=(q0,0,0,| q|),the Lorentz condition q·?=0and current conservation,qμMμ=0,may be used to reexpress the invariant amplitude as[29]

M=ie2 ?T· M T+q2

Note that as q0→0,both?z and M z tend to zero such that M in Eq.(3.13)remains?nite. Making use that we now know the general structure of the?rst undetermined operator,Eq.

(3.11),we can now consider the matrix element up to second order in q or q′.This will enable us to explicitly show how far the amplitude is determined and where the?rst model-dependent terms enter.After a reduction from Dirac spinors to Pauli spinors the transverse and longitudinal parts of Eq.(3.13)may be expressed in terms of8and4independent structures,respectively[4,14,30]:

?T· M T= ?′?· ?T A1+i σ·( ?′?× ?T)A2+(?q′× ?′?)·(?q× ?T)A3+i σ·(?q′× ?′?)×(?q× ?T)A4 +i?q· ?′? σ·(?q× ?T)A5+i?q′· ?T σ·(?q′× ?′?)A6+i?q· ?′? σ·(?q′× ?T)A7

+i?q′· ?T σ·(?q× ?′?)A8,(3.14)?z M z=?z ?′?·?q A9+i?z ?′?·?q σ·(?q′×?q)A10+i?z σ·(?q× ?′?)A11+i?z σ·(?q′× ?′?)A12.

(3.15) The results for the functions A i in the CM system expanded up to O(2),i.e.| q′|2,| q′|| q| and| q|2,are shown in Tables I and II.The derivation of the corresponding expressions is outlined in Appendix A.

In the amplitudes A5and A9,terms of order1/| q′|appear.We have not further expanded them in| q|and kept,e.g.,the on-shell form factors G M and G E.This was done mainly to stress that according to Low’s theorem[9]these divergent terms are already entirely?xed. They are due to soft radiation o?external lines,with the intermediate line approaching the mass shell in the pole terms.They can be obtained from,e.g.,the Born terms that contain the same on-shell information(see however the caveats in Sec.IV).In order to uniquely identify these singular contributions we have expanded all relevant expressions in terms of | q|and| q′|.This is the reason why the argument of the form factors is Q2=q2|| q′|=0=?2M(E i?M),where E i=√

In Table III we also show the results for the transverse amplitudes in the CM frame for real Compton scattering.Since A5=?A6and A7=?A8the result e?ectively involves6 independent amplitudes as required by time reversal invariance[4].When comparing with other expressions in the literature[1,2,4,30],one has to keep in mind that they usually are given in the laboratory frame.This observation accounts,for example,for the di?erence of the LET for A1and A3of real Compton scattering in the lab and the CM frame.Note also that the1/| q′|singularity disappears in the real Compton scattering limit,sinceω=| q|= | q′|in this case.

In conclusion,the low-energy behavior of the VCS matrix element for e?+p→e?+p+γ, expanded up to order O(2)in| q|and| q′|,contains,in addition to the structure coe?cients that enter into real Compton scattering,also the electric mean square radius and the electric and magnetic Sachs form factors in the spacelike region which all can be obtained from electron scattering o?the proton.For the reactionγ+p→p+e+e?[13],the analogous information for timelike momentum transfers is needed.However,here one has to keep in mind that this information is not directly accessible for0

IV.THE BORN TERMS

From the above discussion in a particular representation one might be tempted to con-clude that the leading terms for VCS–on the operator level or for the amplitude–are in general simply given by“Born terms”.However,some caveats are in order.First,one has to keep in mind that the low-energy behavior was obtained from considerations involving the most general ansatz for the truncated four-point Green’s function.All terms one can think of are included into class A and class B.In,e.g.,the derivation of[3]of the LET for Compton scattering,where no special representation is chosen,it is clearly shown that both class A and class B terms are needed.Implicit in all derivations is of course the assumption that a description in terms of observable asymptotic hadronic degrees of freedom is su?cient and complete at low energies.Even though subnucleonic degrees of freedom,quarks and gluons,are ultimately the origin of the structure of the nucleon,it was shown[32,33]that an e?ective?eld-theory approach[34–37]in terms of hadrons is meaningful at low energies, thus allowing a classi?cation into class A and class B.

Secondly,there is an ambiguity concerning what exactly is meant by“Born terms”,once phenomenological form factors are introduced and the result is not obtained from a micro-scopic Lagrangian.We will illustrate this ambiguity by considering di?erent representations of the photon-nucleon vertex.All representations contain the same information concern-ing the electromagnetic structure of the on-shell nucleon,as obtained in electron-nucleon scattering,but di?er in the half-o?-shell situation encountered in the s-and u-channel pole terms of Compton scattering.This di?erence is,of course,accompanied by di?erent class B terms such that the total result is the same.

To explain the above points in more detail,we will?rst reconsider the most general expression for class A and,without going to a special representation,identify those terms which contain the irregular contribution for qμ→0or q′μ→0.We?nd that these contribu-tions can be expressed in terms of on-shell quantities,in our case the Dirac and Pauli form factors F1and F2.We then show that the use of on-shell equivalent electromagnetic vertices

gives rise to the same results for the VCS matrix element as far as the irregular terms are concerned,but not every choice will result in“Born terms”which are gauge invariant.

A.Irregular Contribution to the VCS matrix element

When calculating Vμνs

i s f ,the irregular contribution originates from the singularities of the

propagators S(p i+q)and S(p i?q′)in the s and u channel,respectively.To be speci?c, below pion-production threshold the renormalized,full propagator can be written as S(p+q)=S F(p+q)+regular terms,(p+q)2<(M+mπ)2,(4.1) where S F(p)denotes the free propagator of a nucleon with mass M.By“regular terms”we mean terms which have a well-de?ned,non-singular limit for qμ→0.Thus,as long as we are only interested in the irregular terms,we can simply replace the full,renormalized propagator by the free Feynman propagator,S F.

The most general form of the irreducible,electromagnetic vertex of the nucleon can be expressed in terms of12operators and associated form functions[38,39].These functions depend on three scalar variables,e.g.,the squared momentum transfer and the invariant masses of the initial and?nal nucleon lines.A convenient parametrization ofΓμ(p f,p i)is given by

Γμ(p f,p i)= α,β=+,?Λα(p f) γμFαβ1+iσμνqνM Fαβ3 Λβ(p i),Fαβi=Fαβi(q2,p2f,p2i),

(4.2) where q=p f?p i,andΛ±(p)=(M±p/)/2M.We have chosen a form which di?ers slightly from the convention of[39]in the de?nition of the projection operators and the normalization of the F3form functions.We only need the following on-shell properties of the form functions:

F++ 1(q2,M2,M2)=F1(q2),F++

2

(q2,M2,M2)=F2(q2),F++

3

(q2,M2,M2)=F3(q2)=0,

(4.3)

where F1and F2are the standard Dirac and Pauli form factors and F3vanishes because of time-reversal invariance.One can also show that F3(q2)vanishes due to current conservation.

We now systematically isolate the irregular part of,e.g.,the s-channel pole diagram,2

VμνA,s=ˉu(p f)Γν(p f,p f+q′)iS(p i+q)Γμ(p i+q,p i)u(p i)

≈ˉu(p f)Γν(p f,p f+q′)iS F(p i+q)Γμ(p i+q,p i)u(p i),

where we made use of Eq.(4.1),and where the symbol≈denotes equality up to regular terms. We now insert Eq.(4.2)forΓμ(p i+q,p i)and useΛ?(p i)u(p i)=0andΛ+(p i)u(p i)=u(p i) to obtain

VμνA,s≈ˉu(p f)Γν(p f,p f+q′)iS F(p i+q)(Λ+(p i+q)(γμF++1(q2,s,M2)+···)

+Λ?(p i+q)(γμF?+

1

(q2,s,M2)+···))u(p i), where s=(p i+q)2.Since S F(p i+q)Λ?(p i+q)results in a regular term,we have VμνA,s≈iˉu(p f)Γν(p f,p f+q′)p i/+q/+M

2M

F2(q2))u(p i),

where we made use of Eq.(4.3).UsingΛ+(p i+q)=1?Λ?(p i+q)and then repeating the same procedure forΓν(p f,p f+q′)we?nally obtain

VμνA,s≈ˉu(p f,s f)ΓνF1,F2(?q′)iS F(p i+q)ΓμF1,F2(q)u(p i,s i),(4.4) where we introduced the abbreviation

ΓμF

1,F2(q)=γμF1(q2)+i

σμνqν

ΓμG

E,G M

(p f,p i)= 1?q22M G E(q2)+γμP/q/?q/P/γμ

2M

H2(q2),(4.9) where P=p i+p f and

G E=F1+

q2

4M2 ?1p2

f?p2i

2M

H2(q2)=S?1F(p f)?S?1F(p i).(4.12)

The“Born terms”calculated with these electromagnetic vertices and free nucleon prop-agators are

VμνX=ˉu(p f,s f)(ΓνX(p f,p f+q′)iS F(p i+q)ΓμX(p i+q,p i)

+ΓμX(p f,p f?q)iS F(p i?q′)ΓνX(p i?q′,p i))u(p i,s i),(4.13) where X denotes either the vertex of Eq.(4.8)in terms of G E,G M or the vertex of Eq.(4.9) involving H1,H2,respectively.These“Born terms”are by construction crossing symmetric but in both cases not gauge invariant,

qμVμνG

E,G M

=i 1?q2

2M +

q/

2M

+

q/

correctly reproduce the on-shell electromagnetic current of the nucleon will yield the same irregular contribution to the VCS matrix element.The key to the proof of this statement is the fact that any current operator which transforms as a Lorentz four-vector can be brought into the form of Eq.(4.2).On-shell equivalence then amounts to the constraint that all

operators have the same on-shell limit of the F++

i form functions.In general,no statement

can be made for either the other form functions or o?-shell kinematics.3However,as we have seen above,the irregular contribution of class A,and thus of the total VCS matrix element,

only involves the on-shell information contained in F++

1(q2,M2,M2)and F++

2

(q2,M2,M2).

Any information beyond this will give rise to regular terms.Thus the above statement is true.

To illustrate the above,we bring for example the current operators of Eq.(4.5)and(4.9), involving F1and F2or H1and H2,respectively,into the general form of Eq.(4.2).By using 1=Λ+(p)+Λ?(p),the result for the commonly used form of Eq.(4.5)is given by

Fαβ1(q2,p2f,p2i)=F1(q2),Fαβ2(q2,p2f,p2i)=F2(q2),Fαβ3(q2,p2f,p2i)=0,α,β=+,?.

(4.16) For the vertex given in Eq.(4.9),we use{γμ,γν}=2gμνand momentum conservation at the vertex to rewrite

(p i+p f)μ

2M?i

σμνqν

2M

H2(q2) Λ+(p i)

+Λ?(p f) γμH1(q2)+iσμνqν

2M

H2(q2) Λ?(p i)

+Λ?(p f) γμ(H1(q2)+H2(q2))+iσμνqν

3Further conditions on the form functions can be derived from the Ward-Takahashi identity and discrete symmetry requirements[38,39].

di?er among each other through regular terms.Furthermore,such“Born terms”are,in general,not gauge invariant;an exception is the commonly used form involving the Dirac and Pauli form factors F1and F2.“Generalized Born terms”which are made gauge invariant by hand through an ad hoc prescription also di?er by regular terms.

Important starting point for the derivation of the LET are the irregular terms.It is thus also possible to split the total VCS amplitude into“Born terms”plus“rest”,instead of class A and B amplitudes,to arrive at the same result for the LET,i.e.up to and including terms linear in the photon three-momenta.In general,this result will have contributions from“Born terms”and the“rest”amplitude.If one uses a“generalized Born amplitude”, all the terms appearing in the LET are due to the expansion of the Born amplitude.It is a well-known feature of soft-photon theorems that they cannot make statements about terms which are separately gauge invariant[41–43].One has to keep this in mind when discussing the structure-dependent higher-order terms of VCS,i.e.,one needs to specify which Born or class-A terms have been separated.For example,in[14]the“Born terms”involving F1and F2where separated since they provide without any further manipulation a gauge-invariant amplitude.Then the residual part with respect to these particular“Born terms”was parametrized in terms of generalized polarizabilities.A natural question to ask is what would have happened had one separated a di?erent choice of“generalized Born terms”and de?ned generalized polarizabilities in an analogous fashion with respect to the corresponding residual amplitude.Obviously one would,in general,have found di?erent numerical values for the new generalized polarizabilities in order to obtain the same total result.

V.CONCLUSIONS

In studying the structure of composite strongly interacting systems the electromagnetic interaction has been the traditional and precise tool of investigation.In scattering of elec-trons from a nucleon,our knowledge is restricted to two form factors that we can extract from experiments.Even though we have not yet been able to fully explain this information on the basis of QCD,it is important to look for other observables allowing us to test ap-proximations to the exact QCD solution and e?ective,QCD inspired models.Such e?ective models are expected to work especially at low energies.The electron accelerators now make it possible to study virtual Compton scattering,which is clearly more powerful in probing the nucleon than the scattering of real photons.In analyzing Compton scattering it is im-portant to know how much of the prediction is not a true test of a model,but?xed due to general principles.These model-independent predictions for virtual Compton scattering were the main topic of our discussion.

The interest in virtual Compton scattering has also been due to another aspect:When studying reactions on a nucleus,such as(e,e′p),the nucleon interacting with the electro-magnetic probe is necessarily o?its mass shell.We have no model-independent information for the behavior of such a nucleon and any conclusion about genuine medium modi?cations must be based on?rm theoretical ground how to deal with a single nucleon under these kine-matical circumstances.In fact,such a discussion depends very much on what one chooses as an interpolating?eld for the intermediate,not observed nucleon.This clearly makes the “o?-shell behavior”of the nucleon representation dependent and unobservable.We discussed how certain features of the o?-shell electromagnetic vertex of the nucleon can be shifted into

irreducible,reaction-speci?c terms for the reaction amplitude.Two-step reactions on a free nucleon–like(virtual)Compton scattering–allow us to test many aspects of dealing with

an intermediate,o?-shell nucleon under simpler circumstances,without complications from, e.g.,exchange currents or?nal state interactions.Understanding these aspects on the single

nucleon level would seem a prerequisite before any exotic claims can be made for nuclear reactions.

We have studied the virtual Compton scattering?rst on the operator https://www.wendangku.net/doc/c53080156.html,ing the

requirement of gauge invariance,as expressed by the Ward-Takahashi identity,we derived constraints for the operator that determine terms up to and including linear in the four-momenta q and q′.Also,we showed that on the operator level terms involving terms de-

pending only on q or only on q′are determined model independently in terms of on-shell properties of the nucleon.

To obtain these results,we used the method of Gell-Mann and Goldberger,by splitting the contributions into general pole terms(class A)and the one-particle irreducible two-photon contributions(class B).We calculated class A below pion-production threshold in

the framework of a speci?c representation for the most general e?ective Lagrangian compat-ible with Lorentz invariance,gauge invariance and discrete symmetries.This approach was

introduced in[4]as a method for writing the general structure of the Compton scattering amplitude in a way that allows best to discuss its low-energy behavior.In this connection, we also showed the origin for a commonly used form of the electromagetic vertex of the

nucleon and stated the consistency conditions for its use.

After discussing the leading terms of the VCS operator,we considered the matrix element forγ?p→γp in the photon-nucleon CM frame.We found that the VCS amplitude up to

and including terms linear in the initial and?nal photon three-momentum can be expressed in terms of information one can obtain from electron-proton scattering.This is the result

analogous to the LET for the real Compton scattering amplitude.As we also showed,the next order–terms involving| q′|2,| q′|| q|,and| q|2–is also completely speci?ed but now requires in addition also the electromagnetic polarizabilitiesˉαandˉβencountered in real

Compton scattering.In other words,new structure-dependent information can only appear at order three or higher in the three-momenta.Our results concern the expansion in terms of powers of both the initial and?nal photon momentum.This allowed us to determine more terms than in[14],where only the leading terms in the?nal momentum were concerned.On the other hand,by expanding in both momenta,the range of applicability is smaller since both kinematical variables should be small.

We then considered di?erent commonly used methods to include the on-shell information contained in the electromagnetic form factors in a“Born-term”calculation of the VCS matrix element.The fact that the“Born terms”calculated with F1and F2are gauge invariant is not trivial,since the vertex and free propagator do not satisfy the Ward-Takahashi identity.We explained why di?erent on-shell equivalent forms for the electromagnetic vertex operator lead to the same irregular contribution in the VCS matrix element.We emphasized the importance of stating with respect to which pole terms the structure-dependent terms are de?ned.

Using only gauge invariance,Lorentz invariance,crossing symmetry,and the discrete symmetries,we were able to make statements about the low-energy behavior up to O(2). Further conclusions can be reached by also taking into account the constraints imposed by

chiral symmetry.This would most naturally be done in the framework of Chiral Perturbation Theory.In particular,predictions for the higher-order terms could be obtained.

VI.ACKNOWLEDGEMENTS

The work of J.H.K.is part of the research program of the Foundation for Fundamental Research of Matter(FOM)and the National Organization for Scienti?c Research(NWO). The collaboration between NIKHEF and the Institute for Nuclear Physics at Mainz is sup-ported in part by a grant from NATO.A.Yu.K.thanks the Theory Group of NIKHEF-K for the kind hospitality and the Netherlands Organization for International Cooperation in Higher Education(NUFFIC)for?nancial support.A.Yu.K.also would like to thank SFB 201of the Deutsche Forschungsgemeinschaft for its hospitality and?nancial support during his stay at Mainz.S.S.would like to thank H.W.Fearing for useful discussions on the soft-photon approximation.

APPENDIX A:

In this appendix we outline the calculation of the transverse and longitudinal functions A i of Eq.(3.14)and(3.15),respectively.For that purpose we split Mμinto its contributions from classes A and B,Mμ=MμA+MμB.If we introduce

F(?q′)=?/′?(1+

κ

s?M2+

p i·?′?

s?M2

+

Γμeff(q)?/′?q/′

M p f·?′?q/′Γμ

eff

(q)

u?M2 +κ

The following considerations will be carried out in the center-of-mass (CM)frame,where the four-momenta are given by q μ=(q 0,0,0,| q |),p μi =(E q ,? q ),q ′μ=(| q ′|, q ′),and p μf =

(E q ′,? q ′).From energy conservation,q 0+E q =| q ′|+E q ′,we infer that we may choose | q |,| q ′|,and z =?q ·?q ′as a set of independent variables.In terms of the CM variables the denominators of Eq.(A3)are proportional to | q ′|,

s ?M 2=2| q ′|(E q ′+| q ′|),u ?M 2=?2| q ′|(E q +z | q |),(A5)

and thus M μ

A can be written as

M μA =a

μ

(q,q ′)

2(E q ′+| q ′|)

?Γμ

eff (q )?/′?n /′

M Γμ

eff (q )n /′2M (?/′?Γμeff (q )+Γμ

eff (q )?/′?) u (? q ,s i ),

(A8)

where we introduced n ′μ=(1,?q ′),and

K ( q )=? q · ?′?

翻译技巧和经验第17期Virtual reality 该如何翻译

近一个时期来,Virtual Reality (VR)一词在报刊等新闻媒体上频频出现,十分活跃,从而也引出了对VR 该怎么好的问题。据《光明日报》载,VR 的译名计有:“虚拟实在”(1996 年,10 月28 日)“临境”、“虚实”、“电象”、“虚拟境象”以及“灵境”(1997 年1 月16 日);此外,还有最常见的“虚拟现实”(如《文汇报》1997 年3 月12 日“小辞典”)。 对VR 究竟怎么理解和怎么翻译,笔者不敢妄下结论。不过,从最近一期外刊上读到的一篇文章(载于 Jane's DEFENCE'97,作者为 Ian Strachan,Editor,Jane's Simulationand Training Systems)在这两方面都可给人以不小的启发。为帮助说明问题,现将此文中有关的部分摘录于下。文章标题和引语是: VIRTUALLY REAL Virtual reality is rapidly becoming the training tool o f the 21stCentury - but what exactly is it? 将此翻译过来大致是: 可说是真的Virtual reality 正在迅速成为二十一世纪的训练器具--但它确切的含义是什么呢? 文中在讲到 virtual 一词的定义时是这样说的:One dictionary definition of "virtual" is"something which is unreal but can be considered as being real for some purposes." 文章接着对 VR 作了几种实质性的释义: Cyber-something? To some, VR is putting on a Cyber-helmet (whatever that is) and involvestotal immersion (whatever that means) in cyberspace (where ver that is). Collimation? To some, VR is a view through a collimated display system. Tactile sensors? To some, VR implies tactile simulation as well a visual syst em. 对以上这些解释或释义,Strachan 认为它们都是对的:Which of these interpretations of VR is right? Ibelieve that they all are.(对VR 的这些诠释中哪个是对的?我相信它们都是对的。)为什么都对?Strachan 说那是因为 English is a living language and insistence on any preciseinterpretation of VR is narrow and not in accordance with what has already become commo nusage.(英语是一门活的语言,而坚持对 VR 作任何精确的诠释是狭隘观念,也不符合约定俗成。) 通过以上介绍,我们似乎能够得出这样的结论:各位专家学者所给的译名都是对的。因为,汉语也是一门活的语言,坚持对 Virtual Reality 作任何精确的翻译是狭隘观念。但是,另一方面,则仍有必要从以上译名中挑选出一两个最好的来,或者也可以另起炉灶,如果还有更好的话。那么,我们认为“虚拟现实”和“虚拟实在”与原文更加“形似”。其它几个译名虽各有千秋,但总嫌“神似”有余,而“形似”不足。词和词语的翻译同句子和篇章一样应力求“神形兼具”。在这种情况下,找到一个最理想的译名实属必要。 借鉴以上众多译名,并综合Strachan 所做的分析和解释,经过反复比较和推敲,我们认为 VirtualReality 视情可译为“拟真技术”、“拟真”或“虚拟真实”。这几个译名与所介绍的那些在含义上大致相同而表述略有不同,或许是最为得体的。理由如下: 第一,这么译十分符合英文词语的本义。Virtual 在这里意为 in effect, though not in fact; not such infact but capable of being consider

(完整版)初级语法总结(标准日本语初级上下册)

1.名[场所]名[物/人]力*笳◎去歹/「仮歹 名[物/人]总名[场所]笳◎去歹/「仮歹 意思:“ ~有~ ”“~在~”,此语法句型重点在于助词“心‘ 例:部屋忙机力?笳◎去歹。 机总部屋 2.疑问词+哲+动(否定) 意思:表示全面否定 例:教室忙疋沁o 3?“壁①上”意思是墙壁上方的天棚,“壁才是指墙壁上 例:壁 4. ( 1)名[时间]动 表示动作发生的时间时,要在具体的时间词语后面加上助词“V”,这个一个时间点 例:森总心比7時V 起吉去To 注意:只有在包含具体数字的时间时后续助词“V”,比如“ 3月14 日V, 2008年V”;星期后面可加V,比如“月曜日V” ,也可以不加V;但是“今年、今、昨日、明日、来年、去年”等词后面不能加V。 此外:表示一定时间内进行若干次动作时,使用句型“名[时间]V 名[次数]+动” 例:李1週間V2回7°-^^行吉去T。 (2)名[时间段]动:说明动作、状态的持续时间,不能加“ V” 例:李毎日7時間働^^L^o (PS: “V”的更多用法总结请看初级上第15课) ( 3)名V 【用途】【基准】 表示用途时,前接说明用途的名词,后面一般是使"去T等动词 表示基准时,前名词是基准,后面一般是表示评价的形容词。 例:--乙①写真总何V使"去T力、。「用途」 --申請V使"去T。「用途」 乙①本总大人V易L^^ToL力'L、子供V总難L^^To 「基准」 X —X—力*近乙買⑴物V便利^To 「基准」 (4)动(基本形) OV 【用途】【基准】:使用与上述( 3)一样 例:乙O写真求一卜总申請T^OV 使"去T。 ^OV>^3>^ 買“物T^OV 便利^To (5)小句1 (简体形)OV,小句2:名/形動+肚+OV 表示在“小句1 ”的情况下发生“小句2”的情况不符合常识常理,翻译为“尽管…还是…,虽

和声学基本知识

和声学基本知识 1. 大小三和弦、大小调中的主、属、下属和弦西方古典音乐体系的和声基础是三和弦,三和弦又以大小三和弦为最基本。三和弦是由三个音组成的,分别被称为根音、三音和五音。而和弦的性质,则是由根音、三音和五音之间的距离(及音程),来决定的:根音和三音之间是大三度,三音和五音之间是小三度的,被称为“大三和弦”。根音和三音之间是小三度,三音和五音之间是大三度的,被称为“小三和弦”。西方古典音乐(从16世纪以后),是以大小调为主的。大小调都各有三个最主要的三和弦:主和弦,属和弦和下属和弦,分别是调内的I 级、V级和IV级。我们看到,大调的主、属、下属是大三和弦。小调的主、属、下属是小三和弦。作为小三和弦的小调属和弦,当进行到主和弦时,感觉缺乏力量。原因是小调的VII级,到I级是大二度,没有向I级的强烈倾向。而大调的VII级和I级之间是小二度关系,有强烈的倾向。因此,西方传统和声,常常把小调的VII级音升高半音。升高后的VII级音和I级和大调一样,是小二度关系,被称为“导音”,(大调的VII 级亦被称为“导音”) 这样,小调音阶中的VII 级就被升高了。这种小调音阶,VI级和VII级间是增二度,被称为“和声小调”。VII级没有升高的,被称为“自然小调” 。这两种小调,在现代流行音乐中,都被广泛运用,而在西方古典音乐中,和声小调占绝对优势。西方传统和声是建立在这样的进行:由主和弦开始,经过下属和弦,到属和弦,最后解决到主和弦上的。这个进行是西方传统和声的基础,所有的其它和声进行,都是这个进行的扩展和补充。其中,最重要的原则是:下属不能直接接在属之后,这被称为功能倒置。这是因为,西方古典音乐是建立在一种美学体系,及──力量不断增加,最后解决──的美学体系基础上的。属后直接接下属,被认为是解决到主和弦之前的力量衰减,因此不被接受。但现代流行音乐中,这种限制完全被打破。我们的第一个和声公式:I-V-IV-V,后面可以接I级,或其它可以接V级的和弦。(其它可以接V级的和弦将在以后介绍。) 注1:“大小三和弦”是指和弦的性质,及这个和弦的特性是什么。而“主和弦,属和弦和下属和弦”是指和弦的功能,及在大小调中起什么作用。“I级、V级和IV级”是和弦根音的音级,及和弦根音在音阶中所占的位置。 2. 增减三和弦和大调中的副三和弦西方传统和声体系中,除了大小三和弦外,增减三和弦也是很常用的。增三和弦是由两个大三度叠置而成。减三和弦是由两个小三度叠置而成。在大小调中,除了主、下属和属以外,其他音级上的副三和弦也是很常用的。大调上的副三和弦的性质分别为: ii级:小三和弦。iii级:小三和弦。vi级:小三和弦。vii级:减三和弦。 ii级三和弦,由于和IV级三和弦有两个共同音,有下属的功能倾向,因此被归为下属和声组。 vi级三和弦,由于和IV级三和弦有两个共同音,有下属的功能倾向,因此也被归为下属和声组。然而vi级三和弦,同时和I级三和弦也有两个共同音,因此也有主的倾向,因此有时在属到主的进行中,用来代替主和弦的位置,被称为“阻碍终止”(因为它并不是真正的终止,感觉上象被vi级和弦从中间阻住了一样。) iii 级三和弦是一个较少用的和弦,它具有I级和V级的双重功能(因为它和I级、V

标准日本语初级语法总结(上)

第一部分——名词 名词:名词是词性的一种,也是实词的一种,是指待人、物、事、时、地、情感、概念等实体或抽象事物的词。在日文中的充当句子成分时可以做主语,宾语,目的语等。与数量词、代词等构成体言。在单词方面完全由汉字组成的词汇如:説明せつめい 等很多是音读即类似汉语发音,当然也有训读的时候(海うみ ),甚至一个词有音读和训读两种念法(紅葉こうよう 和紅葉もみじ )。由汉字和假名组成的词语大多训读念法例:お知らせ 名词无变形但有时态的差别: 名词 简 体 敬 体 现在式 过去式 现在式 过去式 肯定 名词+だ 例:学生だ 名词+だった 学生だった 名词+です 学生です 名词+でした 学生でした 否定 名词+ではない 学生ではない 名词+ではなかった 学生ではなか った 名词+ではありません 学生ではありません 名词+ではありませんでした 学生ではありませんでした 另外名词的中顿形:名词+で、~~~。 名词的推量形,表示推测或向对方确认:でしょう。 初级上名词相关时态、句型: 敬体: 1.现在肯定:N です わたしは 王です。「3」2.现在否定:N ではありません わたしは 日本人では ありません。「3」 3.过去肯定:Nでした 前の 会社は 日系企業でした。「11」 4.过去否定:Nでは ありませんでした 先週,大阪は いい 天気では ありませんでした。「11」 简体: 1.现在肯定:Nだ 今日は 日曜日だ。「18」 2.现在否定:Nではない クリスマスは 祝日では ない。「18」 3.过去肯定:Nだった 恋人からの 誕生日の プレゼンは ネクタイだった。「18」 4.过去否定:Nではなかった 昨日は 休みでは なかった。「18」

《基础和声学》教学大纲

《基础和声学》教学大纲 适用专业:音乐学专业 课程类别:基础理论课 授课学时: 学分: 总纲 课程的性质: 《基础和声学》是音乐学专业各专业方向的一门专业专业基础理论课,是学习多声部音乐中的和弦结构方式、声部进行规律、和声序进规律以及四部和声写作技术与应用的课程,它起着提高学生和声写作与分析能力的作用,并且,为以后学习《即兴伴奏》、《复调基础》、《配器法常识》、《曲式与作品分析》、《歌曲作法》、《电脑音乐》等课程打下良好的基础。课程基本任务: 本课程是音乐学专业的基础理论课,是学习多声音乐中的和声规律及其应用的一门基础理论课程。通过教学使学生比较系统地理解基础和声理论及其运用,能分析一般中、外乐曲中常见的和声现象,掌握初步的和声写作技能。为音乐表演、编写歌曲伴奏与小型合唱曲、学习有关作曲技术理论课程打下基础。 课程内容概要: 本课程以冯鄂生、贾方爵、薛世民编著的《和声实用基础教程》教材为主,适当参考其他教材,如桑同主编的《和声学教程》、金铁宏主编的《基础和声学》,本课程主要讲授了四部和声的写作原则、和弦的连接方法、和声进行的一般规律、副属和弦的构成及使用方法、转调的方法和在实际作品中的应用等内容。 课程教学形式: 教学中采用四部和声写作和作品谱例分析相结合的形式,使学生具备写作和分析的能力,注重理论与实践相结合,注意培养和声听觉及和声思维能力,并根据实际情况将学生分组授课,加强学生的四部和声写作练习,并一对一修改,使学生掌握扎实的理论基础。 课程学时分配: 课程考核方式: 理论闭卷考试

成绩评定: 采用总分百分制或五级制计分方式。 平时成绩(考勤、作业、态度等)占30%,考试成绩占60%,其它(课程实验、专业技能性考核等)占10%。 选用教材及参考书目: 桑桐主编的《和声学教程》 杨通八主编的《和声分析教程》 金铁宏主编的《基础和声学》 课程教学内容提要 第一章绪论 (一)基本要求 1、了解和声的起源和发展概况 2、掌握和声这门学科的性质 (二)主要教学内容 1、掌握有关多声部音乐的几个概念 2、什么是主调音乐 3、什么是复调音乐 4、什么是多声部音乐以及以上几种音乐形式的区别 (三)教学重点难点 1、和声学是怎么样一门学问 2、和声在多声部音乐中所起到的作用 3、和声对形成作品的曲式结构具有重要作用 第二章和弦 (一)基本要求 1、了解和弦的基本概念 2、熟悉和弦的种类以及性质 (二)主要教学内容 1、掌握什么是原位和弦及转位和弦 2、掌握大、小调体系中各级和弦的名称以及各级和弦的结构 3、熟悉以五声音阶为基础的各调式和弦名称 (三)教学重点难点 1、掌握什么是原位和弦及转位和弦 2、掌握第一、第二转位和弦的名称 3、第一、第二转位和弦的性质 4、熟悉各级和弦在大小调体系中的结构和色彩 第三章四部和声 (一)基本要求 1、学习四部和声的基本记谱形式及各声部的名称 2、了解关于和弦音的省略与重复问题 3、学会四部和声的排列法

高中英语 unit5 virtual reality-reading教案 上海牛津版S2A

Unit5 Virtual Reality Reading教案 一、章节分析(Reading section ) (一)综述 本章节讲述虚拟现实(VR)在各个领域的运用并分析其利弊。由于此主题较新,并与学生日常生活的电脑网络的使用有关,学生们对此应该是比较熟悉也颇有兴趣的。 因此,教师应充分利用学生的兴趣来教授本课,并进行适当拓展。 本课的任务有两个: 1.学生通过对课文的学习。掌握一些核心词汇,例如:imaginary, realistic, security, image等。 2.通过学习课文,了解如何运用想象写说明文,为writing部分做一定的铺垫和 准备。 (二)阅读目标 1知识目标 学习课文中重点词、词组、句型和语法。 2能力目标 通过阅读了解虚拟现实在各个领域的使用以及其他相关知识。 3情感目标 正确判断电脑、网络以及虚拟现实对日常生活的利弊影响。 (三)教学方法 采用任务型教学法组织教学,通过听说,讨论等具体活动,达到教学效果。 (四)重点和难点 1词汇学习 1)核心词汇 artificial

commit imaginary realistic security image amazing 2)拓展词汇 inspect manufacture architect amazing glide head-set inspect medium virtual fantasy 3)词组和短语 look down upon go back in time come true thanks to introduce … into reach out just for entertainment before long

和声学专著

1.《和声学》.姜之国编著.湖南文艺出版社, 2008 本书内容包括:自然音体系和弦、调性扩张的三种基本方式、和弦外音与持续音、调性转换等四篇。专业公共课教材音乐考研复习精要。 2.《多声部音乐写作与分析基础教程, 基础和声》.张建华主编.安徽文艺出版社, 2008 本书内容包括:原位正三和弦的平稳连接、为低声部配和声、正三和弦的转位、属七和弦、和弦外音、调内模进、近关系转调等。高等学校音乐学专业教材 3.《和声学教程》. (苏)伊·杜波夫斯基[等]合著 ; 陈敏译.人民音乐出版社, 2008.2版, 增订重译版 本版图书将原来的上下两册合为一册,从学术上说把传统和声归纳得科学、缜密、井然有序;阐述得合理透彻、丝丝入扣;从交教学上循序渐进。 4.《基础和声》.现代远程音乐教育丛书.刘锦宣著.中央民族大学出版社, 2007 本书分为上编与下编两部分,上编为自然音体系,下编为半音体系。其中还有两章五声性旋律民族调式和声配置手法的介绍。附1光盘。 5.《和声的结构功能》.(Structural functions of harmony)(奥)阿诺德·勋伯格(Arnold Schoenberg)著 ; 茅于润译.上海音乐出版社, 2007 本书介绍了和声的结构功能、和声的原则、代替音与领域、小调的领域、变和弦、游移和弦等内容。据原书修订本译出。 6.《勋伯格和声学》(Arnold Schoenberg theory of harmony).奥)阿诺德·勋伯格著 ; 罗伯特·D. W. 阿达姆斯英译 ; 罗忠镕译.上海音乐出版社, 2007 本书内容包括:大调音阶的自然音和弦、小调调式、没有共同音的和弦的连接、转调、来自教会调式的副属和弦和其他非自然音和弦等。 7.《和声对位化写作与综合性分析》.徐平力著.吉林人民出版社, 2007 本书分为上下两篇“对位化和声写作”、“综合性和声分析”,内容包括:对位部分,外音部分,其他部分等。 8.《综合和声理论写作与应用》.李龙德编.哈尔滨地图出版社, 2007 本书的学习对象以巴洛克开始到浪漫派西洋音乐和声为依据,写作部分和分析部分完全保持在这个框架里面,理论与学习的射程从中世纪、文艺复兴尝试扩展到近代、现代西欧多声音乐的全史。 9.《键盘和声与即兴伴奏》.周慕俊主编.高等教育出版社, 2006 本书主要内容有:和弦基础与初步伴奏;属七和弦、终止四六和弦及进行曲风格的歌曲伴奏、常用七和弦的连接及抒情性歌曲伴奏等。五年制高等职业教育幼儿教育专业教学用书。附1光盘。 10.《二十世纪音乐的和声技法》(Harmonik in der Musik des 20. Jahrhunderts ).(德)瓦尔特·基泽勒(Walter Gieseler)著 ; 杨立青译.上海音乐学院出版社, 2006.上海市重点学科建设项目资助上海音乐学院音乐研究所课题.上音译丛.丛书第一辑

标准日本语初级上册语法总结(改:动词原形)

日语初级上册语法总结 ㈠日语常用的词汇分类及用法: 1 名词:在句子中作主语,谓语,宾语,定语(名词+の名词)。 2 形容词:定语,谓语。 3 形容动词:定语,谓语。 4 动词:定语,谓语。 5 副词:可做状语,修饰动词,形容词,形容动词。 6 助词:相当中文里的助词,用于说明一个句子或一个词,与其它句子或词的关系。 ㈡动词的分类及「て形」、「ない形」、「た形」的变形规则。 ㈣上册所学语法中与「て」「ない」「た」相关的语法。 ①「て」:~ています、~てから、~てもいいです、~てください、~てはいけません、~ても 补充:动词的「て」形表示动作的先后顺序,以及动作行为的方式方法。 例えば:顔を洗って学校へ行きます。 歩いて駅へ行きます。 ②「ない」:~なくてもいいです、~ないでください、~ないほうがいいです、~なければならない 补充:动词的「ない」形表示否定。 例えば:会社へ行かない。 ③「た」:~たことがあります、~たほうがいいです、~たり~たりします、~たら 补充:动词的「た」形表示过去时。 例えば:フランスへ行った。

㈢名词,形容词,形容动词,动词的简体及敬体变形 ㈤常见助词用法的归纳总结。 1「は」用与提示主语,像「には、では、へは、からは、までは等」属于助词的重叠使用。 起加强语气或提示为主题的作用。 例えば:田中さんは日本人です。 教室には学生がいます。 2「が」提示主语和描述状态的作用。 常用「が」的情况有:1其后为形容词。 2表示自然现象。 3其前为疑问词。 4整句中的一小部分的主语。 5另外自动词前也用「が」来提示而不用「を」。 例えば:天気がいいです。 空は青いです。 誰がいますか。 私は足が痛い。 電気が付いている。 3「も」表示后项事物和前项事物一样。相当于中文的[也]。 例えば:陳さんは中国人です。 李さんも中国人です。

Unit 4 Cyberspace Lesson 3 Virtual Reality 教学设计3-优质公开课-北师大必修2精品

Unit 4 Cyberspace Lesson 3 Virtual Reality Teaching aims: To understand the dialogue. To get specific information about the virtual reality holidays. To voice your opinion on a virtual university. Teaching difficulties: How to make the students take part in the class actively. Before the class. You are divided into two groups: Group A and Group B. If some student in your group volunteersto answer the question, your group will get a smile face. The group that gets more smile faces willbe a winner. OK? Teaching procedures: Ⅰ. Lead in First,pleaselookatthreegroupsofpicturestodecide:whichoneshowsrealsituation? Which one shows unreal situation?Real/ Unreal They are all unreal situations, but they make us feel as if we are in real situations. Do youthink so? They are called virtual reality. Today we will read a passage---Lesson3 Virtual Reality Please look at objectives by yourselves. Do you understand? ⅡReading Task1. Skip to get main idea. Try to answer the two questions. 3’ 1. How many people are there in the dialogue? Who are they?

《和声学基础》课程教学大纲

《和声学基础》课程教学大纲一、课程基本信息 课程名称和声学基础 总学时数96 讲课学时56 实验 学时 上机 学时 习题 课学 时 40 周学 时 3 学分 6 开课单位音乐学院 适用专业音乐表演、音乐学 先修课程基本乐理、视唱练耳 课程性质必修课课程类型专业基础课群选用教材《初级和声教程》杨通八著高等教育出版社 2006年4月第二版 主要教学参考书1.《和声学基础教程》(上、下册)谢功成等编著人民音乐出版社 2001年4月 2.《和声的理论与应用》(上、下册)桑桐编著上海音乐出版社 1997年11月 3.《和声分析》刘春荣著广东高等教育出版社 1998年 4.《和声学教程》伊 .斯波索宾著人民音乐出版社 2008年3月 本课程地位(作用)和任务 本课程是一门音乐基础理论课程,是音乐表演专业学生进行专业学习的必修课程。 设置本课程的目的,是使学生掌握传统和声学的基础理论,认识和了解多声音乐在作品中的应用及发展规律,树立学生在音乐演奏、演唱等过程中的多声思维和较高的演绎力及鉴赏力,培养学生对音乐作品中和声现象的分析和理解力,以便能更充分地发挥自己本专业的能力。

二、教学内容与基本要求: 和声学基础1 第一章绪言 一、和声 二、大小调和声 三、四部和声 四、和声分析 基本要求: 了解学习和声写作的目的; 了解学习和声分析的目的; 掌握四部和声的书写方法。 第二章四部和声 一、三和弦的类别与构成,调式中的三和弦 二、四部和声的记谱方法 三、和弦音的重复 四、和弦音的排列法 基本要求: 能很好的识别三和弦的类型; 掌握书写各种旋律位置及低音位置的四部和声; 能识别各调中三和弦的级数。 第三章原位正三和弦连接(一) 一、不同三和弦之间的关系 二、和声连接法运用中的声部进行 三、和弦的连接法 四、根音为四、五度关系的原位三和弦连接(和声连接法) 基本要求: 了解一级、四级、五级三和弦的性质; 掌握和弦连接的两种方法; 掌握和声连接中声部进行的一般规律。 第三章原位正三和弦连接(二) 一、和弦连接中声部进行的一般规律 二、根音为四、五度关系的原位三和弦连接(旋律连接法) 三、根音为二度关系的原位三和弦连接 四、和声谱例分析 五、书面习作示范 基本要求: 分别掌握和声连接法与旋律连接法; 掌握和声连接中声部进行的一般规律; 掌握一级、四级、五三和弦连接的方法。 第四章为旋律配和声 一、和弦的选择 二、低音的设计 三、排列法的选择 四、和声习作示范

新标准日本语语法点总结(初级上)

新標準日本語語法點總結(初級上) 1.名【场所】名【物/人】力* / 庭忙何力?笳◎去T力、。 部屋忙誰力"、去T力、。 2.名【物/人】总名【场所】笳◎去T /「岷T 図書館乙忙笳◎去T力、。 猫总椅子 3. 表示方位 上*9^隣 下L尢中忌 力、 前外 後6 九勺 4.疑问词+哲+动词(否定)教室V誰去乜人。 冷蔵庫忙何哲笳◎去乜人。 5.去T 去乜人 6.时间的表达方式 今何時何分IT力、。 今四時三十分IT。 毎日何時忙寝去T力、。 11時3 0分忙寝去T。 (叙述包含数字的时间后续助词V,例3月14日V, 但是今日、今、昨日、明日、毎日、去年等词后不加V,星期后一般加V,但也可以不加。午前中 試験总始去◎去T力、。 来週①木曜日IT。 (詢問時間用 ^^,當詢問的時間很具體時,在表示時間的詞語后加V,如何時V、何曜日V、何日V )力、5……表示某动作发生在某个期间,也可以表示某移動動作的起點和終點森月曜日力、5水曜日去疋休注5。

表達時刻【何時何分】 1點一時7點七時 2點二時8點八時 3點三時9點九時

北师大版高中英语必修二 unit4 lesson3 Virtual Reality reading

Unit4 Cyberspace-Lesson3 Virtual Reality 一、学习目标 1.透彻理解课文内容。 2.对新学到的单词和句型等能学以致用。 3.学习条件状语从句。 二、重难点分析 1.对课文里长难语句的理解以及句子成分分析。 2.学习条件状语从句。 三、学习过程 Step 1: 预习课文 1.用15分钟阅读,粗通课文的大意,回答下面的问题。 (1)What’s the main idea of the text? A. The weekend life of Cathy and Tom. B. The life that students hope for living in the future C. The imagination of virtual reality’s holiday and study situation D. Imagination of how to live in the future (2)Which of the following is true? A. In the virtual reality holiday, we wouldn’t experience something directly. B. Tome will go camping with his families this weekend. C. Tom will send the website address to Cathy when he gets to school. D. It’s not hard for us to imagine the virtual reality studying situation. (3)From the text, we can infer that________ . A. Cathy has lots of work to do this weekend. B. In the future, we will not have to go to our destinations in the flesh at all. C. We will not only be able to travel around the world, but go to study in world famous universities we wanted to. D. Cathy dislikes to spend a long time traveling on planes during holiday.

斯波索宾-和声学教程

刚看完斯波索宾《和声学教程》,发总结一篇共飨 ★调号 # ## ### #### ##### ###### G-e D-b A-#f E-#c B-#g #F-b b bb bbb bbbb bbbbb bbbbbb F-d bB-g bE-c bA-f bD-bb bG-be ★转调音程和调号的关系 ↑小二↑大二↑小三↑大三↑纯四↑增四↑纯五↑小六↑大六↑小七↑大七bbbbb ## bbb #### b 6个调 号# bbbb ### bb ##### ↓大七↓小七↓大六↓小六↓纯五↓增四↓纯四↓大三↓小三↓大二↓小二 ★属七和弦 S D7 T K D7 T S K D7 T T D34 T6 ★下属七和弦 {T, T6, K, S, SⅡ}-SⅡ7-{ D, T, D7 } ★导七和弦 {T, S, D, D7, SⅡ7, TSⅥ}-DⅦ7-{ T, D7 } DⅦ7的功能内解决:DⅦ7-D56-D34-D2-D7 DⅦ7之间的经过和弦:DⅦ7-{ T组,D组, S组}-DⅦ7 DⅦ34(4 6 7 2)有下属功能 ★属九和弦 { S, SⅡ, SⅡ7, T, K, D7, D }-D9-{T, D7} ★下属九和弦 SⅡ9-{ D7, D9, SⅡ7 } ★副七和弦 T7 DTⅢ7 S7 TSⅥ7(用于模进) 进行到下方五度的三和弦或进行到该级上的七和弦 T7-{ S, S7 } DTⅢ7-{ TSⅥ, TSⅥ7 } S7-{ DⅦ, DⅦ7 } TSⅥ7-{ SⅡ, SⅡ}

★重属和弦(升高IV) 在序列[2-#4-6-1-3(b3)]上随意截取形成: DD,DD7,DD9,DD9,DDⅦ,DDⅦ7 { S, SⅡ, SⅡ7, S7, T, TSⅥ}-DD-{ D, K, D7, DⅦ7, D9, sⅡ7 }★变音重属和弦(含增六度) b6-1-#4(亦可在1和#4之间增加2,b3或3) { T, S组, DD }-变DD-{ K, T46,(D)} X-变DD-X6(辅助) ★大调变音属和弦 变属和弦:#5D, b5D, #5D7, b5D7, #5D9, b5D9 变导和弦:#3DⅦ, b3DⅦ, #3DⅦ7, b3DⅦ7 重要的有:#5D, #5D7, b5D7, #3DⅦ7 {D, SⅡ, SⅡ7, DD, T6, S, 变DD}-变D-T 阻碍中止:b5D7-降Ⅵ级(tsⅥ), ★小调变音属和弦(仅用于和声小调) 降Ⅱ级:b5D, b5D7, b5D9,(3-#5-b7-2-4) 降Ⅳ级:b7D7(3 #5 7 b2), b5DⅦ(#5 7 b2) 降Ⅱ,Ⅳ级:b57D7(3 #5 b7 b2), b57DⅦ(#5 b7 b2) {D, sⅡ, sⅡ7, DD, t6, s, 变DD}-变D-t ★那不勒斯和弦(N6, N, N7) N6(小调:2 4 b7, 大调:4 b6 b2), N(小调:b7 2 4, 大调:b2 4 b6) N7(小调:b7 2 4 6, 大调:b2 4 b6 1) 用于小调:{t, tsⅥ, sⅡ, s, dtⅢ}-N6 用于大调:{tsⅥ, dtⅢ}-N6(交替大小调和弦) N6-{K, D, D7, T(t)} N7-{变D, 变D7, 变DⅦ7, 变D9} s-N, tsⅥ-N N-{D, D7, DⅦ7, D9} ★大调变音下属和弦(#1SⅡ56:4 6 1 #2, 相当于下属调的属七和弦) T-#1SⅡ56-T([4 6 1 #2]-[1 5 1 3]) ★用同主音小调复杂化的大调 t=b3T, s=b3S, sⅡ=b5SⅡ, tsⅥ=b1b5TSⅥ, d=b3D, dtⅢ=b1b5DT Ⅲ, dⅦ=b1DⅦ(逢3 6 7便降) ★用同主音大调复杂化的小调 T=#3t, D=#3d, DTⅢ=#1#5dtⅢ, DⅦ=#1dⅦ, S=#3s, SⅡ=#5s Ⅱ, TSⅥ=#1#5tsⅥ(逢1 4 5便升) 交替大小调常用进行

新版标准日本语初级上册语法总结

新版标准日语初级上册语法总结 ㈠日语常用的词汇分类及用法: 1 名词:在句子中作主语,谓语,宾语,定语(名词+の名词)。 2 形容词:定语,谓语。 3 形容动词:定语,谓语。 4 动词:定语,谓语。 5 副词:可做状语,修饰动词,形容词,形容动词。 6 助词:相当中文里的助词,用于说明一个句子或一个词,与其它句子或词的关系。㈡动词的分类及[ます形]「て形」、「ない形」、「た形」的变形规则。 动词的分类:ます形:て形: ない形: た形: ㈢名词,形容词,形容动词,动词的简体及敬体变形 ㈣上册所学语法中与「て」「ない」「た」相关的语法。 ㈤常见助词用法的归纳总结。 ㈥连词:连接句子于句子的词。 ㈦疑问词: ㈧副詞及接续词: 动词的分类: 动词「て形」「た形」的变形规则: 1、一类动词: ①动词的最后一个假名以「うつる」结尾时,将它们改为「って」「た」 買う買って 立つ立って 終わる終わって

②动词的最后一个假名以「むすぶ」结尾时,将它们改为「んで」「た」 読む読んで 遊ぶ遊んで 死ぬ死んで ③动词的最后一个假名以「くぐ」结尾时,将它改为「いて」「た」 書く書いて 泳ぎぐ泳いで ④行く行って「た」 ⑤話す話して「た」 2、二类动词:直接去掉加「て」「た」 食べる食べて出かける出かけて 鍛える鍛えて起きる起きて 3、三类动词:直接去掉「する」加「して」「た」。「来るー来(き)て」「た」。運動する運動して復習する復習して 買い物する買い物してチェックするチェックして 动词「ない形」的变形规则: 1、一类动词:将动词「ます形」的最后一个假名改为其「あ」段假名。若动词「ます形」的最后一个假名以「い」结尾时不要将其改为「あ」,而要改为「わ」。 買う買わない 立つ立たない 読む読まない

和声学教程

和声学(NBT理论教材) 声明:本和声教程以流行音乐的现代和声应用为主论,与传统和声学悖逆与反叛的部分,敬请音乐学术人员见谅,并予以亲善指导。谢谢! 第31讲—三和弦与四部和声(谱例讲解) 大三和弦-大三度(1-3)+小三度叠置(3-5),具有坚定的声响效果。-协和和弦。 小三和弦-小三度+大三度叠置,具有柔和温暖的声响效果。-协和和弦。 减三和弦-小三度+小三度叠置,具有压抑的声响效果。-不协和和弦。增三和弦-大三度+大三度叠置,具有外扩倾向的声响效果。-不协和和弦。 四部和声-三和弦经常加一个和弦中重复音来构成四个声部,1音,三音,5音都可以作为重复音,常见的为旋律音+三和弦;根音+三和弦。排列法—密集排列-流行音乐中以密集排列为主,1/和弦三个声部可以与旋律音构成四部和声,可以重叠;2/与根音构成四部和声,根音声部在流行音乐中往往用低音乐器来演奏,所以根音与三和弦的三个声部具有八度以上的音程的距离,甚至到3个八度的程度。密集排列法往往以某一内声部的应用为常见。 开放排列-在流行音乐中,常以织体和声形式应用。比如,贝司,吉他,电钢琴,弦乐声部,人声声部等的织体和声形式。

各级的原位三和弦-谱例。 功能属性—1/主功能组:1级主和弦,为调式稳定的唯一和弦;3级和弦,6级和弦,作为辅助性的主功能,常用在主和弦后面,或代替主和弦用在乐句的句首位置。偶尔也用在句尾。 2/下属功能组:下属和弦(半稳定),大调中的2级和弦,6级和弦,7级和弦;小调中的2级和弦,6级和弦。作为辅助性的,在下属和弦的前后(注:在下属和弦作为半终止的时候不能用在后面),或代替下属和弦单独用于过度。 3/属功能组:属和弦(半稳定)。3级和弦,7级和弦。作为辅助性的,在属和弦的前面(注:不能用在属和弦后面),或代替属和弦单独用于过度。 第32讲—正三和弦与副三和弦 正三和弦-各调式的主和弦(稳定和弦),下属和弦(半稳定和弦),属和弦(半稳定和弦)。 功能与连接应用-在一个乐句结构内作为主要的和声来应用,往往用在句首和句尾,起着调式的稳定作用。 副三和弦-各调式中2级,3级,6级,7级和弦。不稳定和弦。其中减三和弦为不协和和弦。 功能与连接应用-在一个乐句结构内以辅助和声的形式应用,常在其属性的正三和弦的前后,作为辅助;也经常代替其属性的正三和弦,独立应用,但一般在不重要的位置上。

新版标准日本语初级上册语法解释 第2课

新版标日初级·语法解释 第2课 1.これ/それ/あれは [名]です 相当于汉语“这是/那是~”。 “これ”“それ”“あれ”是指代事物的词,相当于汉语“这、这个”“那、那个”。用法如下: (1)说话人与听话人有一点距离,面对面时: ·これ:距离说话人较近的事物 ·それ:距离听话人较近的事物 ·あれ:距离说话人和听话人都较远的事物 (2)说话人和听话人处于同一位置,面向同一方向时: ·これ:距离说话人、听话人较近的事物 ·それ:距离说话人、听话人较远的事物 ·あれ:距离说话人、听话人更远的事物 例:これは 本です。 それは テレビです。 あれは パソコンですか。 2.だれですか/何ですか 相当于汉语“~是什么?/~是谁?”。不知道是什么人是用“だれ”,不知道是什么东西时用“何”。句尾后续助词“か”,读升调。例:それは 何ですか。 あの人は だれですか。 注意:“だれ”的礼貌说法是“どなた”。对方与自己是同辈、地位相当或地位较低时用“だれ”。对方比自己年长或地位高时用“どなた”。 例:吉田さんは どなたですか。 3.[名]の[名]【所属】 助词“の”连接名词和名词,表示所属。 例:私のかぎ。 小野さんの傘。 4.この/その/あの[名]は [名]です 相当于汉语“这个/那个~是~”。修饰名词时,要用“この”“その”“あの”。其表示的位置关系与“これ”“それ”“あれ”相同。例:このカメラは 私のです。 その傘は 小野さんのです。 あの車は だれのですか。 5.どれ/どの[名] 三个以上的事物中,不能确定哪一个时用疑问词“どれ”“どの”。单独使用时用“どれ”,修饰名词时用“どの”。 例:森さんのかばんは どれですか。 長島さんの靴は どれですか。 私の机は どの机ですか 扩展:100以下数字 0 れい/ぜろ 1 いち 2 に 3 さん 4 し/よん  5 ご 6 ろく

Virtual Reality

Virtual Reality is a kind of computer simulation technique that is able to assist people experience virtual world by using special lens in head-sets. It can be applied in plenty of areas such as military training and medical science. For military training, with head-sets and some additional facilities, special situations like forests, desert and ruin can be virtually simulated. Then soldiers will feel that they are in real battlefield and complete tasks to improve themselves better. In terms of medical science, when facing dangerous operations, the data of patients’ tissues and organs can be input in the computer in advance. Then computer can create the structure of the patient in details. Surgeons wearing head-sets can practice on such simulation to get more familiar with the operation so as to handle unexpected dangerous condition well and avoid some mistakes. Virtual reality (VR) typically refers to computer technologies that use virtual reality headsets, sometimes in combination with physical spaces or multi-projected environments, to generate realistic images, sounds and other sensations that simulates a user's physical presence in a virtual or imaginary environment. A person using virtual reality equipment is able to "look around" the artificial world, and with high quality VR move about in it and interact with virtual features or items. VR headsets are head-mounted goggles with a screen in front of the eyes. Programs may include audio and sounds through speakers or headphones. VR systems that include transmission of vibrations and other sensations to the user through a game controller or other devices are known as haptic systems. This tactile information is generally known as force feedback in medical, video gaming and military training applications. Virtual reality also refers to remote communication environments which provide a virtual presence of users with through telepresence and telexistence or the use of a virtual artifact (VA). The immersive environment can be similar to the real world in order to create a lifelike experience grounded in reality or sci-fi. Augmented reality systems may also be considered a form of VR that layers virtual information over a live camera feed into a headset, or through a smart phone or tablet device.

相关文档
相关文档 最新文档