文档库 最新最全的文档下载
当前位置:文档库 › 工力C第9章弯曲应力及弯曲强度(end)

工力C第9章弯曲应力及弯曲强度(end)

工力C第9章弯曲应力及弯曲强度(end)
工力C第9章弯曲应力及弯曲强度(end)

材料力学A弯曲应力作业答案

1. 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2 kN ,F 2=5 kN ,试计算梁 内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于F 2作用点所在横截面): M max =2kNm (3) 计算应力: 最大应力:MPa W M Z 9.4661080401029 23 max max =???==-σ K 点的应力:MPa I y M Z K 2.3512 1080401021233 max =???== -σ 1 z

5. 铸铁梁的载荷及截面尺寸如图所示。许用拉应力[σl ]=40 MPa ,许用压应力[σc ]=160 MPa 。 试按正应力强度条件校核梁的强度。若载荷不变,但将T 形截面倒置成为⊥形,是否 合理?何故? 解:(1) 画梁的弯矩图 由弯矩图知:可能危险截面是B 和C 截面 (2) 计算截面几何性质 形心位置和形心惯性矩 mm A y A y i Ci i C 5.15730 20020030100 3020021520030=?+???+??=∑∑= 4 6232 310125.60200 30)1005.157(12 2003020030)5.157215(1230200m I zC -?=??-+?+??-+?=(3) 强度计算 B 截面的最大压应力 3max 6 20100.157552.4 []60.12510 B C C C zC M y MPa I σσ-??===?p B 截面的最大拉应力 3max 6 (0.23)2010(0.230.1575) 24.12 []60.12510B C t t zC M y MPa I σσ--?-===?p C 截面的最大拉应力 3max 6 10100.157526.2 []60.12510 C C t t zC M y MPa I σσ-??===?p 梁的强度足够。 (4) 讨论:当梁的截面倒置时,梁内的最大拉应力发生在B 截面上。 3max 6 20100.157552.4 []60.12510 B C t t ZC M y MPa I σσ-??===?f 梁的强度不够。 x

材料力学习题解答弯曲应力

6.1. 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa ,试确 定此梁横截面的尺寸。 解:(1) 画梁的弯矩图 由弯矩图知: 2max 2 ql M = (2) 计算抗弯截面系数 32 323669 h bh h W === (3) 强度计算 2 2max max 33912[]29 416 277ql M ql h W h h mm b mm σσ= ==?≤∴≥==≥ 6.2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160 MPa ,试求许可载荷。 解:(1) 画梁的弯矩图 由弯矩图知: No20a x ql 2x

max 23 P M = (2) 查表得抗弯截面系数 6323710W m -=? (3) 强度计算 max max 66 22 3[] 33[]3237101601056.8822 P M P W W W W P kN σσσ-===?≤????∴≤== 取许可载荷 []57P kN = 6.3. 图示圆轴的外伸部分系空心轴。试作轴弯矩图,并求轴内最大正应力。 解:(1) 画梁的弯矩图 由弯矩图知:可能危险截面是C 和B 截面 (2) 计算危险截面上的最大正应力值 C 截面: 3max 33 32 1.341063.20.0632 C C C C C M M MPa d W σππ??====? B 截面: 3max 34 3444 0.91062.10.060.045(1)(1)32320.06B B B B B B B M M MPa D d W D σππ?====?-- (3) 轴内的最大正应力值 MPa C 2.63max max ==σσ x

材料力学习题弯曲应力

弯 曲 应 力 基 本 概 念 题 一、择题(如果题目有5个备选答案,选出2~5个正确答案,有4个备选答案选出一个正确答案。) 1. 弯曲正应力的计算公式y I M z = σ的适用条件是( ) 。 A . 粱材料是均匀连续、各向同性的 B .粱内最大应力不超过材料的比例极限 C .粱必须是纯弯曲变形 D .粱的变形是平面弯曲 E .中性轴必须是截面的对称轴 2. 在梁的正应力公式y I M z = σ中,I z 为粱的横截面对( )轴的惯性矩。 A . 形心轴 B .对称轴 C .中性轴 D .形心主惯性轴 3. 梁的截面为空心圆截面,如图所示,则梁的抗弯截面模量W 为( )。 A . 32 3 D π B . )1(32 4 3 απ-D C . 32 3 d π D . 32 32 3 3 d D ππ- E .2 6464 44 D d D ππ- 题3图 题4图 4. 欲求图示工字形截面梁上A 点剪应力τ,那么在剪应力公式z z S bI S F *=τ中,S *z 表示 的是( )对中性轴的静矩。 A .面积I B .面积Ⅱ C .面积I 和Ⅱ D .面积Ⅱ和Ⅲ E .整个截面面积 -21-

5.欲求题4图所示工字形截面梁上A 点剪应力τ,那么在剪应力公式z z S bI S F *=τ中,b 应取( )。 A .上翼缘宽度 B .下翼缘宽度 C .腹板宽度 D .上翼缘和腹板宽度的平均值 6.图为梁的横截面形状。那么,梁的抗弯截面模量W z =( )。 A . 6 2 bh B .32632d bh π- C .2641243h d bh ? ??? ??-π D .??? ? ?-???? ??-22641243d h d bh π 7.两根矩形截面的木梁叠合在一起(拼接面上无粘胶无摩擦),如图所示。那么该组合梁的抗弯截面模量W 为( ) A . 62bh B .??? ? ??622 bh C .)2(612 h b D .h bh 21222???? ?? 8.T 形截面的简支梁受集中力作用(如图),若材料的[σ]- >[σ]+,则梁截面位置的合理放置为( )。 -22-

《纯弯曲时的正应力》教案

《纯弯曲时的正应力》教案 南京航空航天大学刘荣梅 一、教学目标 1.明确纯弯曲和横力弯曲的概念,理解基本假设。 2.掌握纯弯曲正应力公式的推导方法。 3.掌握弯曲正应力公式的应用,解决工程问题。 4.运用问题探索研究式教学方法,激发学生的求知欲和探索动机;锻炼学生分析问题解决问题的能力;培养学生应用实践能力。 二、教学重点和难点 1.纯弯曲和横力弯曲 (1)纯弯曲杆件横截面上仅有弯矩,而无剪力的状态称为纯弯曲。 (2)横力弯曲杆件的横截面上既有弯矩又有剪力的状态称为横力弯曲。 2.中性层和中性轴 (1)中性层杆件弯曲变形时,沿轴线方向既不伸长又不缩短的一层,称中性层。在教学中以立体图形的方 式加以解释。 (2)中性轴中性层和横截面的 交线,即横截面上正应力为零的各点 的连线,称为中性轴。在教学中以立 体图形的方式演示。 (3)中性轴的位置纯弯曲时,直梁的中性轴通过横截面的形心且垂直于载荷作用面。强调这一结论是在轴力为零的情况下得到的。

z M y I σ= m ax M W σ= 3.直梁横截面上弯曲正应力公式 横截面上任一点正应力的大小和该点至中性轴的距离成正比,中性轴一侧为拉应力,另一侧则为压应力。横截面上最大正应力 其中W 为抗弯截面模量,几种常见横截面的W 计算公式: (1) 矩形截面 2 6 bh W = (2) 实心圆截面 3 32 d W π= (3) 空心圆截面 3 4 (1) 32 D W πα = - (4) 型钢 查型钢表或用组合法求。 注意:如果中性轴不是横截面对称(如T 形钢),m ax y 有两个,对应W 也应有两个。 三、 教学手段 综合运用演示实验、多媒体课件等教学手段。 四、 教学方法 问题探索研究式教学方法。 五、 解决方案及时间安排

梁弯曲时横截面上的正应力

梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力F Q同时存在,故梁在这些段内发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD段内各段截面,只有弯矩M而无剪力F Q,梁的这种弯曲称为纯弯曲。 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m—m和n—n任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 ⑵纵向线a—a和b—b弯成了曲线,且a—a线缩短,而b—b线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c)。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必相等。

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力 一、是非判断题 1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。 ( × ) 2、中性轴是梁的横截面与中性层的交线。梁发生平面弯曲时,其横截面绕中性轴旋转。 ( √ ) 3、 在非均质材料的等截面梁中,最大正应力max σ 不一定出现在max M 的截面上。( × ) 4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。 ( √ ) 5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。 ( × ) 6、控制梁弯曲强度的主要因素是最大弯矩值。 ( × ) 7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。 ( √ ) 二、填空题 1、应用公式y I M z = σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。 2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。 3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力 =S F bh F 23 。 4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为 226 1 61bH BH -、 H Bh BH 66132- 和 H bh BH 66132 - 。 x

三、选择题 1、如图所示,铸铁梁有A,B,C和D四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。 2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。则当F 增大时,破坏的情况是( C )。 A 同时破坏; B (a)梁先坏; C (b)梁先坏 3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D ) A B C D A B D x

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

弯曲应力和强度.

第六章 弯曲应力和强度 1、 纯弯曲时的正应力 横力弯曲时, 0≠=Q dx dM 。 ,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。 根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。横截面只是绕其面内的某一轴线刚性地转了一个角度。这就是弯曲变形的平面假设。 (2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。 (2)物理关系 根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为 y E E ρ εσ= = 该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上 ρ E 为常数,说 明弯曲正应力沿截面高度按线性规律分布,如图所示。中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。 (3)静力关系 截面上的最大正应力为 z I My max max = σ 如引入符号 m a x y I W z z = 则截面上最大弯曲正应力可以表达为

z W M = max σ 式中,z W 称为截面图形的抗截面模量。它只与截面图形的几何性质有关,其量纲为[] 3 长度。矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面: 62 1223 max bh h bh y I W z z === 直径为d 的圆截面: 322 6433 max d d d y I W z z ∏=∏== 至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。 若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如 T 形截面。这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。 最大拉应力为: z t I My 1 )(= σ 最大压应力为: z e I My 2 )(= σ 2、横力弯曲时的正应力 z I My = σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。

弯曲正应力实验报告

弯曲正应力实验报告

矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P?时,梁的四个受力点处分别增加作用力/2 ?,如下图所示。 P 为了测量梁纯弯曲时横截面上应变分布 规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎 克定律公式E σε =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ =E 实 ε 实 式中E是梁所用材料的弹性模量。

图 3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中

性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0 P (一般按00.1s P σ=确定)、最 大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理 1、原始数据。 其中a=80mm b=19.62mm h=39.38mm 1/4桥 荷载 测点 测点 测点 测点 测点

材料力学答案

弯曲应力 6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。 题 6-1图 解:(a )m KN M m m ?=-5.2 m KN M ?=75.3max 488 44 108.49064 1010 64 m d J x --?=??= = ππ MPa A 37.20108.490104105.28 2 3=????=--σ (压)

MPa 2.3810 8.4901051075.38 23max =????=--σ (b )m KN M m m ?=-60 m KN M ?=5.67max 488 331058321210181212m bh J x --?=??== MPa A 73.6110583210610608 2 3=????= --σ (压) MPa 2.10410 5832109105.678 23max =????=--σ (c )m KN M m m ?=-1 m KN M ?=1max 4 8106.25m J x -?= 3 6108.7m W x -?= cm y A 99.053.052.1=-= MPa A 67.38106.251099.01018 2 3=????= --σ (压) MPa 2.12810 6.251018 3 max =??=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32 43 1απ-= D W x ??? ? ? -???= -463 )64(11032 6π 3 6 1002.17m -?= 346 33 21021.2132 10632 m D W x --?=??= = ππ MPa 88.521002.17109.06 3 1=??=-σ MPa 26.551021.2110172.16 3 1=??= -σ MPa 26.55max =σ 6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。试求梁内最大拉应力与最大压应力。已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。 解:A 截面: Mpa 95.371065.910 101701040283 1 max =????=--σ (拉)

第15讲 弯曲切应力、弯曲强度条件

第15讲教学方案——弯曲切应力、弯曲强度条件

§5-3 弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有剪应力 τ。但一般情况下,剪应力对 梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力 Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (a )

材料力学试题及答案73241

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( ) 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。( ) 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式A F N =σ的条件是( )。 A 、应力小于比例极限; B 、外力的合力沿杆轴线; C 、应力小于弹性极限; D 、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 ) (m ax )(m ax b a σσ 为 ( )。 A 、1/4; B 、1/16; C 、1/64; D 3 A B C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是 。 A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力 5、如图所示的铸铁制悬臂梁受集中力F 作用,其合理的截面形状应为图( ) 6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不 (a (b

材料力学有答案2

材料力学二 1、横力弯曲梁,横截面上()。[C] A、仅有正应力 B、仅有切应力 C、既有正应力,又有切应力 D、切应力很小,忽略不计 2、一圆型截面梁,直径d=40mm,其弯曲截面系数W Z为()。[B] A、1000πmm3 B、2000πmm3 C、400πmm2 D、400πmm3 3、弯曲梁上的最大正应力发生在危险截面()各点处。[B] A、中性轴上 B、离中性轴最远 C、靠近中性轴 D、离中性轴一半距离 4、考虑梁的强度和刚度,在截面面积相同时,对于抗拉和抗压强度相等的材料(如碳钢),最合理的截面形状是()。[D] A、圆形 B、环形 C、矩形 D、工字型 5、两梁的横截面上最大正应力相等的条件是()。[B] A、M MAX与横截面积A相等 B、M MAX与W Z(抗弯截面系数)相等 C、M MAX与W Z相等,且材料相同 D、都正确 6、提高梁的强度和刚度的措施有()。[c] A、变分布载荷为集中载荷 B、将载荷远离支座 C、将梁端支座向内侧移动 D、撤除中间支座 7、一铸铁梁,截面最大弯矩为负,其合理截面应为(B)。 A、工字形 B、“T”字形 C、倒“T”字形 D、“L”形 8、图示三种截面的截面积相等,高度相同,试按其抗弯截面模量由大到小依次排列( B ) A、ABC B、CBA C、CAB D、BAC 9、几何形状完全相同的两根梁,一根为铝材,一根为钢材,若两根梁受力状态也相同,则它们的( A ) A、弯曲应力相同,轴线曲率不同 B、弯曲应力不同,轴线曲率相同 C、弯曲应力和轴线曲率均相同 D、弯曲应力和轴线曲率均不同 10、设计钢梁时,宜采用中性轴为( A )的截面 A、对称轴 B、靠近受拉边的非对称轴 C、靠近受压边的非对称轴 D、任意轴 11、关于图示梁上a点的应力状态有下列四种答案:正确答案是( D )

材料力学弯曲应力教案

弯曲应力 我们开始弯曲这一章,我们讲了拉压、扭转、剪切,现在我们要讲弯曲。弯曲的情况要比拉压和扭转更加复杂一些,它所涉及的问题更多一些,它和工程实际联系的更加紧密一些。因此,这一章和下一章都是特别重要的章节。在这一章中,我们首先要讨论弯曲正应力,横截面上有弯矩,那它就有了正应力,同时还要考虑弯曲切应力的问题,横截面上有剪力,说明它有切应力存在。了解了正应力和切应力的情况,我们要讨论梁的强度和破坏,这个思路和前面几章是一样的。特别的,要强调薄壁杆件中弯曲切应力的处理,最后呢,我们要讲组合变形的应用。不仅仅是弯曲,而是弯曲和拉压,弯曲和扭转组合在一起的时候,如何来处理它的应力问题。因此,这章的内容是比较多的。 工程实际例子 我们来看看弯曲在工程中的应用。这是一个厂房,这是一个大梁,这个吊车可以在这个大梁上运动。对于这样一个问题,我们可以把它简化成一个简支梁,这个吊车的移动呢可以处理成一个移动荷载。那么对于这个移动荷载而言,它所导致的应力如何计算?行车移动时,它的应力如何变化?这就是本章的内容之一。 我们再看看这个图片,这是我们拍摄的汽车的下部分,大家注意一些这个部分,这是就是汽车的板簧,它的模型就是这个样子,可以看成好几个钢板的组合,那么,为什么要设计成这个样子呢?它有什么优点呢?这也是本章要解决的问题。 这是一个运动员,撑杆跳,对吧。大家常常见到,利用这个杆的助力,人可以跳的更高。我们可以处理成这样一个模型。她在跳高的过程中,杆就发生了弯曲。那么,这个时候,跳杆横截面上的应力和杆曲率半径有什么关系?这个杆在什么情况下才满足强度要求? 大家看看这个场面,对于这个场面,我们截面几何性质那章提到过,都是薄壁杆件,那么薄壁杆件有弯曲正应力和弯曲切应力,专门有一小节来讲解它的弯曲切应力,看看这些切应力有什么特点?如何避免薄壁杆件的强度失效?这也是本章的问题 这个大家都熟悉,著名的比萨斜塔。对于这个结构,初步计算,我们可以简化成这样一个均质圆筒,那么它有哪些变形效应?它的危险截面、危险点在哪儿?如何计算其应力?这也是本章可以解决的问题。因此,本章所涉及的问题是比较广的。 基本内容 那么本章到底需要同学们掌握哪些内容呢? 1、熟练张博横截面上弯曲正应力和弯曲切应力的分布规律,并能正确熟练 的进行梁的强度分析。 2、熟悉提高梁强度的主要措施。 3、正确理解薄壁杆件横截面上弯曲切应力的分布规律,了解弯曲中心的概 念。 4、熟悉掌握梁在组合变形中的应力的计算方法。 第一、第四条是很重要的。这是以后大家经常需要处理的问题。

梁弯曲时横截面上的正应力

# 梁弯曲时横截面上的正应力 在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。 1、纯弯曲与横力弯曲 从火车轴的力学模型为图2-53a所示的外伸梁。画其剪力、弯矩图(见图2-53b、 同时存在,故梁在这些段内c),在其AC、BD段内各横截面上有弯矩M和剪力F Q 发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。在其CD段内各段截面,只有弯矩M而无剪力F ,梁的这种弯曲称为纯弯曲。 Q 2、梁纯弯曲时横截面上的正应力 如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。此时可以观察到如下变形现象: ⑴横向线m—m和n—n任为直线且与正向线正交,但绕某点相对转动了一个微小角度。 》 ⑵纵向线a—a和b—b弯成了曲线,且a—a线缩短,而b—b线伸长。 由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。 从图2-54b中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c)。中性层与横截面的交线称为中性轴。梁弯曲时,横截面绕中心轴绕动了一个角度。 由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点: ⑴中性轴的线应变为零,所以其正应力也为零。 ⑵距中性轴距离相等的各点,其线应变相等。根据胡克定律,它们的正应力也必

纯弯曲梁的正应力实验

实验七 纯弯曲梁的正应力实验 一、实验目的 1.测定梁纯弯曲时的正应力分布规律,并与理论计算结果进行比较,验证弯曲正应力公式。 2.掌握电测法的基本原理。 二、实验设备 1.纯弯曲梁实验装置。 2.静态电阻应变仪。 三、实验原理 已知梁受纯弯曲时的正应力公式为 z I y M ?= σ 式中M 为纯弯曲梁横截面上的弯矩,z I 为横截面对中性轴Z 的惯性矩,y 为横截面中性轴到欲测点的距离。 本实验采用铝制的箱形梁,在梁承受纯弯曲段的侧面,沿轴向贴上五个电阻 变应片,如图7-1所示,1R 和5R 分别贴在梁的顶部和低部,2R 、4R 贴在 4 H y ±=的位置,3R 在中性层处。当梁受弯曲时,即可测出各点处的轴向应变实i ε(i=1、2、3、4、5)。由于梁的各层纤维之间无挤压,根据单向应力状态的胡克定律,求出各点的实验应力为: 实i σ= ?E 实i ε(=i 1、2、3、4、5) 式中,E 是梁材料的弹性模量。 这里采用的增量法加载,每增加等量的载荷△P ,测得各点相应的应变增量为△实i ε,求出△实i ε的平均值实i ε?,依次求出各点的应力增量△实i σ为: △实i σ = ?E 实i ε? (7-1)

把△实i σ与理论公式算出的应力增量: i σ?理 = z i I y M ?? (7-2) 加以比较从而验证理论公式的正确性。从图 7-l 的试验装置可知, a P M ??=?2 1 (7-3) 图7-1 纯弯曲梁装置 四、实验步骤 1.拟定加载方案。在0~20kg 的范围内分4级进行加载,每级的载荷增量kg P 5=?。 2. 接通应变仪电源,把测点1的应变片和温度补偿片按半桥接线法接通应变仪,具体做法是:将测点1的应变片接在应变仪的A 、B 接线柱上,将温度补偿片接在B 、C 接线柱上。调整应变仪零点(或记录应变仪的初读数)。 3.每增加一级载荷(kg P 5=?),记录引伸仪读数一次,直至加到20kg 。注意观察各级应变增量情况。 4.按步骤3再做一次,以获得具有重复性的可靠试验结果 5.按测点1的测试方法对其余各点逐点进行测试。 五、实验结果的处理 1.根据测得的各点应变值,,逐点算出应变增量平均值实i ε?代入公式 (7-1)求出△实i σ。 2.根据公式(7-3)、(7-2)计算各点的理论弯曲正应力值△理i σ。

材料力学习题解答弯曲应力

6.1.矩形截而悬臂梁如图所示,已知1=4 b/h=2!3, q二10 kN/m, [cr]=10 MPa,试确 定此梁横截面的尺寸. max 2 (2)计算抗弯截面系数 2,3 W 如31" yy = ----- = ------- =— 6 6 9 (3)强度计算 0尸 max W M 2 h3~[ T /9X10X103X42心 /. h > / —— = 3 ------------------- - - =416〃〃〃 \2[(T] V 2xl0xl06 b > 277mm 62 20a工字钢梁的支承和受力情况如图所示,若[a]=160 MPa,试求许可载荷。 由弯矩图知:

2P = = J_.pgE W W 3W .? A 哄=3x237xl0F60>d。”= %.8 球 2 取许可载荷 [P] = 57AN 解:(1)画梁的弯矩图 M c M c 32xl.34xl03 =—=—Y = :— = 63.2MPa W c诚;. n x 0.06? "3T B截面: 0.9xlO3 5 z 4——;------------ -- = 62.1 MPa 力以八d;、〃x0.06 〃 0.045、 ---- U ——r)------------ (1 —----- r-) 32 矶32 0.064 (3)轴内的最大正应力值 (2)查表得抗弯截面系数 (3)强度计算 2P 、=—— W =237x10^7/1 max bfmax 63.图示圆轴的外伸部分系空心轴.试作轴弯矩图,并求轴内最大正应力. 由弯矩图知:可能危险截面是C和B截而 (2)计算危险截而上的最大正应力值 C截面:

弯曲时的内力和应力

一、填空题: 1 的作用。 3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。 5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________ 力矩的代数和。 7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。 9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力 为_________,固定端处横截面上的弯矩为__________。 10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中 力偶的力偶矩。 11、剪力图和弯矩图是通过________和___________的函数图象表示的。 18、在梁的某一段内,若无分布载荷q(X)的作用,则剪力图是__________于X轴的直线。 19、在梁的弯矩图上,某一横截面上的弯矩有极值(极大值或极小值),该极值必发生在对应于剪力___________的横 截面上。 21、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为__________弯曲。 24、梁在弯曲时的中性轴,就是梁的___________与横截面的交线。 28、梁弯曲时,横截面中性轴上各点的正应力等于零,而距中性轴________处的各正应力为最大。 29、梁弯曲变形后,以中性层为界,靠__________边的一侧纵向纤维受压力作用,而靠__________边的一侧纵向纤维受 拉应力作用。 31、等截面梁内的最大正应力总是出现在最大___________所在的横截面上。 32、在平面弯曲的情况下,梁变形后的轴线将成为一条连续而光滑的平面曲线,此曲线被称为_______。 33、梁在平面弯曲变形时的转角,实际上是指梁的横截面绕其________这条线所转动的角度。 二、判断题: 1、以弯曲为主要变形的杆件,只要外力均作用在过轴的纵向平面内,杆件就有可能发生平面弯曲。() 3、梁发生平面弯曲时,其轴线必然弯成位于外力作用面内的平面曲线。() 4、通常将安装在车床刀架上的车刀简化为悬臂梁。() 5、梁横截面上的剪力,在数值上等于作用在此截面任一侧(左侧或右侧)梁上所有外力的代数和。() 6、用截面法确定梁横截面的剪力或弯矩时,若分别取截面以左或以右为研究对象,则所得到的剪力或弯矩的符号通常 是相反的。() 9、梁的最大弯矩值必定出现在剪力为零的截面处。() 10、在简支梁上有一移动的集中载荷作用,要使梁内产生的弯矩为最大,此集中载荷并不一定作用在梁跨度中央。() 11、梁上某一横截面的弯矩等于作用于此截面任一侧(左侧或右侧)梁上所有外力对截面形心力矩的代数和,利用此 规律,可不列出平衡方程,就能直接确定横截面弯矩值的大小。() 14、若梁某段内各横截面上的弯矩均为零,则该段内各横截面上的剪力也均为零。() 17、在梁某一段内的各个横截面上的,若剪力均为零,则该段内的弯矩必为常量。() 20、梁的弯矩图上某一点的弯矩值为零,该点所对应的剪力图上的剪力值也一定为零。() 23、从左向右检查所绘剪力图的正误时,可以看出,凡集中力作用处,剪力图发生突变,突变值的大小与方向和集中 力相同,若集中力向上,则剪力图向上突变,突变值为集中力大小。() 24、在梁上集中力偶作用处,其弯矩图有突变,而所对应的剪力图为水平线,并由正值变为负值或由负值变为正值, 但其绝对值是相同的。() 30、梁弯曲时,梁内有一层既不受拉又不受压的纵向纤维就是中性层。() 35、弯曲正应力公式是由矩形截面梁推导出的,故只适用于纯弯曲,而不适用于横力弯曲。() 三、选择题: 1、工程实际中产生弯曲变形的杆件,如火车机车轮轴、房屋建筑的楼板主梁,在得到计算简图时,需将其支承方式简 化为:()

弯曲应力、强度计算参考资料

第六章 弯曲应力和强度 一、授课学时:6学时 二、重点与难点: 重点:弯曲正应力、剪应力分布,弯曲强度条件应用 难点:弯曲正应力、剪应力推导过程和弯曲中心的概念 重点处理:从弯曲变形的特点出发,让学生了解两个应力的分布规律,并对两个应力的分布进行对比,加强学生理解和记忆。分析弯曲正应力、剪应力公式中各项的意义,计算方法,结合T 型截面梁铸铁梁.这一典型问题分析,并在作业中进一步强化训练. 难点处理: 结合梁弯曲变形的特点,推导两个应力公式,在推导中,充分利用前面的知识,发挥学生的主动性,让学生自己选择解决方法,加强学生对内容的掌握。对照A N = σ,P I T ρτ= 的推导消化难点,以学生理解这一推导思路.结合纯弯曲的条件和两个方向平面弯曲理解弯曲中心. 三、主要内容: (一) 弯曲正应力 1、 纯弯曲时的正应力 图所示简支梁AB ,载荷P 作用在梁的纵向对称面内,梁的弯曲为对称弯曲,其计算简图如图所示。从AB 梁的剪力图)和弯矩图可以看到,AC 和DB 梁段的各横截面上,剪力和弯矩同时存在,这种弯曲称为横力弯曲;而在CD 梁段内,横截面上则只有弯矩而没有剪力,这种弯曲称为纯弯曲。横力弯曲时, 0≠=Q dx dM 。 可以知道,梁的各截面上弯矩是不同的;纯弯曲时,由于 0==Q dx dM ,可知梁的各 截面上弯矩为一不变的常数值,即M =常量。因此,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。下面,首先分析梁在纯弯曲时横截面上的弯曲正应力。 纯弯曲时,根据梁的静力关系知道,横截面上的正应力σ组成的内力系的合力矩即为弯矩M 。但是,只利用静力关系是不可能找到应力分布规律的,因此,所研究的问题是超

材料力学习题解答(弯曲应力)

6、1、 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa , 试确定此梁横截面得尺寸。 解:(1) 画梁得弯矩图 由弯矩图知: (2) (3) 强度计算 6.2. 20a 工字钢梁得支承与受力情况如图所示,若[σ]=160 M Pa ,试求许可载荷。 解:(1) 由弯矩图知: (2) (3) 强度计算 取许可载荷 6、3、 图示圆轴得外伸部分系空心轴。试作轴弯矩图,并求轴内最大正应力。 解:(1) (2) C截面: B 截面: 3 max 34 3444 0.91062.10.060.045(1)(1)32320.06B B B B B B B M M MPa D d W D σππ?====?-- (3) 轴内得最大正应力值 6、5、 把直径d=1 m 得钢丝绕在直径为2 m得卷筒上,设E =200 GP a,试计算钢 丝中产生得最大正应力。 解:(1) 由钢丝得曲率半径知 (2) 钢丝中产生得最大正应力 No20a x x ql x

6、8、压板得尺寸与载荷如图所示。材料为45钢,σs=380 MPa,取安全系数n=1、5。试 校核压板得强度。 解:(1) (2) 3 63 3 12 ) 1.56810 20 m - -=? (3) 强度计算 许用应力 强度校核 压板强度足够. 6、12、图示横截面为⊥形得铸铁承受纯弯曲,材料得拉伸与压缩许用应力之比为[σt]/[σc]=1/4。求水平翼缘得合理宽度b。 解:(1) (2) 6、13、MPa,许用压应力为 [σc]=160MPa,截面对形心z c zc1=96.4 mm,试求梁得许用载荷P。 解:(1) (2) A A C截面得最大拉应力 取许用载荷值 6、14、铸铁梁得载荷及截面尺寸如图所示。许用拉应力[σl]=40 MPa,许用压应力[σc]=160MPa.试按正应力强度条件校核梁得强度。若载荷不变,但将 T形截面倒置成为⊥形,就是否合理?何故? A-A x

材料力学专项习题练习 弯曲应力

弯曲应力 1. 圆形截面简支梁A 、B 套成,A 、B 层间不计摩擦,材料的弹性模量2B A E E =。求在外力偶矩e M 作用下,A 、B 中最大 正应力的比值max min A B σσ有4个答案: (A)16; (B)14; (C)18 ; (D)110。 答:B 2. 矩形截面纯弯梁,材料的抗拉弹性模量t E 大于材料的抗压弹性模量c E ,则正应力在截面上的分布图有以下4种答案: 答:C 3. 将厚度为2 mm 的钢板尺与一曲面密实接触,已知测得钢 尺点A 处的应变为1 1000 -,则该曲面在点A 处的曲率半径 为 mm 。 答:999 mm 4. 边长为a 的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大 正应力之比max a max b () ()σσ= 。 答:2/1 5. 一工字截面梁,截面尺寸如图,, 10h b b t ==。试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%。 证:4 12, (d ) 1 8203B A z z z My M Mt M y yb y I I I σ==?=?? 4 690z I t =, 414 1 1 82088%3690M t M t =??≈ 其中:积分限1 , 22 h h B t A M =+=为翼缘弯矩 (a)

6. 直径20 mm d =的圆截面钢梁受力如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试求所需载荷,并计算最大弯曲正应力。 解:1M EI ρ= 而M Fa = 4840.78510 m , 0.654 kN 64d EI I F a πρ-==?== 33 max 8 0.654100.22010 2220.78510M d Fad I I σ--?????= ===?? 7. 钢筋横截面积为A ,密度为ρ,放在刚性平面上,一端加力F ,提起钢筋离开地面长度/3l 。试问F 解:截面C 曲率为零 2 (/3)0, 326 C Fl gA l gAl M F ρρ=-== 8. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用/3F 向上的拉力时,试求钢条内最大正应力。 解:在截面C 处, 有 10C M EI ρ== 2 ( )2 0, 323AC C AC AC l F F l M l l l = ?-?==即 AC 段可视为受均布载荷q 作用的简支梁 2max max 22 ()/8/63AC M q l Fl W bt bt σ=== 9. 图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。已知:钢和铝的弹性模量关系为s a 3E E =;在纯弯曲时,应力在比例极限内。试求铝管和钢杆的最大线应变之比s a /εε及最大正应力之比s a /σσ。 解:a ε=s , a ερ2a ρ= a ε∶s ε=2∶ 1 又E σε= a σ∶s σ=[a E a ε?] ∶s [E s ε?2]3 = M e M e

相关文档
相关文档 最新文档