文档库 最新最全的文档下载
当前位置:文档库 › 表面粗糙度计算公式及计算方法及加工影响

表面粗糙度计算公式及计算方法及加工影响

表面粗糙度计算公式及计算方法及加工影响
表面粗糙度计算公式及计算方法及加工影响

各种加工方法能达到的表面粗糙度

ID加工方法表面粗糙度Ra(μm)ID加工方法表面粗糙度Ra(μm) 1自动气割、带锯或圆盘锯割断50~12.526锪倒角(孔的) 3.2~1.6 2切断(车)50~12.527带导向的锪平面 6.3~3.2 3切断(铣)25~12.528镗孔(粗镗)12.5~6.3 4切断(砂轮) 3.2~1.629镗孔(半精镗金属) 6.3~3.2 5车削外圆(粗车)12.5~3.230镗孔(半精镗非金属) 6.3~1.6 6车削外圆(半精车金属) 6.3~3.231镗孔(精密镗或金刚石镗金属)0.8~0.2 7车削外圆(半精车非金属) 3.2~1.632镗孔(精密镗或金刚石镗非金属)0.4~0.2 8车削外圆(精车金属) 3.2~0.833高速镗0.8~0.2 9车削外圆(精车非金属) 1.6~0.434铰孔(半精铰一次铰)钢 6.3~3.2 10车削外圆(精密车或金刚石车金属)0.8~0.235铰孔(半精铰一次铰)黄铜 6.3~1.6 11车削外圆(精密车或金刚石车非金属)0.4~0.136铰孔(半精铰二次铰)铸铁 3.2~0.8 12车削端面(粗车)12.5~6.337铰孔(半精铰二次铰)钢、轻合金 1.6~0.8 13车削端面(半精车金属) 6.3~3.238铰孔(半精铰二次铰)黄铜、青铜0.8~0.4 14车削端面(半精车非金属) 6.3~1.639铰孔(精密铰)钢0.8~0.2 15车削端面(精车金属) 6.3~1.640铰孔(精密铰)轻合金0.8~0.4 16车削端面(精车非金属 6.3~1.641铰孔(精密铰)黄铜、青铜0.2~0.1 17车削端面(精密车金属)0.8~0.442圆柱铣刀铣削(粗)12.5~3.2 18车削端面(精密车非金属)0.8~0.243圆柱铣刀铣削(精) 3.2~0.8 19切槽(一次行程)12.544圆柱铣刀铣削(精密)0.8~0.4 20切槽(二次行程) 6.3~3.245端铣刀铣削(粗)12.5~3.2 21高速车削0.8~0.246端铣刀铣削(精) 3.2~0.4 22钻(≤φ15mm) 6.3~3.247端铣刀铣削(精密)0.8~0.2 23钻(>φ15mm)25~6.348高速铣削(粗) 1.6~0.8 24扩孔、粗(有表皮)12.5~6.349高速铣削(精)0.4~0.2 25扩孔、精 6.3~1.650刨削(粗)12.5~6.3

车削表面粗糙度的计算

车削表面粗糙度的计算 说说表面粗糙度的计算,以及"镜面效果"- 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,

表面粗糙度和光洁度对照表

光洁度和粗糙度都是一回事,只不过一个老标准,一个是新标准。 零件加工后的表面粗糙度。过去称为表面光洁度。 在原有的国家标准中,表面光洁度分为14级,其代号为1、2……14。后的数字越大,表面光洁度就越高,即表面粗糙度数值越小。 表面粗糙度基本概念 经过机械加工的零件表面,总会出现一些宏观和微观上几何形状误差,零件表面上的微观几何形状误差,是由零件表面上一系列微小间距的峰谷所形成的,这些微小峰谷高低起伏的程度就叫零件的表面粗糙度。 表面粗糙度是衡量零件表面加工精度的一项重要指标,零件表面粗糙度的高低将影响到两配合零件有接触表面的摩擦、运动面的磨损、贴合面的密封、配面的工作精度、旋转件的疲劳强度、零件的美观等等,甚至对零件表面的抗腐蚀性都有影响。 1级 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 2级 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级

Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 4级 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 5级 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 6级 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

表面粗糙度选择原则及其机加工方法

表面粗糙度选择很详细的 37.表面粗糙度如何选择? 答:表面粗糙度的选择既要满足零件表面的使用功能要求,又要考虑加工的经济性。 38.用类比法确定表面粗糙度时,对高度参数一般按哪些原则选择? 答:同一零件上,工作表面的表面粗糙度值应小于非工作表面。 摩擦表面的表面粗糙度值应小于非摩擦表面;滚动摩擦表面的表面粗糙度值应小于滑动摩擦表面;运动速度高、单位压力大的表面粗糙度值应小。 受循环载荷的表面及易引起应力集中的部位(如圆角、沟槽)表面粗糙度值应选得小些。 配合性质要求高的结合表面,配合间隙小的配合表面以及要求连接可靠,受重载的过盈配合表面等都应取较小的表面粗糙度值。 配合性质相同,零件尺寸越小,其表面粗糙度值应越小。同一精度等级,小尺寸比大尺寸、轴比孔的表面粗糙度值要小。 对于配合表面,其尺寸公差、形状公差、表面粗糙度应当协凋,一般情况下有一定的对应关系。 39.表面粗糙度Ra为50-100μm时,表面形状什么特征,如何应用? 答:表面形状特征为明显可见刀痕,应用于粗造的加工面,一般很少采用。铸、锻、气割毛坯可达此要求。 40.表面粗糙度Ra为25μm时,表面形状什么特征,如何应用? 答:表面形状特征为可见刀痕,应用于粗造的加工面,一般很少采用。铸、锻、气割毛坯可达此要求。 41.表面粗糙度Ra为12.5μm时,表面形状什么特征,如何应用? 答:表面形状特征为微见刀痕, 应用于粗加工表面比较精确的一级,应用范围较广,如轴端面、倒角、螺钉孔和铆钉孔的表面、垫圈的接触面等。 42.表面粗糙度Ra为6.3μm时,表面形状什么特征,如何应用? 答:表面形状特征为可见加工痕迹,应用于半粗加工面,支架、箱体、离合器、皮带轮侧面、凸轮侧面等非接触的自由表面,与螺栓头和铆钉头相接触的表面,所有轴和孔的退刀槽,一般遮板的结合面等。 43.表面粗糙度Ra为3.2μm时,表面形状什么特征,如何应用? 答:表面形状特征为微见加工痕迹,应用于半精加工面,箱体、支架、盖面、套筒等和其他零件连接而没有配合要求的表面,需要发蓝的表面,需要滚花的预先加工面,主轴非接触的全部外表面等。是车削等基本切削加工方法较为经济地达到的表面粗糙度值。 44.表面粗糙度Ra为1.6μm时,表面形状什么特征,如何应用? 答:表面形状特征为看不清加工痕迹,应用于表面质量要求较高的表面,中型机床工作台面(普通精度),组合机床主轴箱和盖面的结合面,中等尺寸平皮带轮和三角皮带轮的工作表面,衬套滑动轴承的压入孔,一般低速转动的轴颈。航空、航天产品的某些重要零件的非配合表面。 45.表面粗糙度Ra为0.8μm时,表面形状什么特征,如何应用? 答:表面形状特征为可辨加工痕迹的方向,应用于中型机床(普通精度)滑动导轨面,导轨压板,圆柱销和圆锥销的表面,一般精度的刻度盘,需镀铬抛光的外表面,中速转动的轴颈,定位销压入孔等。是配合表面常用数值,中、重型设备的重要配合处,磨削加工经济。

各种加工方法对应表面粗糙度值.doc

用普通材料和一般生产过程所能得到的典型粗糙度数值 方法粗糙度数值 Ra(μm) 光洁 25 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.05 0.025 度值 50 火焰切割 粗磨 锯 刨和插 钻削 化学铣电火花加工 铣削 拉削 铰孔镗、车削滚筒光整电解磨削滚压抛光 磨削 珩磨 抛光 研磨 超精加工砂型铸造 热滚轧 煅 永久模铸造熔模铸造 挤压 冷轧冷拔 压铸 2 ~ 3 2 ~ 4 2 ~ 5 2 ~7 4 ~ 6 4 ~ 6 5 ~ 6 4 ~7 5 ~7 5 ~7 4 ~8 7 ~9 7 ~9 8 ~9 6 ~10 7 ~10 8 ~10 8 ~11 9 ~11 2 ~ 3 2 ~ 3 3 ~ 5 5 ~ 6 5 ~ 6 5 ~7 5 ~7 注 :粗实线为平均适用 ,虚线为不常适用 . 6 ~7 机械加工表面的特征 粗糙度等级Ra 50(▽1) 25(▽2) 12.5(▽ 3) 6.3( ▽4) 3.2( ▽5) 1.6( ▽6) 0.8( ▽7) 0.4( ▽8) 0.2( ▽9) 0.1(▽ 10) 0.05(▽ 11) 0.025(▽12) 0.0125(▽13) 0.006(▽14) 表面状况 粗 明显可见的刀痕 可见的刀痕 面 微见的刀痕 可见加工痕迹 半 光 微见加工痕迹 面 看不见加工痕迹 光 可辩加工痕迹方向 微辩加工痕迹方向 面 不可辩加工痕迹方向 暗光泽面 最 亮光泽面 光镜状光泽面 面 雾状光泽面 镜面 加工方法举例应用举例 粗 锯断、粗车、粗铣、粗刨、钻不接触表面或不重要的接触 加 工孔及用粗锉刀、粗砂轮加工面。如螺栓孔、机座底面等 半精车、精铣、粗铰、粗拉、精 不产生相对运动的接触面或 相对运动速度不高的接触面。 精 刨、扩孔、粗镗、粗磨、精锉、 加 如键和键槽的工作面机盖与机 工粗刮。 体的结合面 精金刚石车刀的精车、精镗、精相对运动速度较高的接触面, 加磨、精刮、粗研、精铰、精拉削、要求很好密合的接触面。如齿 工 挤压、粗珩轮的工作面轴承的重要表面。 光 抛光、细磨、精研、精珩、超 极重要的摩擦表面。如发动机 加气缸内表面、精密量具的工作 精加工。 工 表面。

粗糙度与加工方法

粗糙度与加工方法 表面粗糙度选用与加工方法 表面粗糙度选用 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿 应用举例=安装直径超过80mm的G级轴承的外壳孔,普通精度齿轮的齿面,定位销孔,V型带轮的表面,外径定心的内花键外径,轴承盖的定中心凸肩表面

车削粗糙度计算公式

车削粗糙度计算公式 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8(每转进给的平方/刀尖半径X125) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给

数控车床常用计算公式

数控车床常用计算公式 直径Φ 倒角量a 角度θ 正切函数tanθ 正弦函数sinθ 余弦函数cosθ 圆弧半径R 乘以号x 除以号÷先运算()内结果,再运算【】,再运算全式 一、外圆倒斜角计算 公式例子:Φ30直径外端倒角1、5x60°程式:GoX32Z2 1,倒角起点直径X=Φ-2xaxtanθ°X=30-2x1、5x1、732=24、804G1X24、804Z0F0、2 2,倒角起点长度Z=0其中tan60°由数学用表查出G1X30Z-1、5F0、15 3,倒角收点直径X=Φ;G1Z-50 4,倒角收点长度Z=-a。。。。。。 二、内圆倒斜角计算 公式例子:Φ20孔径外端倒角2x60°程式:GoX18Z2

1,倒角起点直径X=Φ+2xaxtanθ°x=20+2x2x1、732=26、928G1x26、928Z0F0、2 2,倒角起点长度Z=0G1X20Z-2F0、15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-a。。。。。。 三、外圆倒圆角计算 公式例子:Φ35直径外端圆角R3程式:GoX36Z2 1,倒角起点直径X=Φ-2*RX=35-2x3=29G1X29Z0F0、2 2,倒角起点长度Z=0G3X35Z-3R3F0、15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-R。。。。。。 四、内圆倒圆角计算 公式例子;Φ20孔径外端圆角R2程式:G0X18Z2 1,倒角起点直径X=Φ+2*RX=20+2x2=24G1X24Z0F0、2 2,倒角起点长度Z=0G2X20Z-2R2F0、1 3,倒角收点直径X=Φ;G1Z-25 4,倒角收点长度Z=-R。。。。。。 五、G90、G92数控指令R锥度值的计算: 例子:大端Φ35小端Φ32锥体长20牙长16mm让刀3mm加工 1、计算图上锥度比例值:(32-35)/20=-0、15程式;G0X37Z3 (起始端直径-收点端直径)÷锥体长度G92X33、8Z-16R-1、425F2

铸件粗糙度及粗糙度计算

铸件表面粗糙度 铸件表面粗糙度是衡量干净、真实的铸件表面质量的重要指标。铸件铸造表面粗糙度是按不同铸造合金及其铸造方法、用其表面轮廓算术平均偏差Ra值(单位为μm)进行分级,分级应符合表1~1的规定。对照GB/——1997《表面粗糙度比较样块—铸造表面》的规定进行比较和评比;其评比方法按GB∕T15056——1994《铸造表面粗糙评定方法》进行。 对于重要铸件,当所有铸造表面的粗糙度要求相同时,可在铸件图样或铸造工艺图样的右上角同意标注粗糙度符号。如果大部分铸造表面度相同时,可将该级粗糙度符号统一标注在图样的右上角,并在符号前加注“其余”两字;余下的部分表面粗糙度,将其符号直接标注在其表面轮廓或尺寸或尺寸延长线上。 铸造表面粗糙度,也可按需方的要求或供需方的协商,将其公称值鉴订在订货合同中。 ※表示可以达到的铸件铸造表面粗糙度。

表1~2粗糙度与光洁度对照(单位:mm)

粗糙度的计算 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/(刀尖R乘8) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用以上的刀尖,而硬铝合金不要用以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给,R尖,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于*8*1000=粗糙度(单位微米)。 如果有要求光洁度要到的话,切削参数变化如下:刀具不变依旧上面的刀片,切削参数进给,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论!:lol我大约会按照进给的10倍起定切深,也就是,此时*8*1000=微米,也就是粗糙度达到了。 至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光

资料.车削表面粗糙度算法(数字)

表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子. 今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削 参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方 *1000/刀尖R乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于 0.15*0.15/0.4/8*1000=粗糙度 7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛) ——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论! :lol我大约会按照进给的10倍起定切深,也就是0.5mm,此时0.05*0.05/0.4/8*1000=0.78微米,也就是粗糙度达到0.8了。 至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光刃的刀具最大可能将粗糙度降低一半,如果上面车出0.8光洁度的工件用带修光刃的刀片粗糙度就最小可能是0.4 以上是书本摘录的理论知识综合个人经验所书,以下再说说一些我个人感觉的理论,这些书本上我没见过的:

机加工表面粗糙度

基本概念 4.1.1 表面粗糙度的定义 表面粗糙度(Surface roughness)是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性性它是一种微观几何形状误差,也称为微观不平度。表面粗糙度应与形状误差(宏观几何形状误差)和表面波度区别开。通常,波距小于1mm 的属于表面粗糙度,波距在1~10mm 的属于表面波度,波距大于10mm 的属于形状误差,如图4-1 所示。 4.1.2 表面粗糙度对机械零件使用性能的影响 表面粗糙度的大小对零件的使用性能和使用寿命有很大影响。 1. 影响零件的耐磨性 表面越粗糙,摩擦系数就越大,相对运动的表面磨损得越快。然而,表面过于光滑,由于润滑油被挤出或分子间的吸附作用等原因,也会使摩擦阻力增大和加速磨损。 2. 影响配合性质的稳定性 零件表面的粗糙度对各类配合均有较大的影响。对于间隙配合,两个表面粗糙的零件在相对运动时会迅速磨损,造成间隙增大,影响配合性质;对于过盈配合,在装配时表面上微观凸峰极易被挤平,产生塑性变形,使装配后的实际有效过盈减小,降低联接强度;对于过渡配合,因多用压力及锤敲装配,表面粗糙度也会使配合变松。 ! 3. 影响疲劳强度 承受交变载荷作用的零件的失效多数是由于表面产生疲劳裂纹造成的。疲劳裂纹主要是由于表面微观峰谷的波谷所造成的应力集中引起的。零件表面越粗糙,波谷越深,应力集中就越严重。因此,表面粗糙度影响零件的抗疲劳强度。 4. 影响抗腐蚀性 粗糙表面的微观凹谷处易存积腐蚀性物质,久而久之,这些腐蚀性物质就会渗入到金属内层,造成表面锈蚀。 此外,表面粗糙度对接触刚度、密封性、产品外观、表面光学性能、导电导热性能以及表面结合的胶合强度等都有很大影响。所以,在设计零件的几何参数精度时,必须对其提出合理的表面粗糙度要求,以保证机械零件的使用性能。 表面粗糙度的选用 4.3.1 评定参数的选用 、 1. 幅度参数的选用

实验三表面粗糙度测量

实验三 表面粗糙度测量 实验3—1 用双管显微镜测量表面粗糙度 一、实验目的 1. 了解用双管显微镜测量表面粗糙度的原理和方法。 2. 加深对粗糙度评定参数轮廓最大高度Rz 的理解。 二、实验内容 用双管显微镜测量表面粗糙度的Rz 值。 三、测量原理及计量器具说明 参看图1,轮廓最大高度Rz 是指在取样长度lr 内,在一个取样长度范围内,最大轮廓峰高Rp 与最大轮廓谷深Rv 之和称之为轮廓最大高度 。 即 Rz = Rp + Rv 图1 图2 双管显微镜能测量80~1μm 的粗糙度,用参数Rz 来评定。 双管显微镜的外形如图2所示。它由底座1、工作台2、观察光管3、投射光管11、支臂7和立柱8等几部分组成。 双管显微镜是利用光切原理来测量表面粗糙度的,如图3所示。被测表面为P 1、P 2阶梯表面,当一平行光束从450方向投射到阶梯表面上时,就被折成S 1和S 2两段。从垂直于 光束的方向上就可在显微镜内看到S 1和S 2两段光带的放大象1 S '和2S '。同样,S 1和S 2之间距离h 也被放大为1S '和2S '之间的距离1h '。通过测量和计算,可求得被测表面的不平度高度 h 。 图4为双管显微镜的光学系统图。由光源1发出的光,经聚光镜2、狭缝3、物镜4以 450方向投射到被测工件表面上。调整仪器使反射光束进入与投射光管垂直的观察光管内,经物镜5成象在目镜分划板上,通过目镜可观察到凹凸不平的光带(图5 b )。光带边缘即工件表面上被照亮了的h 1的放大轮廓象为h 1′,测量亮带边缘的宽度h 1′,可求出被测表面的不平度高度h 1: Z p 2 lr Z v 6 Z v 5 Z p 6 Z p 5 Z p 4 Z p 3 Z v 4 Z v 3 Z p 1 R z 中线 Z v 1 Z v 2

表面粗糙度的符号和画法

.表面粗糙度代号 GB/T131-93规定,表面粗糙度代号是由规定的符号和有关参数组成,表面粗糙度符号的画法和意义如下表所示 表13-3 表面粗糙度的符号和画法 序号符号意义 1 基本符号,表示表面可用任何方法获得。当不加注粗糙度参数值或有关说明时,仅适用于简化代号标注。 2 表示表面是用去除材料的方法获得,如车、铣、钻、磨等。 3 表示表面是用不去除材料的方法获得,如铸、锻、冲压、冷轧等。 4 在上述三个符号的长边上可加一横线,用于标注有关参数或说明。 5 在上述三个符号的长边上可加一小圆,表示所有表面具有相同的表面粗糙度要求。 6 当参数值的数字或大写字母的高度为2.5mm时,粗糙度符号的高度取8mm,三角形高度取3.5mm,三角形是等边三角形。当参数值不是2.5时,粗糙度符号和三角形符号的高度也将发生变化。 4.常用表面粗糙度Ra的数值与加工方法 表面特征表面粗糙度(Ra)数值加工方法举例 明显可见刀痕粗车、粗刨、粗铣、钻孔 微见刀痕精车、精刨、精铣、粗铰、粗磨 看不见加工痕迹,微辩加 工方向 精车、精磨、精铰、研磨 暗光泽面研磨、珩磨、超精磨 5.表面粗糙度的选择 表面粗糙度的选择,既要考虑零件表面的功能要求,又要考虑经济性,还要考虑现有的加工设备。一般应遵从以下原则: (1) 同一零件上工作表面比非工作表面的参数值要小; (2) 摩擦表面要比非摩擦表面的参数小。有相对运动的工作表面,运动速度越高,其参数值越小;

(3) 配合精度越高,参数值越小。间隙配合比过盈配合的参数值小; (4) 配合性质相同时,零件尺寸越小,参数值越小; (5) 要求密封、耐腐蚀或具有装饰性的表面,参数值要小。

表面粗糙度及表面粗糙度的标注方法

一.表面粗糙度的符号 注意:极限值表示参数的实测值中允许少于总数的16%的实测值超过规定值,高度参数常用Ra,在图中标注时常省略。无max min则表示是上极限或下极限,如果有则表示最大值和最小值,单位为微米 基本符号,表示可使用任何方法获得 基本符号加一短划,表示表面用去除材料的方法获得 表示用不去除材料方法获得(铸锻冲压等) 表示所有表面具有相同的表面粗糙度要求 二.表面粗糙度的代号 1. d' =h/10;H=1.4h;h为字体高度 a1、a2--粗糙度高度参数的允许值(mm); b加工方法、镀涂或其他表面处理; c取样长度(mm); d加工纹理方向符号; e加工余量(mm); f粗糙度间距参数值(mm)或轮廊支承长度率。 2.零件的加工表面的粗糙度要求由指定的加工方法获得,用文字标注在符号上边的横线,加工方法也可在图样的技术要求中说明 3.加工纹理方向: = 纹理平行于标注符号的视图的投影面 ⊥纹理垂直于标注符号的视图的投影面 x 纹理呈两相交的方向 M 纹理呈多方向 c 纹理呈近似同心圆 R 纹理呈近似的放射状 p 纹理无方向或凸起的细粒状 4.加工余量:注在符号的左侧,标注时数值要加上括号,单位为毫米 5.参数S Sm Tp l的标注,应标注在符号长边的横线下面,并且必须在参数值前注写参数的符号 三。表面粗糙度符号、代号在图样上的标注 一般标注在可见轮廓线、尺寸界线、引出线或它们的延长线上,符号的尖端必须从材料外指向表面,代号中数字及符号的注写方向必须与尺寸数字方向一致

标准规定在同一图样上,每一表面一般只标注一次。当零件的大部分表面具有相同的表面粗糙度要求时,对其中使用最多的一种代号可以统一注在图样的右上角,并加注“其余”两字当零件所有表面具有相同的表面粗糙度要求时,其代号可在图样的右上角统一标注序号标注规定及说明图例 1当零件的大部分表面具有相同的表由粗糙度要求时,对其中使用最多的一种代(符)号可统一注在图样的右上角,并加注‘其余”两字,且应是图样上其它代(符)号高度的1.4倍 2 代号中数字注写方向应与尺寸数字方向一致;倾斜表面的代号及数字标控方向应符合图右规定 3 带有横线的表面粗糙度应按右图方式标注

各种加工方法能达到的表面粗糙度分析

各种加工方法能达到的表面粗糙度 ID 加工方法表面粗糙度Ra(μm) 1 自动气割、带锯或圆盘锯割断 50~12.5 2 切断(车) 50~12.5 3 切断(铣) 25~12.5 4 切断(砂轮) 3.2~1.6

5 车削外圆(粗车) 12.5~3.2 6 车削外圆(半精车金属) 6.3~3.2 7 车削外圆(半精车非金属) 3.2~1.6 8 车削外圆(精车金属) 3.2~0.8 9 车削外圆(精车非金属) 1.6~0.4 10 车削外圆(精密车或金刚石车金属)

0.8~0.2 11 车削外圆(精密车或金刚石车非金属)0.4~0.1 12 车削端面(粗车) 12.5~6.3 13 车削端面(半精车金属) 6.3~3.2 14 车削端面(半精车非金属) 6.3~1.6 15 车削端面(精车金属) 6.3~1.6

16 车削端面(精车非金属 6.3~1.6 17 车削端面(精密车金属)0.8~0.4 18 车削端面(精密车非金属)0.8~0.2 19 切槽(一次行程) 12.5 20 切槽(二次行程) 6.3~3.2 21 高速车削

0.8~0.2 22 钻(≤φ15mm)6.3~3.2 23 钻(>φ15mm)25~6.3 24 扩孔、粗(有表皮)12.5~6.3 25 扩孔、精 6.3~1.6 26 锪倒角(孔的) 3.2~1.6

27 带导向的锪平面 6.3~3.2 28 镗孔(粗镗) 12.5~6.3 29 镗孔(半精镗金属) 6.3~3.2 30 镗孔(半精镗非金属) 6.3~1.6 31 镗孔(精密镗或金刚石镗金属)0.8~0.2 32 镗孔(精密镗或金刚石镗非金属)

粗糙度与加工方法对应表

表面粗糙度选用 ----------------------------------------------------------- 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 ----------------------------------------------------------- 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 ----------------------------------------------------------- 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 ----------------------------------------------------------- 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 ----------------------------------------------------------- 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 ----------------------------------------------------------- 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

表面粗糙度试验及其测量方法

表面粗糙度 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。 高度特征参数 ?轮廓算术平均偏差R a:在取样长度(lr)内轮廓偏距绝对值的算 术平均值。在实际测量中,测量点的数目越多,Ra越准确。 ?轮廓最大高度R z:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra 。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。间距特征参数 用轮廓单元的平均宽度 Rsm 表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c) 表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度符号:

表面粗糙度

0.025~6.3微米的表面粗糙度。 光切法 双管显微镜测量表面粗糙度,可用作Ry与Rz参数评定,测量范围0.5~50。 干涉法 利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500倍)的显微镜将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度。应用此法的表面粗糙度测量工具称为干涉显微镜。这种方法适用于测量Rz和Ry为0.025~0.8微米的表面粗糙度。

数控车床粗糙度计算公式

数控车床粗糙度计算公式 今天讲一下关于车削的表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的表面粗糙度。下面跟yjbys 小编一起来学习车削表面粗糙度的计算方式吧! 车削表面粗糙度=每转进给的平方*1000/刀尖R 乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给--进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R--刀尖R 越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150 以下的车床不要使用R0.8 以上的刀尖,而硬铝合金不要用R0.4 以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW 除2 比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是

数控车削切削用量的选择原则、方法及主要问题

数控车削切削用量的选择原则、方法及主要问题 数控车削加工中的切削用量包括背吃刀量ap、主轴转速n或切削速度vc(用于恒线速度切削)、进给速度vf或进给量f。这些参数均应在机床给定的允许范围内选取。 切削用量的选用原则 (1)切削用量的选用原则 粗车时,应尽量保证较高的金属切除率和必要的刀具耐用度。 选择切削用量时应首先选取尽可能大的背吃刀量ap,其次根据机床动力和刚性的限制条件,选取尽可能大的进给量f,最后根据刀具耐用度要求,确定合适的切削速度vc。增大背吃刀量ap可使走刀次数减少,增大进给量f有利于断屑。 精车时,对加工精度和表面粗糙度要求较高,加工余量不大且较均匀。选择精车的切削用量时,应着重考虑如何保证加工质量,并在此基础土尽量提高生产率。因此,精车时应选用较小(但不能太小)的背吃刀量和进给量,并选用性能高的刀具材料和合理的几何参数,以尽可能提高切削速度。 (2)切削用量的选取方法 ①背吃刀量的选择粗加工时,除留下精加工余量外,一次走刀尽可能切除全部余量。也可分多次走刀。精加工的加工余量一般较小,可一次切除。在中等功率机床上,粗加工的背吃刀量可达8~10mm;半精加工的背吃刀量取0.5~5mm;精加工的背吃刀量取0.2~1.5mm。 ②进给速度(进给量)的确定粗加工时,由于对工件的表面质量没有太高的要求,这时主要根据机床进给机构的强度和刚性、刀杆的强度和刚性、刀具材料、刀杆和工件尺寸以及已选定的背吃刀量等因素来选取进给速度。精加工时,则按表面粗糙度要求、刀具及工件材料等因素来选取进给速度。进给速度νf 可以按公式ν f =f×n计算,式中f表示每转进给量,粗车时一般取0.3~0.8mm /r;精车时常取0.1~0.3mm/r;切断时常取0.05~0.2mm/r。 ③切削速度的确定切削速度vc可根据己经选定的背吃刀量、进给量及刀具耐用度进行选取。实际加工过程中,也可根据生产实践经验和查表的方法来选取。粗加工或工件材料的加工性能较差时,宜选用较低的切削速度。精加工或刀具材料、工件材料的切削性能较好时,宜选用较高的切削速度。切削速度vc确定后,可根据刀具或工件直径(D)按公式n=l000vc/πD 来确定主轴转速n(r/min)。在工厂的实际生产过程中,切削用量一般根据经验并通过查表的方式进行选取。常用硬质合金或涂层硬质合金切削不同材料时的切削用量推荐值见表1表2为常用切削用量推荐表,供参考。

相关文档
相关文档 最新文档