文档库 最新最全的文档下载
当前位置:文档库 › DEH的AST电磁阀的动作图

DEH的AST电磁阀的动作图

DEH的AST电磁阀的动作图

原理:经节流孔来的EH高压抗燃油建立后,进入活塞室,克服弹簧的拉力而使活塞右移,堵住AST或OPC至回油的泄油阀,此时,位于左侧的AST电磁阀电源带电关闭至回油的泄油孔,AST油压正常建立。

而一旦AST电磁阀动作,使EH高压油回至油箱,活塞在弹簧的作用下向左移动,遮断油与回油接通、泄去这只AST的安全油。

共有四只AST电磁阀组成串并联布置,组成两个通道,每个、通道至少一只打开,才能导致停机,任意一只损坏或据动均不会引起停机,提高了可靠性。

AST电磁阀失电→泄AST油(同时泄OPC油)→快速卸荷阀卸荷→关闭所有阀门→自动停机

图中黄线表示高压油,红线表示AST油,绿线

表示无压回油。四个AST电磁阀分别是1、2、3、4。1、3一组,2、4一组。我们先以图中AST1阀为例,介绍一下(注意,只看图中SAT1部分)。SAT是个二级阀,电磁阀带点后,图中左侧Y型的小阀关闭,高压油进入后形成压力腔室,顶住图右侧阀座,封住AST 油通道。反之,电磁阀失电,左侧小阀打开,高压油卸掉,右侧阀座在弹簧作用下打开,AST油卸掉。但AST1中的AST油只能卸到AST2、4中,如果2、4中没有一个动作,AST 油是卸不掉的。所以,一组中至少有一个阀动作,才能卸掉。就是说,4个阀中任何一个误动,AST油压是卸不掉的。如果动作时,任何一个拒动,都不会造成油压无法卸掉。

第一部分:图1中的红线就是EH油泵出来的油经过每个油动机内部的一个节流孔和一个逆止阀后出油动机来到AST母管的AST油(其实OPC油也是这样来的,只不过OPC油是经过调门油动机出来到OPC母管,而AST油是经过主汽门油动机出来来到AST母管,而且OPC母管到AST母管是有个单向阀的,也就是说OPC这路能到AST,但是AST 这路不能到OPC,所以当OPC电磁阀动作,OPC油卸压后是调门关闭而主汽门不动作,但是如果AST电磁阀动作,AST油卸压后,由于OPC 的压力比AST高,所以OPC也通过单向阀流到AST管路而同时卸压,这时调门和主汽门同时关闭)。粉色的是串联中间点的压力油,青色是无压回油,绿色是安全油。PS1~3是AST压力开关,PS4~PS5是中间点压力开关,这几个压力开关都是监测报警或给DCS信号的,我们暂时不管它。其中卸荷阀1和3并联后经过节流孔A再与并联的卸荷阀2和4串联,串联后再经过节流孔B进入无压回油。原本我们不需要这么复杂,只是因为我们这个使用场合的高可靠性要求,要不是可靠性要求,一个卸荷阀和一个节流孔就可以实现。

第二部分:要解释整个问题,首先请允许我简单介绍一下EH油泵的工作特点,EH油泵是轴向柱塞式衡压变量泵,在这里我们只要知道它叫衡压变量泵好了,顾名思义,你调定好了压力后它的压力是不变的,在这个压力下它能根据你系统实际需求的流量来决定它的输出流量,但是有一个前提条件,就是这个输出流量不能大于它的最大输出流量,一旦大于这个流量,这个压力也就不能维持。

第三部分:接下来请允许我再介绍一下图2的卸荷阀,卸荷阀分三个腔,安全油腔就是上面的这个油口1,压力油腔就是下面的这个油口4,还有回油腔就是侧面的这个油口5。当安全油建立起来后,安全油口的压力几乎等于压力油口的压力,而且由于安全油的作用面积(阀芯上部面积)大于下面压力油口的作用面积(阀芯下面锥部投影面积),所以压力油口的油是不能把阀芯打开,压力油也就不能从回油口走掉。

第四部分:如果对于油动机上的卸荷阀,油泵出来的油经高压母管进入油动机,一路流到伺服阀或者电磁阀,由伺服阀或电磁阀控制进入油动机的高压腔,而油动机的高压腔与我们卸荷阀的压力腔也就是图2的4处是通的,而另外一路就是分到图2中的3处,经过一个节流孔2处后(这时它已变成AST或者OPC油)进入油动机卸荷阀的安全油腔,这样一来,油动机高压腔的油就不能通过卸荷阀流掉。而且这时的安全油在图2的1处另外的小孔流出经过油动机上的逆止阀进入AST或者OPC 母管,这样一来油动机的安全油压力就完全由AST.OPC模块控制了,也就是回到本问最上面的一段话,只要AST.opc模块做相应的动作,那么相关的油动机就实现关闭。

第五部分:再回到我们的AST.OPC模块,看了图1就知道,其实AST.OPC

模块中的卸荷阀和油动机上卸荷阀唯一的区别在于AST.OPC上的卸荷阀有一个电磁阀(图1中5YV、6YV、7YV、8YV)控制安全油是建立还是流到无压回油,也就是说油动机的安全油油AST.OPC模块控制,而AST.OPC的安全油油电磁阀控制(不过东汽好多机组,每个油动机也配置了一个电磁阀单独控制每个油动机,其实个人觉得有点浪费)。第六部分:正常情况下AST电磁阀工作在得电位置(图1电磁阀就是正常工作状态,这是一种两位电磁阀,就是有两种工作位置,得电时工作在左边位置,失电时弹簧让电磁阀工作在右位位置),此时安全油流到卸荷阀上腔,而红色的AST油打不开第一级1或3的卸荷阀的阀芯,只能从节流孔走,压力损失掉一半,进入串联结构的中间,流到第二级卸荷阀2或4的下腔,同样也打不开阀芯而只能从节流孔走进入无压回油,压力损失到0。

当串联的两级中都有一个电磁阀失电而使卸荷阀打开,比如卸荷阀“1和2”或者“1和4”或者“3和2”或者“3和4”相应的电磁阀失电而使相应的安全油流到无压回油,这样前面一级的AST油就打开卸荷阀的阀芯通过回油口绕过节流孔而进入下一级,而下一级的卸荷阀同样被打开,又绕过第二级节流孔而进入无压回油。这样一来AST油就没有任何阻碍将压力全部损失掉。从而由于第四部分介绍的原因油动机的安全油失压而关闭油动机。这个时候泵的出口压力说不定也建立不起来,如果是第四部分中说的油动机上的伺服阀或者电磁阀工作在打开状态,这样高压母管的压力油通过油动机高压腔,然后打开卸荷阀流到回油管路(这路是有压回油管路,但是有压回油管路的压力是很低的,只有0.5MPa 不到),这样这么多油动机在同时排油,泵输出流量肯定不够而不能稳定压力;即使这个阀不在打开位置,这个高压油流过油动机里的节流孔后经过AST或者OPC管路直接奔无压回油,虽然每个油动机都有节流孔,但是几个油动机的节流孔其实是并联的,几个节流孔并联起来就不是节流孔了,这时所需的流量也是很大的,基本上泵也不能保证维持在14.5,但肯定比刚才说的情况要压力高点,估计在10MPa左右。但是这时电机电流是很高的,应该超过40A,因为泵功率肯定上去了。这个时候压力虽没14.5但是也不是很低,再加上泵全流量输出,大家都知道液压系统的功率是P×Q(压力乘以流量)。

当串联的两级中随便哪一级的一个或者两个卸荷阀“1”、“3”、“1和3”,“2”、“4”、“2和4”其相应的电磁阀动作而使卸荷阀打开,只能有一级节流孔被绕过,还有另外一级节流孔工作,系统的AST油仍旧能建立起压力,只不过需要提供稍微多的流量来维持这个压力。

所以AST.OPC模块中设置两道节流孔一来是这样的串并联结构让系统更可靠,不至于一旦哪个电磁阀突然失灵而造成以外停机,也可以让系统的需要流量小点,降低功耗。

AST、OPC及ASP油压可从危急保安装置上的压力表读取。AST、OPC

是EH系统的重要参数之一,当其油压低于对应压力开关的整定值时就要遮断汽轮机。

AST、OPC及ASP故障原因基本上类似:受系统油压不正常引起/相应节流孔堵塞/卸荷阀阀芯和阀套卡涩引起关不严或内漏增大,导致压力建立不起来,挂不了闸。

当然如果挂不了闸对于AST.OPC模块来说还有可能是AST电磁阀是否正常带电,可用铁丝试一下4只AST电磁阀线圈部位是否有吸力,有吸力就是带电了,没吸力就是没带电(如果你经验不是非常丰富,别用带磁性头的螺丝刀去试噢,那样即使没带电你也会觉得有点吸力)是否带电或手摸是否发热。

可通过ASP压力开关和ASP压力表读数确认AST.OPC模块的工作状况,如果中间点ASP的压力为13.5MPa以上,说明第一级当中的卸荷阀1或3卡涩不严或其对应的电磁阀没得电或电磁阀本身卡涩。如果中间点ASP的压力为0,则说明第二级当中的卸荷阀2或4卡涩不严或其对应的电磁阀没得电或电磁阀本身卡涩。

来张AST.OPC模块的原理图,各颜色代表的油路与上面的一样,只是多了一个黄色油路,就是从各调门出来后汇集到此的的OPC油母管。仔细比较第一张图就发现,现在这张图AST 就处在打闸位置,AST电磁阀不带电,卸荷阀的安全油经电磁阀流到无压回油。虽然此处的OPC电磁阀工作在正常位置(OPC电磁阀正常时是失电位置,得电时才让相应的卸荷阀安全油流向无压回油,从而关闭调门实现超速限制),但是可以看到黄线和红线连接点的单向阀方向是OPC→AST的,所以此时OPC压力比AST高,OPC也流向AST管路而卸压。这样3张图大家应该搞明白了吧?以后大家遇到什么问题加我QQ:8272642吧,困难,大修,备件找我

OPC电磁阀

电磁阀顾名思义就是个带电动作的阀门,而OPC就是超速限制油。

作用

OPC电磁阀是超速保护控制电磁阀,正常运行时OPC电磁阀失电关闭,封闭了OPC超速母管油的泄放通道,使高压调节汽门和中压调节汽门的执行机构活塞下的油压建立起来,当机组转速达103%额定转速时,该电磁阀被通电打开,使OPC母管泄油。相应执行机构上的卸荷阀就快速开启,使调节汽阀迅速关闭

相关文档