文档库 最新最全的文档下载
当前位置:文档库 › Clamping-Force Control for Electromechanical Brake

Clamping-Force Control for Electromechanical Brake

Clamping-Force Control for Electromechanical Brake
Clamping-Force Control for Electromechanical Brake

Clamping-Force Control for Electromechanical Brake

Chihoon Jo,Sungho Hwang,and Hyunsoo Kim

Abstract—The estimation of the frictional and clamping forces is one of the key issues in the design and implementation of the electromechanical brake(EMB)system.In this paper,a clamping-force control algorithm is presented along with a consideration of the frictional characteristics and the estimation of the clamping force for a planetary reduction gear-type EMB.The frictional model is developed by including the frictional effect of the motor, the planetary gear,and the screw thread.Since the clamping-force estimation requires the distance of the contact gap between the pad and the disk,an initial gap-distance control algorithm that uses the gradient change of the motor torque is proposed.This paper is concluded with a discussion of the performance of the control algorithm by comparing the simulation results with the experimental results.

Index Terms—Clamping-force estimation,electromechanical brake(EMB),gap-distance control.

I.I NTRODUCTION

A S the demand for driving safety increases,the number

of passenger cars that are equipped with modern“brake-by-wire”electronic brake-control systems,such as antilock braking systems(ABSs),traction control systems(TCSs),and electronic stability programs(ESPs),is steadily increasing. In addition to driving stability,the“brake-by-wire”system is considered to be an essential element in the development of regenerative braking control for electric vehicles or hybrid electric vehicles[1],[2].

Currently,there are two implementations of“brake-by-wire”systems:1)electrohydraulic braking(EHB)systems and 2)electromechanical braking(EMB)systems.The EHB retains the current hydraulic brake?uid and proportional valves in an adapted electohydraulic system that generates the hydraulic pressure at each wheel cylinder corresponding to the control signal.The EMB converts the electric set values into clamping forces at the brakes through an independent motor control at each wheel.Since the EHB uses hydraulic power,it has some drawbacks,such as cost,the lack of longevity of hydraulic components,the need for additional power sources,the leakage of hydraulic oil,https://www.wendangku.net/doc/cb4131144.html,pared with EHB systems,the EMB has many advantages:1)environmental friendliness;2)faster response due to fast motor dynamics;and3)accurate control of

Manuscript received March13,2009;revised September3,2009;accepted January13,2010.Date of publication February22,2010;date of current version September17,2010.This work was supported in part by the Ministry of Knowledge Economy and in part by the Korea Institute for Advancement in Technology through the Workforce Development Program in Strategic Technology.The review of this paper was coordinated by Dr.S.Anwar.

The authors are with the School of Mechanical Engineering,Sungkyunkwan University,Suwon440-746,Korea(e-mail:chihooni79@https://www.wendangku.net/doc/cb4131144.html,l;hsh@me. skku.ac.kr;hskim@me.skku.ac.kr).

Color versions of one or more of the?gures in this paper are available online at https://www.wendangku.net/doc/cb4131144.html,.

Digital Object Identi?er10.1109/TVT.2010.2043696the braking force at each wheel through the measurement of the motor current.In particular,the last two characteristics are the major advantages for improving vehicle stability in the context of applications in ABS,TCS,and ESP.EMB systems are now being developed by Continental and Bosch[3],[4].Continental developed an EMB in which the planetary roller is applied to the disk brake,as well as another EMB that can be applied to the rear axle,together with the recently acquired VDO automotive AG,which allows parking braking[5].In particular,as the market share of electrically powered vehicles,such as hybrid electric vehicles,has expanded,the EMB makes it possible to recuperate the braking energy in the overall control loop of the braking unit,even in electrically powered vehicles[6].This improves the fuel economy of these vehicles.

In early studies of the EMB,an EMB that used an ac servo-motor drive was proposed and tested by using the hardware in the loop simulation[6].In this electromechanical brake-by-wire system,the use of conventional disk brakes,a decentralized actuation device at each wheel,and concepts pertaining to completely dry gears were introduced.The braking-force esti-mation was performed by measuring the rotating displacement of the servomotor.The estimation of the clamping force of the disk brake was also investigated by Schwarz et al.[7],[8]. They performed a detailed analysis of a complex brake actuator model,motor rotor position,and motor current and discussed the advantages and disadvantages with regard to the possible use for estimation of the disk clamping force.

An accurate and robust method of estimating the position and speed of actuators has been studied using the resolver signal of the motor[9],and the automatic calibration of re-solver parameters that vary with temperature,pad wear,and aging has also been studied[10].A sensor-fusion approach was presented to estimate the clamping force on the basis of other sensory information[11].This estimator fuses the outputs of two models to optimize the root-mean-square error of estimation and shows that the estimates can accurately track the true clamping force for high-speed cases.A real-time calibration technique for brake-by-wire calipers has been investigated.In this method,upon starting each hysteresis cycle, a clamp-force model is?tted to the data samples recorded from the previous hysteresis cycle.The clamp-force model includes a Maxwell-slip model for the hysteresis caused by friction[12].

Recently,a wedge-type EMB was investigated,which op-erates at the maximum self-reinforcement position by using a wedge mechanism[13],[14].This type of EMB has advantages such as a reduced actuator force but requires more precise control.

However,the EMB system also has disadvantages.One of these is the varying ef?ciency of the brake actuator due to the

0018-9545/$26.00?2010IEEE

friction and wear between the subsystems,such as the motor, gear unit,and brake.Therefore,the individual wheel brake needs to be operated in a closed control loop.

A disk clamping-force control for the EM

B was presented by the use of a proportional–integral differential(PID)con-troller with cascaded force,motor velocity,and motor current control-loop architecture[15].In this paper,a frictional model between the motor speed and the motor torque was proposed by consideration of the Coulomb and viscous friction.These frictional forces were compensated by integral antiwindup and feedforward compensation.For EMB control,the Coulomb friction of the central bearing was determined for various axial loads and considered in the modeling of the motor system[8]. In these investigations,the frictional characteristics have mostly been investigated for the motor–drive system.However,since the friction between the screw and the head also causes stick-slip and response delay,this friction should also be considered. In this paper,a dynamic model for a planetary reduction gear-type EMB is obtained by considering the frictional char-acteristics of the motor driving element and the moving parts of the screw.For the clamping-force control,a clamping-force estimation that uses a third-order polynomial approximation with regard to the motor rotational angle is proposed.In addi-tion,a control algorithm for the gap distance between the pad and the disk is introduced,which is an essential component of clamping-force control.The performance with regard to clamping-force control of the clamping-force estimation and gap-distance control is evaluated through experimental results.

II.D EVELOPMENT AND M ODELING OF THE

E LECTROMECHANICAL B RAKING S YSTEM

Fig.1shows the EMB system that is investigated in this paper.The EMB system consists of a motor,a planetary-type re-duction gear,and a screw-thread gear.The working principle of the EMB is as follows:When the driver pushes the brake pedal, a brake control unit(BCU)calculates the required braking force as per the driver demand.The BCU transmits the control signal to the motor driver to rotate the motor.The rotational motion of the motor is transformed into a linear motion of the head through the planetary-type reduction gear and the screw-thread gear.The linear motion of the head generates a clamping force between the pad and the disk,which provides the braking torque.

To investigate the performance of the EMB in Fig.1,a dynamic model of the EMB is developed.

A.Motor

The motor is modeled by using standard equations for a permanent-magnet dc motor,e.g.,

V a=R a i a+K EMFωm+L a˙i a(1)

˙i a =

1

L a

(V a?R a i a?K EMFωm)(2)

where V a is the armature voltage,R a is the armature resistance, i a is the armature current,K EMF is the back-emf voltage,ωm is the motor rotational speed,and L a is the armature

inductance.Fig.1.Schematic diagram of the EMB system.

Assuming that the?eld current is constant,the motor torque T m can be represented as

T m=K motor i a(3) J m˙ωm+T F+T load=K motor i a(4) where K motor is the motor torque constant,J m is the angular inertia of the motor,and T F is the frictional torque.

B.Reduction Gear

Since the EMB motor has limitations,such as the installation space,the current motor technology is not large enough that the motor alone can provide the required braking torque.Therefore, a torque-boosting device,such as a reduction gear or a self-servo braking system,is needed.In this paper,a reduction gear that uses a planetary gear set is employed.The motor power is transmitted through the sun gear to the carrier while the ring gear is?xed(see Fig.1).The speed and torque ratio of the planetary reduction gear are represented as

Z sun

Z sun+Z ring

ωsun=

1

GR

ωsun=ωcarrier(5) Z sun+Z ring

Z sun

T sun=GRT sun=T carrier(6)

where Z sun is the sun-gear teeth number;Z ring is the ring-gear teeth number;ωsun is the sun-gear speed,which is equal to the motor speedωm;ωcarrier is the carrier speed,T sun is the sun-gear torque;GR is the reduction gear ratio;and T carrier is the carrier torque.The frictional torque T F of the motor and planetary reduction gear in(4)is modeled by considering the viscous friction,Coulomb friction,and stiction torque[16],as shown in Fig.2.The motor friction torque model in Fig.2is expressed by the following equation:

T F=T C+(T S?T C)e?|ωm/ωs|δS+b Vωm(7) where T C is the Coulomb-friction torque,T S is the torque due to stiction,b v is the coef?cient of viscous friction,andωs is the Stribeck velocity.T S,T C,and b v can be determined from the experiments.Fig.3shows a comparison of the experimental

JO et al.:CLAMPING-FORCE CONTROL FOR ELECTROMECHANICAL BRAKE

3207

Fig.2.Frictional model for the motor and planetary

gear.

https://www.wendangku.net/doc/cb4131144.html,parison of the experimental and simulation results for the motor torque.

and simulation results on the motor torque for the stepwise speed input.In the test,a motor connected to the reduction gear was rotated under no load by step input (1000r/min)to measure the torque and velocity of the motor’s rotation.It is seen from Fig.3that the motor torque using the frictional model in (7)closely describes the actual motor-torque behavior,while some difference is seen with regard to the motor torque that only involves the viscous friction,particularly in the initial transient region.

C.Screw-Thread Gear

The screw-thread gear transforms the rotational motion of the screw,which is connected to the carrier,to the linear motion of the female gear,which is called the “head.”The screw is modeled with a torsional spring damper (see Fig.4).

The forces acting on the screw are shown in Fig.5.The

rotational speed of the screw ˙θ

screw (see Fig.4)is represented as ˙θ

screw =1GR ωm ?cos αr screw

˙x head (8)

where θscrew is the rotational displacement of the screw,r screw is the average radius of the screw,and x head is the linear displacement of the head along the

slope.

Fig.4.Schematic diagram of the EMB brake

system.

Fig.5.Schematic diagram of the screw thread.

As shown in Fig.5,one rotation of the screw is equivalent to the linear motion of the head along the slope with an angle of inclination α.

The force P ,which acts on the head,can be obtained from the rotational displacement of the screw θscrew as follows:

P =

k screw θscrew +b screw ˙θ

screw r screw

(9)

where k screw is the screw stiffness,and b screw is the frictional

coef?cient.Owing to the linear motion of the head,the two brake pads,which are connected to the head,begin to push the disk after clearing the gap and generate the reaction force Q ,which is equal to the clamping force.

Now,we need to consider the frictional force that acts on the screw.It is observed that the head shows a stick-slip motion on the screw and that the static friction increases with the clamping force.First,the static friction on the screw can be described through the normal force as

F s =μs N

(10)

where F s is the static friction;μs is the static-friction coef?-cient;and N is the normal force,which is represented by the following relationship from Fig.6:

N =Q cos α+P sin α.

(11)

To include the static friction,the stick-slip motion,and the viscous friction,LuGre’s frictional model is used [17].LuGre’s frictional model is based on the steel hair’s de?ection that can be obtained from the normal force N and the relative sliding velocity v ,as shown in Fig.7.

3208IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,VOL.59,NO.7,SEPTEMBER

2010

Fig.6.Schematic diagram of the screw

thread.

Fig.7.LuGre’s frictional model.

The frictional force increases up to some point with the slid-ing velocity and decreases as the sliding velocity increases.The

velocity where the frictional force begins to decrease is called the “Stribeck”velocity.After the region of decrease,the fric-tional force increases again with the sliding velocity.LuGre’s frictional force is represented by the following equations:

˙z =v ?σ0

|v |

g (v )

z (12)F F =σ0z +σ1(v )˙z +σ2v (13)g (v )=F c +(F s ?F c )e ?(v v c

)2

(14)F c =μc ·N

(15)

where ˙z is the bending velocity,z is the average bending displacement,v is the sliding velocity of the frictional surface,F F is the frictional force between the screw and the head,σ0is the stiffness coef?cient,σ1is the damping coef?cient,σ2is the viscous coef?cient,v c is the Stribeck velocity,F c is the Coulomb friction,and μc is the Coulomb-friction coef?https://www.wendangku.net/doc/cb4131144.html,ing LuGre’s friction model,the head dynamics can be obtained as

M head ¨x head +F F =P cos α?Q sin α

(16)

where M head is the head mass.The linear displacement of the

head in the axial direction of the screw can be represented as

x head =x head

p

2πr screw

cos α=x head sin α

(17)

where x head is the displacement of the head in the axial direction,and p is the pitch of the screw

thread.

Fig.8.Relationship between the clamping force and the rotational angle of the motor.

The force applied to the head F head is calculated as

F head =k head x head _c +b head ˙x head _c

(18)

where F head is the force of the head in the axial direction,

k head is stiffness of the head,x head _c is the compression displacement of the head in the axial direction,and b head is damping ratio of the head.

D.Clamping Force

The pad is positioned on both sides of the disk,and the force applied to the head generates the clamping force by pressing the left and right pads of the caliper on the disk.The force on the left and right pads are the same,and the clamping force is the sum of the forces applied to both pads,which is calculated as follows:

F cl =2(k pad x pad +b pad ˙x

pad )(19)

where F cl is clamping force,k pad is stiffness of the pad,x pad

is displacement of the pad,and b pad is damping coef?cient of the pad.

III.C ONTROL S YSTEM D ESIGN

A.Clamping-Force Estimation

In the operation of the EMB,it is important to know the clamping force in real time.Even if a load cell or force sensor can be used to measure the clamping force,it entails extra cost and space.Therefore,in this paper,the clamping-force estima-tion is proposed on the basis of the experimental relationship between the clamping force F cl and the rotational displacement of the motor θm .As the clamping force is generated by the compression of the pad,it is expressed as a function of pad displacement and speed,as shown in Fig.4(spring-damper model)and (19).As the pad displacement depends on the motor rotational angle,the clamping force was increased and decreased in the repeated tests as the motor was rotated in forward and reverse directions,and the rotational angle of the motor and the clamping force were measured.In Fig.8,the rela-tionship between F cl and θm is shown from the experiments.As shown in Fig.8,the F cl versus θm relationship shows nonlinear

JO et al.:CLAMPING-FORCE CONTROL FOR ELECTROMECHANICAL BRAKE

3209

Fig.9.|ΔT m /Δθm |characteristics about the point of contact.

characteristics,including hysteresis.The F cl ?θm relationship can be modeled as a third-order polynomial as follows:

F cl =A 3?3+A 2?2=A 1?+A 0˙?

?=θm ?θgap (20)

where A 3,A 2,A 1,and A 0are constants,whereas θgap is the

initial gap between the pad and the disk.In (20),the term A 0˙?

was introduced to simulate the hysteresis phenomenon.

It is seen from Fig.8that the approximated polynomial equation closely represents the clamping force-motor rotation angle characteristics,including the hysteresis.B.Gap-Distance Control

In the control of the EMB through the clamping-force es-timation,an integral aspect is the control of the gap distance between the pad and the disk after every braking action since the clamping-force estimation depends on the gap distance,as shown in (20).The gap-distance control is also important when the gap increases due to the wear of the pad.In this paper,the following gap-distance control algorithm is proposed.After the braking action,viz.,after the brake-pedal opening returns to the zero position,i.e.,B p =0,move the brake pad backward by rotating the motor in the reverse direction to provide enough space between the pad and the disk.Next,move the pad in the forward direction by rotating the motor slowly enough to overcome the inertial effect.Since the motor torque (current)experiences a sudden change where the pad begins to contact the disk,the point where the gradient |ΔT m /Δθm |becomes greater than the set value S ,i.e.,when |ΔT m /Δθm |>S ,can be considered as the contact point.Now,the required gap distance can be obtained by moving the pad backward from the contact point to the predetermined gap distance since the distance of movement of the pad is directly related with the rotational angle of the motor.

In Fig.9,the experimental results on |ΔT m /Δθm |with respect to the pad position are plotted about the point of contact.In the test,the pad was moved by 1mm from the gap between the pad and the disk (0.2mm),and |ΔT m /Δθm |was measured according to the pad movement distance,whereas the motor was rotated at a rotation speed of 100r/min.Fig.9shows the test results from ?ve times of testing.

It is noted from Fig.9that the gradient of |ΔT m /Δθm |shows a sharp increase at the point of contact.After the contact,|ΔT m /Δθm |shows a relatively high value since T m

increases

Fig.10.Experimental results on the point of contact for different pad

positions.

Fig.11.Block diagram of the EMB system.

to generate the clamping force.From Fig.9,it is known that the estimation of the point of contact through |ΔT m /Δθm |is quite reasonable.Fig.10shows the experimental results on the estimation of the point of contact.The estimation of the point of contact was performed by comparing the measured position of contact (the x -coordinate)to the estimated point of contact (the y -coordinate)for various initial positions of the pad.As shown in Fig.10,the estimated position of contact is in close agreement with the measured value.The reason why the estimated position is a little bit larger than the measured position is the loss of speed of the pad during the movement on the screw.However,the actual implementation is not affected since the gap-distance control is carried out with reference to the rotational angle of the motor instead of the absolute distance.C.EMB Control

In Fig.11,an EMB control system that is designed in this paper is shown.The EMB controller consists of an upper level controller (clamping force controller)and a lower level controller (motor controller).For the clamping force controller,an adaptive PID controller,wherein the P gain changes for the clamping force input,was used to obtain an appropriate re-sponse speed and to ensure proper tracking performance.When a strong clamping force is desired,the clamping force error and the desired motor rotation speed will be high,and the clamping force response will be fast.However,when a weak clamping force is desired,and therefore,when the error is small,the resulting low desired motor rotation speed will lead to a slow

3210IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,VOL.59,NO.7,SEPTEMBER

2010

Fig.12.EMB performance

simulator.

Fig.13.EMB test bench system.

motor rotation and slow clamping force response.Therefore,a feedforward controller was used for the motor to maintain a constant clamping force response by allowing the motor to rotate at a high speed,regardless of the desired clamping force.The gap-distance controller maintains a constant gap distance using the gap-distance control algorithm after the clamping force control.

IV .E LECTROMECHANICAL B RAKING

S IMULATOR AND T EST B ENCH

A.EMB Simulator and Test Bench

Using EMB dynamic models,e.g.,(1)–(20),an EMB per-formance simulator that is based on MATLAB Simulink is developed (see Fig.12).

In addition,to evaluate the performance of the EMB,an EMB test bench is designed (see Fig.13).The EMB test bench consists of the EMB developed in this paper and sensors.The motor speed and torque are measured by the encoder and torque sensor,respectively.The clamping force is measured from the load cell,and the head displacement is measured by the linear potentiometer (see Table I).

V .C OMPARISON OF S IMULATION AND

E XPERIMENTAL R ESULTS

A.Veri?cation of the Frictional Model

In Fig.14,the simulation results are compared with the experiments for the stepwise input of 20kN during 0.1s.To increase the clamping force,a negative motor torque should

TABLE I

EMB T EST B ENCH S

PECIFICATION

https://www.wendangku.net/doc/cb4131144.html,parison of the experimental and simulation results for various frictional models.Stepwise

input.

https://www.wendangku.net/doc/cb4131144.html,parison of the experimental and simulation results for various frictional models.Rampwise input.

JO et al.:CLAMPING-FORCE CONTROL FOR ELECTROMECHANICAL BRAKE

3211

Fig.16.Clamping-force control through the force and gap estimation for the original gap and a1-mm gap distance.

be applied to rotate the right-hand screw.It is seen from the experimental results that the motor torque rapidly decreases, showing an undershoot,and then increases to the steady-state value.This large undershoot is due to the torque that overcomes the static friction of the motor,the planetary reduction gear, and the screw.It is noted that the screw friction contributes the largest portion of the undershoot among the frictional components described in(7)and(16);this is considered to be the effect of the normal loads F c and F s[see(14)and(15)], which are due to the clamping force Q.The difference in the clamping force that is shown at the initial state is due to the frictional model since the motor generates the torque that is required for the clamping force as well as the compensation for the friction.

In Fig.15,the simulation results are compared with the experimental results for the rampwise input.In the test,the clamping force and the motor torque were measured after the desired clamping force was increased and decreased by rampwise input(0kN→20kN→0kN).As the target clamping-force increases,the motor torque decreases in the negative direction.When the target clamping-force begins to decrease,the motor torque rapidly increases in the positive di-rection because the rotational direction of the motor is reversed. Then,the motor torque decreases as the target clamping-force decreases.It is seen from Fig.15that the frictional model,including the motor,planetary gear,and screw,is able to closely predict the clamping force and the motor torque. B.Clamping-Force Estimation and the Gap Position

In Fig.16,the experimental results on the clamping force through estimation are compared with the clamping force that is obtained through the load cell.It is seen from Fig.16that the clamping-force estimation proposed in this paper shows good tracking performance for stepwise(E)and sinusoidal inputs(G).

The experiments were performed from the initial gap dis-tance xgap=1mm(M),which simulates a pad that is worn out.When the braking stops with a gap of1mm at M,the gap distance is decreased by the motor’s rotation,and the pad begins to contact with the disk at R.The clamping force in“C”is not for braking but for the initial gap-distance control,whereas the vehicle is in a standstill position.The gap distance is deceased in“C”due to the load-cell de?ection.After the desired gap position xgap=0.2mm is found,the gap distance remains 0.2mm at T.When a stepwise clamping-force input is applied at V,the estimated clamping force follows the target clamping force,which shows close agreement with the measured clamp-ing force.After the stepwise clamping-force input is completed, the gap position returns to the desired position W.As for the sinusoidal clamping-force input(G),it is also seen that the estimated clamping force shows good tracking performance. The gap position also returns to the desired position(X).In the experiments,the gap positions at W and X are obtained from the rotational angles of the motor at T without the gap-distance control process described in Section III-B because the magnitude of the pad wear that may occur from V to X is negligible.The gap-distance control can be carried out at regular periods,for instance,daily base.From the experimental results in Fig.16,it is found that the EMB control using the clamping force estimation and the gap distance control shows good tracking performance while keeping the constant gap distance.

VI.C ONCLUSION

A clamping-force control algorithm has been proposed for a planetary reduction gear-type EMB.First,the frictional charac-teristics are investigated for the motor,the planetary reduction gear,and the screw thread.It is found from the experiments that the friction of the screw thread that arises from the clamping force plays a major role in the overall friction.The clamping force from the frictional model is in good agreement with the experimental results.Second,a clamping-force estimation that uses the relationship between the clamping force and the rota-tional angle of the motor is proposed.From the experiments,a third-order polynomial equation that includes the hysteresis is obtained.In addition,an initial gap-distance control algorithm that is based on the gradient change of the motor torque(cur-rent)for maintaining the desired gap distance between the pad and the disk,which is an essential part in the clamping-force estimation,is https://www.wendangku.net/doc/cb4131144.html,ing the clamping-force estimation and the gap-distance control,an adaptive PID-type control is suggested for the EM

B clamping-force control.It is found

3212IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,VOL.59,NO.7,SEPTEMBER 2010

TABLE II

P ARAMETERS U SED IN THE E XPERIMENTS AND S

IMULATION

from the experimental results that the EMB control that uses the clamping-force estimation and the gap-distance control shows satisfactory performance in terms of the tracking of the clamping force while maintaining the desired gap distance.

A PPENDIX

Table II shows the parameters used in the experiments and in the simulation.

R EFERENCES

[1]H.Yeo,S.Hwang,and H.Kim,“Regenerative braking algorithm for a

hybrid electric vehicle with CVT ratio control,”Proc.Inst.Mech.Eng.D,J.Automobile Eng.,vol.220,no.11,pp.1589–1600,2006.

[2]J.Ahn,K.Jung,D.Kim,H.Jin,H.Kim,and S.Hwang,“Analysis of a

regenerative braking system for hybrid electric vehicles using an electro-mechanical brake,”Int.J.Automotive Technol.,vol.10,no.2,pp.229–234,Apr.2009.

[3]K.Bill,J.Balz,and V .Dusil,“Electromechanical disk brake,”U.S.Patent

6158558,Dec.12,2000.

[4]W.Schaffer,“Electromechanical brake,”U.S.Patent 6189661B1,

Feb.20,2001.

[5]Continental Electromechanical Brakes,[Online].Available:http://

https://www.wendangku.net/doc/cb4131144.html,/generator/www/de/en/cas/just_drive/general/links/hidden/elektro_bremsen_18_03_2008_en.html

[6]C.Maron,T.Dieckmann,S.Hauck,and H.Prinzler,“Electromechanical

brake system:Actuator control development system,”Soc.Automotive Eng.,Warrendale,PA,SAE Tech.Paper 970814,1997.

[7]R.Schwarz,R.Isermann,J.Bohm,J.Nell,and P.Rieth,“Modeling

and control of an electromechanical disk brake,”Soc.Automotive Eng.,Warrendale,PA,SAE Tech.Paper 980600,1998.

[8]R.Schwarz,R.Isermann,J.Bohm,J.Nell,and P.Rieth,“Clamping

force estimation for a brake-by-wire actuator,”Soc.Automotive Eng.,Warrendale,PA,SAE Tech.Paper 1999-01-0482,1999.

[9]R.Hoseinnezhad,“Position sensing in brake-by-wire calipers using

resolvers,”IEEE Trans.Veh.Technol.,vol.55,no.3,pp.924–932,May 2006.

[10]R.Hoseinnezhad and A.Bab-Hadiashar,“Calibration of resolver sensors

in electromechanical braking systems:A modi?ed recursive weighted least-squares approach,”IEEE Trans.Ind.Electron.,vol.54,no.2,pp.1052–1060,Apr.2007.

[11]S.Saric,A.Bab-Hadiasher,and R.Hoseinnezhad,“Clamp-force estima-tion for a brake-by-wire system:A sensor-fusion approach,”IEEE Trans.Veh.Technol.,vol.57,no.2,pp.778–786,Mar.2008.

[12]R.Hoseinnezhad and A.Bab-Hadiashar,“Real-time clamping force mea-surement in electromechanical brake caliper,”IEEE Trans.Ind.Electron.,vol.57,no.2,pp.770–777,Mar.2008.

[13]H.Hartmann,M.Schautt,A.Pascucci,and B.Gombert,“eBrake—The

mechatronic wedge brake,”Soc.Automotive Eng.,Warrendale,PA,SAE Tech.Paper 2002-01-2582,2002.

[14]R.Roberts,M.Schautt,H.Hartmann,and B.Gombert,“Modelling

and validation of the mechatronic wedge brake,”Soc.Automotive Eng.,Warrendale,PA,SAE Tech.Paper 2003-01-3331,2003.

[15]C.Line,C.Manzie,and M.Good,“Control of an electromechanical brake

for automotive brake-by-wire systems with an adapted motion control architecture,”Soc.Automotive Eng.,Warrendale,PA,SAE Tech.Paper 2004-01-2050,2004.

[16]H.Olsson,K.J.?str?m, C.Canudas de Wit,M.G?fvert,and

P.Lischinsky,“Friction models and friction compensation,”Eur.J.Control ,vol.4,no.3,pp.176–195,1998.

[17]P.Dupont,V .Hayward,B.Armstrong,and F.Altpeter,“Single state

elasto-plastic friction models,”IEEE Trans.Autom.Control ,vol.47,no.5,pp.787–792,May

2002.

Chihoon Jo received the B.S.and M.S.degrees in mechanical engineering in 2005and 2007,re-spectively,from Sungkyunkwan University,Suwon,Korea,where he is currently working toward the Ph.D.degree.

His research interests include the design and control of the electromechanical brake,the electro-wedge brake,and the powertrain control system for a hybrid electric

vehicle.

Sungho Hwang received the B.S.degree in mechan-ical design and production engineering and the M.S.and Ph.D.degrees in mechanical engineering from Seoul National University,Seoul,Korea,in 1988,1990,and 1997,respectively.

From 1992to 2002,he was a Senior Researcher with the Korea Institute of Industrial Technology,Gwangju,Korea.Since 2002,he has been with the School of Mechanical Engineering,Sungkyunkwan University,Suwon,Korea,where he is currently an Associate Professor.His research interests are in the

areas of automotive mechatronic systems for fuel-cell and hybrid electric vehicles and embedded systems for x-by-wire

systems.

Hyunsoo Kim received the B.S.degree in mechan-ical engineering from Seoul National University,Seoul,Korea,in 1977,the M.S.degree in mechanical engineering from the Korea Advanced Institute of Science and Technology,Seoul,in 1979,and the Ph.D.degree in mechanical engineering from the University of Texas at Austin in 1986.

Since 1986,he has been a Professor,Chair-man,and Dean of the College of Engineering,Sungkyunkwan University,Suwon,Korea.He has authored numerous journal papers and patents.His

main research interests include hybrid electric vehicle (HEV)transmission system design,regenerative braking,and optimal power-distribution algorithms for HEV and vehicle stability control for HEV and in-wheel electric vehicles.

家装用尺寸一览表

家装用尺寸一览表 Revised by Hanlin on 10 January 2021

家装用尺寸一览表 ▌标准入户门洞0.9m*2m, ▌房间门洞0.9m*2m, ▌厨房门洞0.8m*2m, ▌卫生间门洞0.7m*2m ▌客厅:长沙发:240*90*75cm长方形茶几:130*70*45cm电视柜:200*50*180cm电视离沙发:3m电视高度与电视柜高差:40到120cm走道宽度:100至120cm ▌厨房:橱柜操作台:台面高80cm左右面积90*46(最小20最大60)cm吊柜:离台面60cm左右高度在145cm到150cm餐桌:餐桌高:750—790mm。餐椅高;450—500mm。圆桌直径:二人500mm.二人800mm,四人900mm,五人1100mm,六人1100-1250mm,八人1300mm,十人l500mm,十二人1800mm。方餐桌尺寸:二人700×850(mm),四人1350×850(mm),八人2250×850(mm) ▌卫生间:浴缸长度:一般有三种1220、1520、1680mm;宽:720mm,高:450mm。坐便:750×350(mm)。冲洗器:690×350(mm)。盟洗盆:550×410(mm)。淋浴器高:2100mm。化妆台:长:1350mm;宽450mm。 ▌卧室:标准双人床尺寸:150*190、150*200厘米,被套的尺寸应配180*215和200*230之间的。加大双人床尺寸:180*200厘米,被套一般为200*230或220*240。床头柜宽:400毫米-600毫米,深:350毫米-450毫米高:500毫米-700毫米。衣柜:柜门尺寸,单

2017最完整家装尺寸大全

家具设计的基本尺寸(单位:cm) 衣橱:深度:一般60~65;推拉门:70,衣橱门宽度:40~65 推拉门:75~150,高度:190~240 矮柜:深度:35~45,柜门宽度:30-60 电视柜:深度:45-60,高度:60-70 单人床:宽度:90,105,120;长度:180,186,200,210 双人床:宽度:135,150,180;长度180,186,200,210 圆床:直径:186,212.5,242.4(常用) 室内门:宽度:80-95,医院120;高度:190,200,210,220,240 厕所、厨房门:宽度:80,90;高度:190,200,210 窗帘盒:高度:12-18;深度:单层布12;双层布16-18(实际尺寸) 沙发:单人式:长度:80-95,深度:85-90;坐垫高:35-42;背高:70-90 双人式:长度:126-150;深度:80-90 三人式:长度:175-196;深度:80-90 四人式:长度:232-252;深度80-90 茶几:小型,长方形:长度60-75,宽度45-60,高度38-50(38最佳) 中型,长方形:长度120-135;宽度38-50或者60-75 正方形:长度75-90,高度43-50 大型,长方形:长度150-180,宽度60-80,高度33-42(33最佳) 圆形:直径75,90,105,120;高度:33-42 方形:宽度90,105,120,135,150;高度33-42 书桌:固定式:深度45-70(60最佳),高度75 活动式:深度65-80,高度75-78 书桌下缘离地至少58;长度:最少90(150-180最佳) 餐桌:高度75-78(一般),西式高度68-72,一般方桌宽度120,90,75;长方桌宽度80,90,105,120;长度150,165,180,210,240 圆桌:直径90,120,135,150,180 书架:深度25-40(每一格),长度:60-120;下大上小型下方深度35-45,高度80-90活动未及顶高柜:深度45,高度180-200 木隔间墙厚:6-10;内角材排距:长度(45-60)*90

家装基本尺寸大全

家具设计的基本尺寸(单位:厘米) 衣橱:深度:一般60~65;推拉门:70,衣橱门宽度:40~65 推拉门:75~150,高度:190~240 矮柜:?深度:35~45,柜门宽度:30-60 电视柜:深度:45-60,高度:60-70 单人床:宽度:90,105,120;长度:180,186,200,210 双人床:宽度:135,150,180;长度180,186,200,210 圆床:?直径:186,,(常用) 室内门:宽度:80-95,医院120;高度:190,200,210,220,240 厕所、厨房门:宽度:80,90;高度:190,200,210 窗帘盒:高度:12-18;深度:单层布12;双层布16-18(实际尺寸) 沙发:单人式:长度:80-95,深度:85-90;坐垫高:35-42;背高:70-90双人式:长度:126-150;深度:80-90 三人式:长度:175-196;深度:80-90 四人式:长度:232-252;深度80-90 茶几:小型,长方形:长度60-75,宽度45-60,高度38-50(38最佳) 中型,长方形:长度120-135;宽度38-50或者60-75 正方形:?长度75-90,高度43-50 大型,长方形:长度150-180,宽度60-80,高度33-42(33最佳)

圆形:直径75,90,105,120;高度:33-42 方形:宽度90,105,120,135,150;高度33-42 书桌:固定式:深度45-70(60最佳),高度75 活动式:深度65-80,高度75-78 书桌下缘离地至少58;长度:最少90(150-180最佳) 餐桌:高度75-78(一般),西式高度68-72,一般方桌宽度120,90,75; 长方桌宽度80,90,105,120;长度150,165,180,210,240 圆桌:直径90,120,135,150,180 书架:深度25-40(每一格),长度:60-120;下大上小型下方深度35-45,高度80-90 活动未及顶高柜:深度45,高度180-200 木隔间墙厚:6-10;内角材排距:长度(45-60)*90 桌类家具高度尺寸:700mm、720mm、740mm、760mm四个规格; 椅凳类家具的座面高度:400mm、420mm、440mm三个规格。 桌椅高度差应控制在280至320mm范围内。

家装各种最佳尺寸标准大全!

提供全方位装修指南,装修设计知识、丰富设计案例! 家装各种最佳尺寸标准大全! 家装最实际的规格尺寸 标准红砖24*11.5*53; 标准入户门洞0.9米*2米, 房间门洞0.9米*2米, 厨房门洞0.8米*2米, 卫生间门洞0.7米*2米, 标准水泥50kg/袋。 厨房 1.吊柜和操作台之间的距离应该是多少? 60厘米。 从操作台到吊柜的底部,您应该确保这个距离。这样,在您可以方便烹饪的同时,还可以在吊柜里放一些小型家用电器。 2.在厨房两面相对的墙边都摆放各种家具和电器的情况下,中间应该留多大的距离才不会影响在厨房里做家务? 120厘米。 为了能方便地打开两边家具的柜门,就一定要保证至少留出这样的距离。 150厘米。 这样的距离就可以保证在两边柜门都打开的情况下,中间再站一个人。 3.要想舒服地坐在早餐桌的周围,凳子的合适高度应该是多少? 80厘米。 对于一张高110厘米的早餐桌来说,这是摆在它周围凳子的理想高度。因为在桌面和凳子之间还需要30厘米的空间来容下双腿。 4.吊柜应该装在多高的地方? 145至150厘米。

提供全方位装修指南,装修设计知识、丰富设计案例! 餐厅 1. 一个供六个人使用的餐桌有多大? 2. 120厘米。 这是对圆形餐桌的直径要求。 140*70厘米。 这是对长方形和椭圆形捉制的尺寸要求。 2.餐桌离墙应该有多远? 80厘米。 这个距离是包括把椅子拉出来,以及能使就餐的人方便活动的最小距离。 3.一张以对角线对墙的正方形桌子所占的面积要有多大? 180*180平方厘米。 这是一张边长90厘米,桌角离墙面最近距离为40厘米的正方形桌子所占的最小面积。 4.桌子的标准高度应是多少? 72厘米。 这是桌子的中等高度,而椅子是通常高度为45厘米。 5.一张供六个人使用的桌子摆起居室里要占多少面积? 300*300厘米。 需要为直径120厘米的桌子留出空地,同时还要为在桌子四周就餐的人留出活动空间。这个方案适合于那种大客厅,面积至少达到600*350厘米。 6.吊灯和桌面之间最合适的距离应该是多少? 70厘米。 这是能使桌面得到完整的、均匀照射的理想距离。 卫生间 1.卫生间里的用具要占多大地方? 马桶所占的一般面积: 37厘米×60厘米。

装修预留的尺寸标准

【精华】室内装修,必须预留的最佳尺寸标准大全 2014-08-29筑龙房地产筑龙房地产 阅读引语 强烈推荐大家存的一份装修预留尺寸标准!!非常实用!! 现在新房子的设计一般都会交给专门的设计师来做,但哪怕是专业设计师制作的设计图稿,没有实地接触的设计师可能还会存在一些设计尺寸上的死角。另 外,落实图稿的是施工队的工人,工人往往疏忽大意就会犯错。于是房子装修完了,总是小错误不断。因此小哥觉得大家有必要存一份尺寸标准,监工时要用起来 哦!且看且分享吧! PART1:【客 厅】 【面积:20平方米~40平方米】 客厅是居室的门面,可以说对家具尺寸的要求是最严格的,多大的沙发配多大的茶几,多远的距离适合摆放电视等等,别看都是一些小数字,却足以令你的客厅成为一个舒适协调的地方。

电视组合柜的最小尺寸? 【200×50×180厘米】 对于小户型的客厅,电视组合柜是非常实用的,这种类型的家具一般都是由大小不同的方格组成,上部比较适合摆放一些工艺品,柜体厚度至少要保持30厘米;而下部摆放电视的柜体厚度则至少要保持50厘米,同时在选购电视柜时也要考虑组合柜整体的高度和横宽与墙壁的面宽是否协调。 长沙发或是扶手沙发的椅背应该有多高? 【85至90厘米】 沙发是用来满足人们的放松与休息的需求,所以舒适度是最重要的,这样的高度可以将头完全放在*背上,让颈部得到充分放松。如果沙发的*背和扶手过低,建议增加一个*垫来获得舒适度,如果空间不是特别宽敞,沙发应该尽量靠墙摆放。 扶手沙发与电视机之间应该预留多大的距离?

【3米左右】 这里所指的是在一个29英寸的电视与扶手沙发或和长沙发之间最短的距离,此外,摆放电视机的柜面高度应该在40厘米到120厘米之间,这样才能让看者非常舒适。 与容纳三个人的沙发搭配,多大的茶几合适呢? 【120×70×45厘米或100×100×45厘米】 在沙发的体积很大或是两个长沙发摆在一起的情况下,矮茶几就是很好的选择,茶几的高度最好和沙发坐垫的位置持平。 目前市场上较为流行的是一种低矮的方几,材质多为实木或实木贴皮的,质感较好。 细节补充: 照明灯具距桌面的高度,白炽灯泡60瓦为100厘米,40瓦为65厘米,25瓦为50厘米,15瓦为30厘米;日光灯距桌面高度,40瓦为150厘米,30瓦为140厘米,20瓦为110厘米,8瓦为55厘米。 PART2:【餐 厅】 【面积:10平方米~20平方米】 用餐的地方是一家人团聚最多的地方,通常也是居室中较为拥挤的一个空间,因为有较多的餐椅需要放置,也是家人同时集中的地方,所以它的尺寸就更要精打细算才能使餐厅成为一个温馨的地方。

完整家装尺寸大全

家具设计地基本尺寸(单位:) 衣橱:深度:一般;推拉门:,衣橱门宽度: 推拉门:,高度: 矮柜:深度:,柜门宽度: 电视柜:深度:,高度: 单人床:宽度:,,;长度:,,, 双人床:宽度:,,;长度,,, 圆床:直径:,,(常用) 室内门:宽度:,医院;高度:,,,, 厕所、厨房门:宽度:,;高度:,, 窗帘盒:高度:;深度:单层布;双层布(实际尺寸) 沙发:单人式:长度:,深度:;坐垫高:;背高: 双人式:长度:;深度: 三人式:长度:;深度: 四人式:长度:;深度 茶几:小型,长方形:长度,宽度,高度(最佳) 中型,长方形:长度;宽度或者 正方形:长度,高度 大型,长方形:长度,宽度,高度(最佳) 圆形:直径,,,;高度: 方形:宽度,,,,;高度 书桌:固定式:深度(最佳),高度 活动式:深度,高度 书桌下缘离地至少;长度:最少(最佳) 餐桌:高度(一般),西式高度,一般方桌宽度,,;长方桌宽度,,,;长度,,,,圆桌:直径,,,, 书架:深度(每一格),长度:;下大上小型下方深度,高度 活动未及顶高柜:深度,高度 木隔间墙厚:;内角材排距:长度()* 室内常用尺寸 、墙面尺寸 ()踢脚板高;—. ()墙裙高:—. ()挂镜线高:—(画中心距地面高度). .餐厅

() 餐桌高:—. () 餐椅高;—. () 圆桌直径:二人.二人,四人,五人,六人,八人,十人,十二人. () 方餐桌尺寸:二人×(),四人×(),八人×(), () 餐桌转盘直径;—. 餐桌间距:(其中座椅占)应大于. () 主通道宽:—. 内部工作道宽:—. () 酒吧台高:—,宽. () 酒吧凳高;一. 在客厅 .长沙发与摆在它面前地茶几之间地正确距离是多少? 厘米 在一个(**高厘米)地长沙发面前摆放一个(**高厘米)地长方形茶几是非常舒适地.两者之间地理想距离应该是能允许你一个人通过地同时又便于使用,也就是说不用站起来就可以方便地拿到桌上地杯子或者杂志. b5E2R。 .一个能摆放电视机地大型组合柜地最小尺寸应该是多少? **高厘米 这种类型地家具一般都是由大小不同地方格组成,高处部分比较适合用来摆放书籍,柜体厚度至少保持厘米;而低处用于摆放电视地柜体厚度至少保持厘米.同时组合柜整体地高度和横宽还要考虑与墙壁地面积相协调..如果摆放可容纳三、四个人地沙发,那么应该选择多大地茶几来搭配呢? **高厘米 在沙发地体积很大或是两个长沙发摆在一起地情况下,矮茶几就是很好地选择,高度最好和沙发坐垫地位置持平. .在扶手沙发和电视机之间应该预留多大地距离? 米 这里所指地是在一个英寸地电视与扶手沙发或长沙发之间最短地距离.此外,摆放电视机地柜面高度应该在厘米到厘米之间,这样才能使观众保持正确地坐姿. .摆在沙发边上茶几地理想尺寸是多少? 方形:**高厘米. 椭圆形:*高厘米. 放在沙发边上地咖啡桌应该有一个不是特别大地桌面,但要选那种较高地类型,这样即使坐着地时候也能方便舒适地取到桌上地东西. p1Ean。 .两个面对面放着地沙发和摆放在中间地茶几一共需要占据多大地空间? 两个双人沙发(规格 **高厘米)和茶几(规格**高厘米)之间应相距厘米. .长沙发或是扶手沙发地地靠背应该有多高?

装修常用家具尺寸表

装修常用家具尺寸 在工地 1、标准红砖23*11*6;标准入户门洞0.9米*2米,房间门洞0.9米*2米,厨房门洞0.8米*2米,卫生间门洞0.7米*2米,标准水泥50kg/袋。 在厨房 1.吊柜和操作台之间的距离应该是多少? 60厘米。 从操作台到吊柜的底部,您应该确保这个距离。这样,在您可以方便烹饪的同时,还可以在吊柜里放一些小型家用电器。 2.在厨房两面相对的墙边都摆放各种家具和电器的情况下,中间应该留多大的距离才不会影响在厨房里做家务? 120厘米。 为了能方便地打开两边家具的柜门,就一定要保证至少留出这样的距离。 150厘米。 这样的距离就可以保证在两边柜门都打开的情况下,中间再站一个人。 3.要想舒服地坐在早餐桌的周围,凳子的合适高度应该是多少? 80厘米。 对于一张高110厘米的早餐桌来说,这是摆在它周围凳子的理想高度。因为在桌面和凳子之间还需要30厘米的空间来容下双腿。

4.吊柜应该装在多高的地方? 145至150厘米。 这个高度可以使您不用垫起脚尖就能打开吊柜的门。 在餐厅 1.一个供六个人使用的餐桌有多大? 120厘米。 这是对圆形餐桌的直径要求。 140*70厘米。 这是对长方形和椭圆形捉制的尺寸要求。 2.餐桌离墙应该有多远? 80厘米。 这个距离是包括把椅子拉出来,以及能使就餐的人方便活动的最小距离。 3.一张以对角线对墙的正方形桌子所占的面积要有多大? 180*180平方厘米 这是一张边长90厘米,桌角离墙面最近距离为40厘米的正方形桌子所占的最小面积。 4.桌子的标准高度应是多少? 72厘米。

这是桌子的中等高度,而椅子是通常高度为45厘米。 5.一张供六个人使用的桌子摆起居室里要占多少面积? 300*300厘米。 需要为直径120厘米的桌子留出空地,同时还要为在桌子四周就餐的人留出活动空间。这个方案适合于那种大客厅,面积至少达到600*350厘米。 6.吊灯和桌面之间最合适的距离应该是多少? 70厘米。 这是能使桌面得到完整的、均匀照射的理想距离。 在卫生间 1.卫生间里的用具要占多大地方? 马桶所占的一般面积:37厘米×60厘米 悬挂式或圆柱式盥洗池可能占用的面积:70厘米×60厘米 正方形淋浴间的面积:80厘米×80厘米 浴缸的标准面积:160厘米×70厘米 2.浴缸与对面的墙之间的距离要有多远? 100厘米。想要在周围活动的话这是个合理的距离。即使浴室很窄,也要在安装浴缸时留出走动的空间。总之浴缸和其他墙面或物品之间至少要有60厘米的距离。

家装尺寸数据大全

干货│家装尺寸数据大全,大家快掏 出小本本记好了! 一、那些在工地的数据 (3) 二、那些在客厅涉及的家装数据 (4) 三、那些在厨房涉及到的家装数据 (8) 四、那些在餐厅涉及到的家装数据 (9) 五、那些在卫生间涉及到的家装数据 (11)

装修从来不是一件一蹴而就的事 它是一项关乎未来几十年生活质量的细活儿 可以精确到一丝一毫 因此了解一些家具尺寸的数据是非常必要的常识 为了有效避免以下惨烈装修车祸现场 比如心爱的沙发多出一块经常绊倒人 又比如一眼看中的床卧室竟然放不下······

下面各位装修的宝宝赶紧来围观一起涨姿势 一、那些在工地的数据 1、标准红砖23*11*6; 2、标准入户门洞0.9米*2米, 3、房间门洞0.9米*2米, 4、厨房门洞0.8米*2米, 5、卫生间门洞0.7米*2米, 6、标准水泥50kg/袋。

二、那些在客厅涉及的家装数据 1.长沙发与摆放在它面前的茶几之间的正确距离是多少? 30厘米在一个(240*90*75高厘米)的长沙发面前摆放一个(130*70*45高厘米)的长方形茶几是非常舒适的。两者之间的理想距离应该是能允许你一个人通过的同时又便于使用,也就是说不用站起来就可以方便地拿到桌上的杯子或者杂志。 2.一个能摆放电视机的大型组合柜的最小尺寸应该是多少? 200*50*180厘米这种类型的家具一般都是由大小不同的方格组成,高处部分比较适合用来摆放书籍,柜体厚度至少保持30厘米;而低处用于摆放电视的柜体

厚度至少保持50厘米。同时组合柜整体的高度和横宽还要考虑与墙壁的面积相协调。 3.如果摆放可容纳三、四个人的沙发,那么应该选择多大的茶几来搭配呢?140*70*45高厘米。在沙发的体积很大或是两个长沙发摆在一起的情况下,矮茶几就是很好的选择,高度最好和沙发坐垫的位置持平。 4.在扶手沙发和电视机之间应该预留多大的距离? 3米。这里所指的是在一个25英寸的电视与扶手沙发或长沙发之间最短的距离。此外,摆放电视机的柜面高度应该在40厘米到120厘米之间,这样才能使观众保持正确的坐姿。

淘宝店铺装修尺寸大全(终极版)

1.商品图片的尺寸:宽500*高500像素,大小在120KB以内,要求JPG或GIF格式,到发布宝贝页面上上传图片。最好大于312*310px 2.店标图片的尺寸:宽100*高100像素,大小在80K以内,支持JPG或GIF格式,动态或静态的图片均可。上传步骤:“管理我的店铺”-“基本设置”-“店标”-“浏览”-“确定” 3.宝贝描述图片的尺寸:没有特殊要求,可根据需要宽500*高500像素,大小在100K以内,这样图片的打开速度较快。要求JPG或GIF格式,静态或动态均可。将图片上传到电子相册,再复制到商品页面中去。 4.公告栏图片的尺寸:宽不超过480像素,长度不限制,大小在120KB以内GIF或JPG格式,动态或者静态均可。上传“管理我的店铺”-“基本设置”-“公告栏”-“确定”。 5.宝贝分类图片尺寸:宽不超过165,长度不限制,大小在50KB以内,要求GIF或JPG格式,动态或者静态均可,先将图片上传到电子相册得到一个缩短网址后进入“管理我的店铺”-“基本设置”-“宝贝分类” 6.旺旺头像图片尺寸:宽120*高120像素,大小在100KB以内,格式为JPG或GIF,动态或者静态均可。 7.论坛头像图片尺寸:最大为宽120*高120像素,大小在100KB以内,GIF或者JPG格式,动态或者静态图片均可。上传方法“我的淘宝”-“个人空间”-“修改资料”-“上传新头像”。 8.论坛签名档图片尺寸:宽468*高60像素,大小在100KB以内,JPG或者GIF格式,动态或者静态均可,上传“我的淘宝”-“个人空间 淘宝店铺装修最佳尺寸 普通店铺 1.店标 大小:100*100px <=80k 代码:无(图片做好后直接上传) 格式:jpg、gif 设置:管理我的店铺—基本设置—店标—浏览—选择本地做好店标文件 2. 店铺公告尺寸:320*400 3.宝贝分类尺寸:88*88和88*30(宝贝分类含3个) 4.店铺介绍尺寸:600*450 5.计数器尺寸:137*94 6.论坛签名尺寸:468*60

2019最完整家装尺寸大全!

家里装修,最重要的是什么? 不是缤纷夺目的软装搭配设计,也不是酷炫十足的多功能变化装置,而是严格把控每一个细节尺寸,保证在装修完毕之后,根本的硬件设施合乎人体工程学的基本要求,让家里每个人住着舒适开心,这才是最重要的。这里,不仅整理出了完善的室内常见尺寸,更有一些独具风格的创意设计尺寸,让家装不再是难事。 室内常见家具的基本尺寸(单位:cm) 客厅篇 沙发: 单人式:长度:80-95,深度:85-90;坐垫高:35-42;背高:70-90 双人式:长度:126-150;深度:80-90 三人式:长度:175-196;深度:80-90 四人式:长度:232-252;深度80-90 茶几: 小型,长方形:长度60-75,宽度45-60,高度38-50(38最佳) 中型,长方形:长度120-135;宽度38-50或者60-75 正方形:长度75-90,高度43-50 大型,长方形:长度150-180,宽度60-80,高度33-42(33最佳) 圆形:直径75,90,105,120;高度:33-42 方形:宽度90,105,120,135,150;高度33-42 墙面尺寸: (1)踢脚板高:8—20 (2)墙裙高:80—150

(3)挂镜线高:160—180(画中心距地面高度) 厕所、厨房门:宽度:80,90;高度:190,200,210 窗帘盒:高度:12-18;深度:单层布12;双层布16-18(实际尺寸) 厨房餐厅篇 餐桌高:75—79 餐椅高:45—50 圆桌直径:二人50,二人80,四人90,五人110,六人110-125,八人130,十人l50,十二人180。 方餐桌尺寸:二人70×85,四人135×85,八人225×85 餐桌转盘直径:70—80 餐桌间距:(其中座椅占50)应大于50 主通道宽:120—130 内部工作道宽:60—90 酒吧台高:90—l05,宽50 酒吧凳高:60一75 卧室篇 衣橱:深度:一般60~65;推拉门:70,衣橱门宽度:40~65 推拉门:75~150,高度:190~240 矮柜:深度:35~45,柜门宽度:30-60 电视柜:深度:45-60,高度:60-70 单人床:宽度:90,105,120;长度:180,186,200,210 双人床:宽度:135,150,180;长度:180,186,200,210 圆床:直径:186,212.5,242.4(常用) 室内门:宽度:80-95,医院120;高度:190,200,210,220,240 书桌:固定式:深度45-70(60最佳),高度75 活动式:深度65-80,高度75-78 书桌下缘离地至少58;长度:最少90(150-180最佳) 圆桌:直径90,120,135,150,180 书架:深度25-40(每一格),长度:60-120;下大上小型下方深度35-45,高度80-90 木隔间墙厚:6-10;内角材排距:长度(45-60)*90 室内常用尺寸(单位:cm) 客厅篇 1.长沙发与茶几之间的距离 =30cm 在一个(240*90*75)的长沙发面前摆放一个(130*70*45)的长方形茶几是非常舒适的。是能允许一人通过的同时又便于使用的理想距离。 2.一个能摆放电视机的大型组合柜的最小尺寸=200*50*180 这种类型的家具一般都是由大小不同的方格组成,高处部分比较适合用来摆放书籍,柜体厚度至少保持30厘米;而低处用于摆放电视的柜体厚度至少保持50厘米。同时组合柜整体的高度和横宽还要考虑与墙壁的面积相协调。 3.如果摆放可容纳三、四个人的沙发,应该选择搭配的茶几大小=140*70*45

家装设计尺寸标准

家具设计标准尺寸 家具设计的基本尺寸(单位:厘米 衣橱:深度:一般60~65;推拉门:70,衣橱门宽度:40~65 推拉门:75~150,高度:190~240 矮柜:深度:35~45,柜门宽度:30-60 电视柜:深度:45-60,高度:60-70 单人床:宽度:90,105,120;长度:180,186,200,210 双人床:宽度:135,150,180;长度180,186,200,210 圆床:直径:186,212.5,242.4(常用) 室内门:宽度:80-95,医院120;高度:190,200,210,220,240 厕所、厨房门:宽度:80,90;高度:190,200,210 窗帘盒:高度:12-18;深度:单层布12;双层布16-18(实际尺寸) 沙发:单人式:长度:80-95,深度:85-90;坐垫高:35-42;背高:70-90 双人式:长度:126-150;深度:80-90 三人式:长度:175-196;深度:80-90 四人式:长度:232-252;深度80-90 茶几:小型,长方形:长度60-75,宽度45-60,高度38-50(38最佳 中型,长方形:长度120-135;宽度38-50或者60-75 正方形:长度75-90,高度43-50 大型,长方形:长度150-180,宽度60-80,高度33-42(33最佳) 圆形:直径75,90,105,120;高度:33-42 方形:宽度90,105,120,135,150;高度33-42 书桌:固定式:深度45-70(60最佳),高度75 活动式:深度65-80,高度75-78 书桌下缘离地至少58;长度:最少90(150-180最佳) 餐桌:高度75-78(一般),西式高度68-72,一般方桌宽度120,90,75; 长方桌宽度80,90,105,120;长度150,165,180,210,240 圆桌:直径90,120,135,150,180 书架:深度25-40(每一格),长度:60-120;下大上小型下方深度35-45,高度80-90 活动未及顶高柜:深度45,高度180-200 木隔间墙厚:6-10;内角材排距:长度(45-60)*90 室内家具尺寸标准大全 ●电视柜尺寸: 电视组合柜最小尺寸:2000×500×1800毫米。 电视组合柜厚度:上部至少要300毫米,下部摆放电视的柜体至少要500毫米。电视柜面高度:在400—1200毫米,另一说在400-520毫米,又一说600—700毫米。电视柜:深度450—600毫米,高度600-700毫米。●沙发尺寸:

家装应该知道的尺寸讲解

客厅尺寸篇(单位:mm) 01、沙发尺寸:一般深度800~900、坐位高350~420、背高700~900 单人式:长度:800-950,深度:850-900坐垫高:350-420;背高:70-90 双人式:长度:1260-1500;深度:800-900 三人式:长度:1750-1960;深度:800-900 四人式:长度:2320-2520;深度:800-900 02、茶几尺寸:茶几高度一般在330~420,但边角茶几有时稍高一些,为430~500 03、沙发和茶几之间的距离一般控制在300比较合适 04、一般电视机和沙发之间最短距离控制在3000 05、放置台式电视机的柜台高度,一般控制在400到1200之间 06、液晶电视机壁挂高度一般控制在电视机屏幕的中心点和观看电视时的视线平行,一般在1100,常规控制在1000-1500 餐厅尺寸篇(单位:mm) 一、餐桌尺寸 圆桌直径:二人500、三人800、四人900、五人1100、六人1200 (前几种规格圆桌人均占有弧长为600-800,以满负荷使用计算,一般固定其尺寸来使用) 八人1300-1400,十人1500-l600,十二人1800-2000 (此类推下去规格,人均占弧长控制在500-550,考虑非满负荷使用状况(餐桌转盘直径;700—800) 方桌尺寸: 此只探讨长条方桌,因正方方桌可通过长条方桌来推算其所需尺寸:一般短边控制在800-850, 长边则按人均占有计算:控制在550-700,接近700为佳。 二、餐桌一般高:750—790,餐椅一般高;450—500mm 三、酒吧台高一般:900—l050,宽500,酒吧凳高;600一750

家装尺寸常识

家居装修设计常规尺寸大全【人体工程学尺寸】 一、人体工程学尺寸参考【单位:cm】 1、体重:(男:68.9 女:56.7) 2、身高:(男:173.5 女:159.8) 3、座直臀至头顶的高度:(男: 90.7 女:84.8) 4、两肘间的宽度:(男:41.9 女:38.4) 5、肘下支撑物的高度:(男:24.1 女:23.4) 6、座姿大腿的高度:(男:14.5 女:13.7) 7、座姿膝盖至地面的高度:(男:54.4 女:49.8) 8、坐姿臀部至腿弯的长度:(男:49.0 女:48.0) 9、坐姿臀宽:(男:35.6 女:36.3) 10、活动空间(可蹲空间)男:1220~1470 女:1160~1320 【家装】 一、常用室内基本尺寸【单位:mm】 1、支撑墙体:厚度2400 2、室内隔墙断墙体:厚度1200 3、木隔间墙厚:60~100——内角材排距:长度(45~60)*90 4、窗帘盒:高度:120~180——深度:单层布120—双层布160~180 5、玄关:宽1000——墙厚2400 6、阳台:宽1400~1600——长3000~4000(一般与客厅的长度相同) 7、踏步:高1500~1600——长990~1150——宽250 扶手宽100——扶手间距200——中间的休息平台宽1000 8、踢脚板高:80~200 9、墙裙高:800~1500 10、挂镜线高:1600~1800(画中心距地面高度) 11、楼梯:850~1000 12、栏杆:高度:800~1100 13、房间内通道: 宽度:650(最小) 14、餐桌后通道:宽度:750 (其中座椅占500mm) 15、人肩宽520(400~450不能通过),可通行距离760~910 16、过道:宽度:900~1200

家装用尺寸一览表

家装用尺寸一览表标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

家装用尺寸一览表 ▌标准入户门洞*2m, ▌房间门洞*2m, ▌厨房门洞*2m, ▌卫生间门洞*2m ▌客厅:长沙发:240*90*75cm 长方形茶几:130*70*45cm电视柜:200*50*180cm 电视离沙发:3m 电视高度与电视柜高差:40到120cm 走道宽度:100至120cm ▌厨房:橱柜操作台:台面高80cm左右面积90*46(最小20最大60)cm 吊柜:离台面60cm左右高度在145cm到150cm餐桌:餐桌高:750—790mm。餐椅高;450— 500mm。圆桌直径:二人500mm.二人800mm,四人900mm,五人1100mm,六人1100-1250mm,八人1300mm,十人l500mm,十二人1800mm。方餐桌尺寸:二人700× 850(mm),四人1350×850(mm),八人2250×850(mm) ▌卫生间:浴缸长度:一般有三种1220、1520、1680mm;宽:720mm,高:450mm。坐便:750×350(mm)。冲洗器:690×350(mm)。盟洗盆:550×410(mm)。淋浴器高:2100mm。化妆台:长:1350mm;宽450 mm。 ▌卧室:标准双人床尺寸:150*190、150*200厘米,被套的尺寸应配180*215和200*230之间的。加大双人床尺寸:180*200厘米,被套一般为200*230或220*240。床头柜宽:400毫米-600毫米,深:350毫米-450毫米高:500毫米-700毫米。衣柜:柜门尺寸,单扇一门宽度不超过1200mm,高度不超过2400mm。挂衣区尺寸,上衣区高度在100cm-120cm,不低于90cm,宽度在40cm;长衣区是140cm-150cm指间,不低于130cm,宽度在40cm。裤架尺寸。柜子的深度一般在600-650mm之间,那么裤架的深度范围在490- 540mm,宽度不限。 ▌灯具:大吊灯最小高度:2400mm。壁灯高:1500—1800mm。反光灯槽最小直径:等于或大于灯管直径两倍。壁式床头灯高:1200—1400mm。照明开关高:1000mm。 ▌插座、开关:

最完整家装尺寸大全

最完整家装尺寸大全 最完整家装尺寸大全 最完整家装尺寸大全 衣橱:深度:一般60~65;推拉门:70,衣橱门宽度:40~65 推拉门:75~150,高度:190~240 矮柜:深度:35~45,柜门宽度:30-60 电视柜:深度:45-60,高度:60-70 单人床:宽度:90,105,120;长度:200,210 双人床:宽度:135,150,180;长度:200,210 圆床:直径:186,212.5,242.4(常用) 室内门:宽度:80-95,医院120;高度:190,200,210,220,240 厕所、厨房门:宽度:80,90;高度:190,200,210 窗帘盒:高度:12-18;深度:单层布12;双层布16-18(实际尺寸) 沙发:单人式:长度:80-95,深度:85-90;坐垫高:35-42; 背高:70-90 双人式:长度:126-150;深度:80-90 三人式:长度:175-196;深度:80-90 四人式:长度:232-252;深度80-90 茶几:小型,长方形:长度60-75,宽度45-60,高度38-50(38最佳)

中型,长方形:长度120-135;宽度38-50或者60-75 正方形:长度75-90,高度43-50 大型,长方形:长度150-180,宽度60-80,高度33-42(33最佳) 圆形:直径75,90,105,120;高度:33-42 方形:宽度90,105,120,135,150;高度33-42 书桌:固定式:深度45-70(60最佳),高度75 活动式:深度65-80,高度75-78 书桌下缘离地至少58;长度:最少90(150-180最佳) 餐桌:高度75-78(一般),西式高度68-72,一般方桌宽度120,90,75;长方桌宽度80,90,105,120;长度 150,165,180,210,240 圆桌:直径90,120,135,150,180 书架:深度25-40(每一格),长度:60-120;下大上小型下方深度35-45,高度80-90 活动未及顶高柜:深度45,高度180-200 木隔间墙厚:6-10;内角材排距:长度(45-60)*90 1 室内常用尺寸 1、墙面尺寸 (1)踢脚板高;80—200mm. (2)墙裙高:800—1500mm.

家装的标准尺寸大全

在工地 1、标准红砖23*11*6; 标准入户门洞0.9米*2米, 房间门洞0.9米*2米, 厨房门洞0.8米*2米, 卫生间门洞0.7米*2米, 标准水泥50kg/袋。 在厨房 1.吊柜和操作台之间的距离应该是多少? 60厘米。 从操作台到吊柜的底部,您应该确保这个距离。这样,在您可以方便烹饪的同时,还可以在吊柜里放一些小型家用电器。 2.在厨房两面相对的墙边都摆放各种家具和电器的情况下,中间应该留多大的距离才不会影响在厨房里做家务? 120厘米。 为了能方便地打开两边家具的柜门,就一定要保证至少留出这样的距离。 150厘米。 这样的距离就可以保证在两边柜门都打开的情况下,中间再站一个人。 3.要想舒服地坐在早餐桌的周围,凳子的合适高度应该是多少? 80厘米。 对于一张高110厘米的早餐桌来说,这是摆在它周围凳子的理想高度。因为在桌面和凳子之间还需要30厘米的空间来容下双腿。 4.吊柜应该装在多高的地方? 145至150厘米。 在餐厅 1.一个供六个人使用的餐桌有多大? 120厘米。

这是对圆形餐桌的直径要求。 140*70厘米。 这是对长方形和椭圆形捉制的尺寸要求。 2.餐桌离墙应该有多远? 80厘米。 这个距离是包括把椅子拉出来,以及能使就餐的人方便活动的最小距离。 3.一张以对角线对墙的正方形桌子所占的面积要有多大? 180*180平方厘米 这是一张边长90厘米,桌角离墙面最近距离为40厘米的正方形桌子所占的最小面积。 4.桌子的标准高度应是多少? 72厘米。 这是桌子的中等高度,而椅子是通常高度为45厘米。 5.一张供六个人使用的桌子摆起居室里要占多少面积? 300*300厘米。 需要为直径120厘米的桌子留出空地,同时还要为在桌子四周就餐的人留出活动空间。这个方案适合于那种大客厅,面积至少达到600*350厘米。 6.吊灯和桌面之间最合适的距离应该是多少? 70厘米。 这是能使桌面得到完整的、均匀照射的理想距离。 在卫生间 1.卫生间里的用具要占多大地方? 马桶所占的一般面积:37厘米×60厘米 悬挂式或圆柱式盥洗池可能占用的面积:70厘米×60厘米 正方形淋浴间的面积:80厘米×80厘米 浴缸的标准面积:160厘米×70厘米 2.浴缸与对面的墙之间的距离要有多远? 100厘米。想要在周围活动的话这是个合理的距离。即使浴室很窄,也要在安装浴缸时留出走动的空间。总之浴缸和其他墙面或物品之间至少要有60厘米的距离。 3.安装一个盥洗池,并能方便地使用,需要的空间是多大? 90厘米×105厘米。这个尺寸适用于中等大小的盥洗池,并能容下另一个人在旁边洗漱。4.两个洗手洁具之间应该预留多少距离? 20厘米。这个距离包括马桶和盥洗池之间,或者洁具和墙壁之间的距离。 5.相对摆放的澡盆和马桶之间应该保持多远距离? 60厘米。这是能从中间通过的最小距离,所以一个能相向摆放的澡盆和马桶的洗手间应该至少有180厘米宽。 6.要想在里侧墙边安装下一个浴缸的话,洗手间至少应该有多宽? 180厘米。这个距离对于传统浴缸来说是非常合适的。如果浴室比较窄的话,就要考虑安装小型的带座位的浴缸了。

家装用尺寸一览表

家装用尺寸一览表 ■标准入户门洞0.9m*2m, ■房间门洞0.9m*2m, ■厨房门洞0.8m*2m ■卫生间门洞0.7m*2m ■客厅:长沙发:240*90*75cm?长方形茶几:130*70*45cm 电视柜:200*50*180cm?? 电视离沙发:3m?电视高度与电视柜高差:40到120cm徒道宽度:100至120cm ■厨房:橱柜操作台:台面高80cm左右?面积90*46 (最小20最大60) cm?吊柜: 离台面60cm左右??高度在145cm到150cm餐桌:餐桌高:750—790mm餐椅高;450 —500mm圆桌直径:二人500mm二人800mm四人900mm五人1100mm六人1100-1250mm 八人1300mm十人1500mm 十二人1800mm方餐桌尺寸:二人700 x 850(mm),四人1350x 850(mm),八人2250X 850(mm) ■卫生间:浴缸长度:一般有三种1220、1520、1680mm宽:720mm高:450mm 坐便:750x 350(mm> 冲洗器:690x 350(mm> 盟洗盆:550x 410(mm)o 淋浴器高: 2100mm 化妆台:长:1350mm 宽450mm ? ■卧室:标准双人床尺寸:150*190、150*200厘米,被套的尺寸应配180*215和 200*230之间的。加大双人床尺寸:180*200厘米,被套一般为200*230或220*240。 床头柜宽:400毫米-600毫米,深:350毫米-450毫米高:500毫米-700毫米。衣柜:柜门尺寸,单扇一门宽度不超过1200mm高度不超过2400mm挂衣区尺寸,上衣区高度在100cm-120cm不低于90cm宽度在40cm长衣区是140cm-150cm指间,

家装各种最佳尺寸标准大全

家装各种最佳尺寸标准大全

在客厅 1.长沙发与摆在它面前的茶几之间的正确距离是多少?30厘米 2.一个能摆放电视机的大型组合柜的最小尺寸应该是多少?200*50*180高厘米 3.如果摆放可容纳三、四个人的沙发,那么应该选择多大的茶几来搭配呢?140*70*45高厘米 4.在扶手沙发和电视机之间应该预留多大的距离?3米 5.摆在沙发边上茶几的理想尺寸是多少?方形:70*70*60高厘米。椭圆形:70*60高厘米。 6.两个面对面放着的沙发和摆放在中间的茶几一共需要占据多大的空间? 两个双人沙发(规格 160*90*80高厘米)和茶几(规格100*60*45高厘米)之间应相距30厘米。 7.长沙发或是扶手沙发的的靠背应该有多高?85至90厘米。 8.如果客厅位于房间的中央,后面想要留出一个走道空间,这个走道应该有多宽?100至120厘米。 9.两个对角摆放的长沙发,它们之间的最小距离应该是多少?10厘米。 在餐厅 1.一个供六个人使用的餐桌有多大? 120厘米。这是对圆形餐桌的直径要求。 140*70厘米。这是对长方形和椭圆形捉制的尺寸要求。 2.餐桌离墙应该有多远?80厘米。 3.一张以对角线对墙的正方形桌子所占的面积要有多大?180*180平方厘米 4.桌子的标准高度应是多少?72厘米。 5.一张供六个人使用的桌子摆起居室里要占多少面积?300*300厘米。 6.吊灯和桌面之间最合适的距离应该是多少?70厘米。 在卧室 1、双人主卧室的最标准面积是多少?12平方米 2、如果把床斜放在角落里,要留出多大空间?360*360厘米 3、两张并排摆放的床之间的距离应该有多远?90厘米 4、如果衣柜被放在了与床相对的墙边,那么两件家具这间的距离应该是多少?90厘米 5、衣柜应该有多高?240厘米 6、要想容的下双人床、两个床头柜外加衣柜的侧面的话,一面墙应该有多大?420*420厘米 在厨房 1.吊柜和操作台之间的距离应该是多少?60厘米。 2.在厨房两面相对的墙边都摆放各种家具和电器的情况下,中间应该留多大的距离才不会影响在厨房里做家务?120厘米。 3.要想舒服地坐在早餐桌的周围,凳子的合适高度应该是多少?80厘米。 4.吊柜应该装在多高的地方?145至150厘米。

家装用尺寸一览表

家装用尺寸一览表 ▌标准入户门洞0.9m*2m, ▌房间门洞0.9m*2m, ▌厨房门洞0.8m*2m, ▌卫生间门洞0.7m*2m ▌客厅:长沙发:240*90*75cm 长方形茶几:130*70*45cm电视柜:200*50*180cm 电视离沙发:3m 电视高度与电视柜高差:40到120cm 走道宽度:100至120cm ▌厨房:橱柜操作台:台面高80cm左右面积90*46(最小20最大60)cm 吊柜:离台面60cm左右高度在145cm到150cm 餐桌:餐桌高:750—790mm。餐椅高;450—500mm。圆桌直径:二人500mm.二人800mm,四人900mm,五人1100mm,六人1100-1250mm,八人1300mm,十人l500mm,十二人1800mm。方餐桌尺寸:二人700×850(mm),四人1350×850(mm),八人2250×850(mm) ▌卫生间:浴缸长度:一般有三种1220、1520、1680mm;宽:720mm,高:450mm。坐便:750×350(mm)。冲洗器:690×350(mm)。盟洗盆:550×410(mm)。淋浴器高:2100mm。化妆台:长:1350mm;宽450 mm。

▌卧室:标准双人床尺寸:150*190、150*200厘米,被套的尺寸应配180*215和200*230之间的。加大双人床尺寸:180*200厘米,被套一般为200*230或220*240。床头柜宽:400毫米-600毫米,深:350毫米-450毫米高:500毫米-700毫米。衣柜:柜门尺寸,单扇一门宽度不超过1200mm,高度不超过2400mm。挂衣区尺寸,上衣区高度在100cm-120cm,不低于90cm,宽度在40cm;长衣区是 140cm-150cm指间,不低于130cm,宽度在40cm。裤架尺寸。柜子的深度一般在600-650mm之间,那么裤架的深度范围在490-540mm,宽度不限。 ▌灯具:大吊灯最小高度:2400mm。壁灯高:1500—1800mm。反光灯槽最小直径:等于或大于灯管直径两倍。壁式床头灯高:1200—1400mm。照明开关高:1000mm。 ▌插座、开关: 客厅: 1)除特殊要求以外一般低插300mm、增加插座要与原插座持平。总电箱1850mm 2)背景墙插座。在电视柜下面的200一250mm.在电视柜上面的450一500mm.在挂电视中的1100mm. 卧室

相关文档