文档库 最新最全的文档下载
当前位置:文档库 › 100个世界著名初等数学难题

100个世界著名初等数学难题

100个世界著名初等数学难题
100个世界著名初等数学难题

100个世界著名初等数学难题

2005-12-05 19:28, 数学绿园, 11802 字, 0/6, 原创| 引用

100个著名初等数学问题(转载)

第01题阿基米德分牛问题Archimedes' Problema Bovinum

太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.

在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的?+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.

在母牛中,白牛数是全体黑牛数的1/3+?;黑牛数是全体花牛数?+1/5;花牛数是全体棕牛数的1/5+1/ 6;棕牛数是全体白牛数的1/6+1/7.

问这牛群是怎样组成的?

第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac

一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.

问这4块砝码碎片各重多少?

第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cows

a头母牛将b块地上的牧草在c天内吃完了;

a'头母牛将b'块地上的牧草在c'天内吃完了;

a"头母牛将b"块地上的牧草在c"天内吃完了;

求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens

在下面除法例题中,被除数被除数除尽:

* * 7 * * * * * * * ÷* * * * 7 * = * * 7 * *

* * * * * *

* * * * * 7 *

* * * * * * *

* 7 * * * *

* 7 * * * *

* * * * * * *

* * * * 7 * *

* * * * * *

* * * * * *

用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem

某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?

第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed lett ers

求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.

第07题欧拉关于多边形的剖分问题Euler's Problem of Polygon Division

可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?

第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couples

n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?

第09题卡亚姆的二项展开式Omar Khayyam's Binomial Expansion

当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.

第10题柯西的平均值定理Cauchy's Mean Theorem

求证n个正数的几何平均值不大于这些数的算术平均值.

第11题伯努利幂之和的问题Bernoulli's Power Sum Problem

确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np. 第12题欧拉数The Euler Number

求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.

第13题牛顿指数级数Newton's Exponential Series

将指数函数ex变换成各项为x的幂的级数.

第14题麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series

不用对数表,计算一个给定数的对数.

第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series

不用查表计算已知角的正弦及余弦三角函数.

第16题正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series 在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值c i-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.

试利用屈折排列推导正割与正切的级数.

第17题格雷戈里的反正切级数Gregory's Arc T angent Series

已知三条边,不用查表求三角形的各角.

第18题德布封的针问题Buffon's Needle Problem

在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?

第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem

每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.

第20题费马方程The Fermat Equation

求方程x2-dy2=1的整数解,其中d为非二次正整数.

第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem 证明两个立方数的和不可能为一立方数.

第22题二次互反律The Quadratic Reciprocity Law

(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式

(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].

第23题高斯的代数基本定理Gauss' Fundamental Theorem of Algebra

每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.

第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots 求实系数代数方程在已知区间上的实根的个数.

第25题阿贝尔不可能性定理Abel's Impossibility Theorem

高于四次的方程一般不可能有代数解法.

第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem

系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.

第27题欧拉直线Euler's Straight Line

在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.

第28题费尔巴哈圆The Feuerbach Circle

三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.

第29题卡斯蒂朗问题Castillon's Problem

将各边通过三个已知点的一个三角形内接于一个已知圆.

第30题马尔法蒂问题Malfatti's Problem

在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.

第31题蒙日问题Monge's Problem

画一个圆,使其与三已知圆正交.

第32题阿波洛尼斯相切问题The T angency Problem of Apollonius.

画一个与三个已知圆相切的圆.

第33题马索若尼圆规问题Macheroni's Compass Problem.

证明任何可用圆规和直尺所作的图均可只用圆规作出.

第34题斯坦纳直尺问题Steiner's Straight-edge Problem

证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出. 第35题德里安倍立方问题The Deliaii Cube-doubling Problem

画出体积为一已知立方体两倍的立方体的一边.

第36题三等分一个角Trisection of an Angle

把一个角分成三个相等的角.

第37题正十七边形The Regular Heptadecagon

画一正十七边形.

第38题阿基米德π值确定法Archimedes' Determination of the Number Pi

设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.

第39题富斯弦切四边形问题Fuss' Problem of the Chord-Tangent Quadrilateral

找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)

第40题测量附题Annex to a Survey

利用已知点的方位来确定地球表面未知但可到达的点的位置.

第41题阿尔哈森弹子问题Alhazen's Billiard Problem

在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形. 第42题由共轭半径作椭圆An Ellipse from Conjugate Radii

已知两个共轭半径的大小和位置,作椭圆.

第43题在平行四边形内作椭圆An Ellipse in a Parallelogram,

在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点. 第44题由四条切线作抛物线A Parabola from Four T angents

已知抛物线的四条切线,作抛物线.

第45题由四点作抛物线A Parabola from Four Points.

过四个已知点作抛物线.

第46题由四点作双曲线A Hyperbola from Four Points.

已知直角(等轴)双曲线上四点,作出这条双曲线.

第47题范·施古登轨迹题Van Schooten's Locus Problem

平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?

第48题卡丹旋轮问题Cardan's Spur Wheel Problem.

一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?

第49题牛顿椭圆问题Newton's Ellipse Problem.

确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.

第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem

确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.

第51题作为包络的抛物线A Parabola as Envelope

从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.

求证具有相同数字的点的连线的包络为一条抛物线.

第52题星形线The Astroid

直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.

第53题斯坦纳的三点内摆线Steiner's Three-pointed Hypocycloid

确定一个三角形的华莱士(Wallace)线的包络.

第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribing a Q uadrilateral

一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?

第55题圆锥曲线的曲率The Curvature of Conic Sections

确定一个圆锥曲线的曲率.

第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola

确定包含在抛物线内的面积.

第57题推算双曲线的面积Squaring a Hyperbola

确定双曲线被截得的部分所含的面积.

第58题求抛物线的长Rectification of a Parabola

确定抛物线弧的长度.

第59题笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (Theorem of Homo logous Triangles)

如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.

反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.

第60题斯坦纳的二重元素作图法Steiner's Double Element Construction

由三对对应元素所给定的重迭射影形,作出它的二重元素.

第61题帕斯卡六边形定理Pascal's Hexagon Theorem

求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.

第62题布里昂匈六线形定理Brianchon's Hexagram Theorem

求证外切于圆锥曲线的六线形中,三条对顶线通过一点.

第63题笛沙格对合定理Desargues' Involution Theorem

一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).

第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements

求作一个圆锥曲线,它的五个元素——点和切线——是已知的.

第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line

一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.

第66题一条圆锥曲线和一定点A Conic Section and a Point

已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.

第67题斯坦纳的用平面分割空间Steiner's Division of Space by Planes

n个平面最多可将整个空间分割成多少份?

第68题欧拉四面体问题Euler's Tetrahedron Problem

以六条棱表示四面体的体积.

第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines

计算两条已知偏斜直线之间的角和距离.

第70题四面体的外接球The Sphere Circumscribing a Tetrahedron

确定一个已知所有六条棱的四面体的外接球的半径.

第71题五种正则体The Five Regular Solids

将一个球面分成全等的球面正多边形.

第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral

证明每个四边形都可以看作是一个正方形的透视映象.

第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem

一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.

第74题高斯轴测法基本定理Gauss' Fundamental Theorem of Axonometry

正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.

第75题希帕查斯球极平面射影Hipparchus' Stereographic Projection

试举出一种把地球上的圆转换为地图上圆的保形地图射影法.

第76题麦卡托投影The Mercator Projection

画一个保形地理地图,其坐标方格是由直角方格组成的.

第77题航海斜驶线问题The Problem of the Loxodrome

确定地球表面两点间斜驶线的经度.

第78题海上船位置的确定Determining the Position of a Ship at Sea

利用天文经线推算法确定船在海上的位置.

第79题高斯双高度问题Gauss' Two-Altitude Problem

根据已知两星球的高度以确定时间及位置.

第80题高斯三高度问题Gauss' Three-Altitude Problem

从在已知***球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度. 第81题刻卜勒方程The Kepler Equation

根据行星的平均近点角,计算偏心及真近点角.

第82题星落Star Setting

对给定地点和日期,计算一已知星落的时间和方位角.

第83题日晷问题The Problem of the Sundial

制作一个日晷.

第84题日影曲线The Shadow Curve

当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.

第85题日食和月食Solar and Lunar Eclipses

如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.

第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods

确定已知恒星运转周期的两共面旋转射线的会合运转周期.

第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets

行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?

第88题兰伯特慧星问题Lambert's Comet Prolem

借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.

第89题与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number 如果x为正变数,x取何值时,x的x次方根为最大?

第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem

在已知锐角三角形中,作周长最小的内接三角形.

第91题费马对托里拆利提出的问题Fermat's Problem for Torricelli

试求一点,使它到已知三角形的三个顶点距离之和为最小.

第92题逆风变换航向T acking Under a Headwind

帆船如何能顶着北风以最快的速度向正北航行?

第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)

试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.

第94题雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem

在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)

第95题金星的最大亮度The Maximum Brightness of Venus

在什么位置金星有最大亮度?

第96题地球轨道内的慧星A Comet Inside the Earth's Orbit

慧星在地球的轨道内最多能停留多少天?

第97题最短晨昏蒙影问题The Problem of the Shortest Twilight

在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?

第98题斯坦纳的椭圆问题Steiner's Ellipse Problem

在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?

世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二:霍奇(Hodge)猜想 难题”之三:庞加莱(Poincare)猜想 难题”之四:黎曼(Riemann)假设 难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四:黎曼(Riemann)假设

小学一年级下学期数学竞赛练习题

小学一年级下学期数学竞赛练习题

竞赛练习题(一) 班级姓 名 1.一个小组的小朋友排成一列做游戏,小明从前往后数,他排第15个,从后往前数,他排第13个,共有()个小朋友在做游戏。 2.18名女同学站成一排,每隔2名女同学插进3名男同学,共插进()名男同学。 3.东东从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。布袋原来有()个白皮球, ()个花皮球。 4.芳芳有1元4角钱,晶晶有8角钱。芳芳给晶晶()钱,两人的钱数同样多。 5.用6根短绳连成一根长绳,一共要打()个结。6.14个小朋友玩捉迷藏,已经捉住了4个小朋友,还藏着()个小朋友。 7.十位数字和个位数字相加,和是12的两位数有()个。8.小东数数,从9开始数起,数到99时,小东数了()个数。 9.把1根绳子对折以后,再对折,这时每折长1米,这根绳子长()米

10.小强家离学校3千米,小强每天上两次学,来回要走()千米。 11.森林里的小动物开运动会赛跑。最后小兔用了4分钟,小狗用了5分钟,熊猫用了4分30秒,请问得第一名的是()。12.班上的同学,年龄都是8岁或9岁,那么任意两个邻座同学年龄之和最大是()岁,最小又是()岁。13.1个西瓜的重量=3个菠萝的重量,1个菠萝的重量=3个梨的重量,1个西瓜的重量=()个梨的重量。 14、六一节到了,三个小朋友互送贺卡,每人都要收到另外两个人的贺卡,一共要送()张贺卡。 15、一个小朋友吃一个面包需要5分钟,现在有5个小朋友,按同样的速度,同时吃5个同样的面包,需要()分钟。 16、两捆同样多的练习本,第一捆拿走15本,第二捆拿走9本,()剩的多,多()本。 17、两根同样长的绳子,分别剪去一段,第一根剩下17米,第二根剩下12米,( )剪去的长,长()米。 18、15个小朋友分成两组做游戏,后来有3个小朋友从第一小组调到第二小组,现在共有()个小朋友在做游戏。 19、小红参加旅游,和旅游团的每一个人合照一次相,她一共照了19次。这个旅游团共有()个人。 20、公共汽车上原来有一些人,到站后有5人下车,又有8人上车,公共汽车上现在比原来多()人。

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

五、六年级奥数竞赛训练100题

五、六年级奥数竞赛训练100题 1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树. 两块地同时开始吧吃45天,问第三块地可供多少头牛吃80天? 3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比. 5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池? 7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间? 8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车. 9.甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米? 10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱? 11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件? 12.一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的. 13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时? 14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多? 15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间? 16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨? 17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙、丙三数之和是几?

现代数学七大难题

20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决,如费尔玛大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲,其后,塔特(T ate)和阿啼亚(Atiyah) 公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单: 这七个“千年大奖问题”是:NP 完全问题,郝治(Hodge)猜想,庞加莱(P oincare)猜想,黎曼(Rieman )假设,杨-米尔斯(Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程,BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 (北京大学数学学院院长张继平) 7大难题的介绍 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

3趣味数学小故事

动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 阿拉伯数字的由来 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。 阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,

世界最迷人的数学难题

世界最迷人的数学难题 “几何尺规作图问题” 获奖理由:这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但後来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 “蜂窝猜想” 获奖理由:四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为"蜂窝猜想",但这一猜想一直没有人能证明。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。 “孪生素数猜想” 获奖理由:1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5 ,5和7,11和13,…,和等等都是孪生素数。1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

数学竞赛练习题答案

竞赛练习题(一)参考答案 班级姓名? 1.一个小组的小朋友排成一列做游戏,小明从前往后数,他排第15个,从后往前数,他排第13个,共有(27)个小朋友在做游戏。 2.18名女同学站成一排,每隔2名女同学插进3名男同学,共插进(24)名男同学。3.东东从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。布袋原来有(15)个白皮球,(10)个花皮球。 4.芳芳有1元4角钱,晶晶有8角钱。芳芳给晶晶(3角)钱,两人的钱数同样多。5.用6根短绳连成一根长绳,一共要打(5)个结。 6.14个小朋友玩捉迷藏,已经捉住了4个小朋友,还藏着(9)个小朋友。 7.十位数字和个位数字相加,和是12的两位数有(4)个。 8.小东数数,从9开始数起,数到99时,小东数了(91)个数。 9.把1根绳子对折以后,再对折,这时每折长1米,这根绳子长(4)米 10.小强家离学校3千米,小强每天上两次学,来回要走(12)千米。 11.森林里的小动物开运动会赛跑。最后小兔用了4分钟,小狗用了5分钟,熊猫用了4分30秒,请问得第一名的是(小兔)。 12.班上的同学,年龄都是8岁或9岁,那么任意两个邻座同学年龄之和最大是(18)岁,最小又是(16)岁。 13.1个西瓜的重量=3个菠萝的重量,1个菠萝的重量=3个梨的重量,1个西瓜的重量=(9)个梨的重量。 14、六一节到了,三个小朋友互送贺卡,每人都要收到另外两个人的贺卡,一共要送(6)张贺卡。 15、一个小朋友吃一个面包需要5分钟,现在有5个小朋友,按同样的速度,同时吃5个同样的面包,需要( 5 )分钟。 16、两捆同样多的练习本,第一捆拿走15本,第二捆拿走9本,(第二捆)剩的多,多(6)本。 17、两根同样长的绳子,分别剪去一段,第一根剩下17米,第二根剩下12米,(第二根)剪去的长,长( 5 )米。 18、15个小朋友分成两组做游戏,后来有3个小朋友从第一小组调到第二小组,现在共有(15 )个小朋友在做游戏。 19、小红参加旅游,和旅游团的每一个人合照一次相,她一共照了19次。这个旅游团共有(20 )个人。 20、公共汽车上原来有一些人,到站后有5人下车,又有8人上车,公共汽车上现在比原来多( 3 )人。 21、老师拿来20本书,发给教室里的小朋友每人一本,还剩4本。教室里共有(16 )个小朋友。 22、老师拿来20本书,发给教室里的小朋友每人一本,还缺4本。教室里共有(24 )个小朋友。 23、一根木头锯成5段,要锯(4 )次。如果每锯一次用2分钟,一共需要锯(8 )分钟。 24、小白兔有15个萝卜,小黑兔有18个萝卜。兔妈妈又买来7个萝卜,给小白兔(5 )个、小黑兔( 2 )个两只小兔的萝卜就同样多。 25、5、7、8、7、11、7、(16 )、(7 ) 26、28、24、28、20、28、16、(28 )、(12 )

(完整版)小学数学竞赛训练100题答案

小学数学竞赛训练100题答案 1、设原小数为x 10x-0.1x=2.2 x=2/9 这个小数用分数表示为2/9 2、设原价为x 1650×0.8=1.1x 解得x=1200元 1650-1200=450元 3、111...222..22333...33先除以111...111等于1000....002000...003,两个0都是1999个 再用1000....002000...003除以3等于3333....3334000...001,得数前面的3有1999个, 所以答案是3×1999+4+1=6002 4、原式 =(2-1)/1×2+(3-1)/1×2×3...+(10-1)/1×2×3.... ×10 =[2/1×2-1/1×2]+[3/1×2×3-1/1×2×3]+..+10/1×2×3....×10 -1/1×2×3... ×10 =1-1/1×2×3.... ×10 =3628799/3628800 即中间的可前后全部抵销,只胜下第一项和最后一项. 5、30×3/5=18 km/h -------逆流而行的航速 (30+18)/2=24km/h --------静水船速 24-18=6km/h --------水速也就是顺水漂流1小时的航程 6、每天生产100台。先生产了5天,那么先生产了500台。后面效率提高了百分之二十五,也就是每天生产125台。1500-500=1000台就是剩下要生产的,然后除以125,得出结果后在加上5,就=需要的天数。最后用15-天数就行了。算式:15-[(1500-500)÷125%+5]=2,提前2天 7、共有奇数五个,偶数四个 要得和是偶数,则有:偶数+偶数+偶数或者:偶数+奇数+奇数 从四个偶数中任取三个有:4×3×2÷[3×2×1]=4种 从四个偶数中取一个偶数,从五个奇数中取二个奇数有: 4×5×4÷[2×1]=40种所以共有:4+40=44种 8、注意到1+2+……n=(n+1)n÷2<2001所以n≤62, 而1+2+……+62=1953, 表明2001-1953=48这页的号码加了两次, 48<62满足题意, 所以这本书有62页。

世界七大数学难题

世界七大数学难题 难题的提出 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. 世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣 布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。) 整个计算机科学的大厦就建立在图灵机可计算理论和计算复杂性理论的基础上, 一旦证明P=NP,将是计算机科学的一场决定性的突破,在软件工程实践中,将革命性的提高效率.从工业,农业,军事,医疗到生活,软件在它的各个应用域,都将是一个飞跃. P=NP吗?这个问题是著名计算机科学家(1982年图灵奖得主)斯蒂文·考克(StephenCook)于1971年

【数学逻辑】世界上最有趣的数学题

【数学逻辑】世界上最有趣的数学题 推荐:如果你家有个小学或者初中的孩子,务必让孩子看看这几道数学题。你身上的计算器利用手进行计算时,一种最简单的乘法是9的倍数计算,在这种计算中,有一个小孩子非常了解,但是年长的人不是太了解的小窍门。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的答案是63。多少只袜子才能配成一对?关于多少只袜子能配成对的问题,答案并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,

例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。燃绳计时一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。火车相向而行问题两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远? 我们知道两车相距100英里,每辆车的时速都是50英里。

小学六年级奥数题:竞赛训练100题(一)

六年级奥数题 1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好 没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比. 5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池? 7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间? 8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车. 9.甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

世界7大数学难题

世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想 千年大奖问题 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。) “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 P问题对NP问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。 霍奇(Hodge)猜想

世界近代三大数学难题:哥德巴赫猜想

世界近代三大数学难题:哥德巴赫猜想 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。 猜想提出 1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。” 1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。 研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。 殆素数

数学之最:世界上最难的23道数学题

数学之最:世界上最难的23道数学题 1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛–弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛–伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛–弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。198 8年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题。问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题。此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、庞德里亚金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1 952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0,1,和任意代数无理数β证明了αβ的超越性。 8.素数问题。包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律。该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10.丢番图方程的可解性。能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。

数学竞赛初练习题

最新高中数学奥数竞赛初练习题 第I 卷(选择题) 1.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是( ) A .122-+.122+ .1 D .2 2.已知非零向量,a b r r 满足2a b =r r ,若函数3211().132f x x a x a bx =+++r r r 在R 上存在极值,则a r 和b r 夹角的取值范围为( ) A. 0,6π?????? B. ,3ππ?? ??? C. 2,33ππ?? ??? D. ,3ππ?????? 3.设抛物线y x 122=的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于,A B 两 点,点P 恰为AB 的中点,则|AF |+|BF |=( ) A.8 B.10 C.14 D.16 4.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)-- 5.如图,焦点在x 轴上的椭圆22 213 x y a +=(0a >)的左、右焦点分别为1F ,2F ,P 是椭圆上位于第一象限内的一点,且直线2F P 与y 轴的正半轴交于A 点,1APF ?的内切圆在边1PF 上的切点为Q ,若1||4F Q =,则该椭圆的离心率为( ) A .14 B .12 C .74 D .134 6.已知函数()f x 是定义在R 上的奇函数,当0x <时,()(1)x f x e x =+,给出下列

①当0x >时,()(1)x f x e x =-; ②函数()f x 有2 个零点; ③()0f x >的解集为(1,0)(1,)-+∞U ; ④12,x x R ?∈,都有12()()2f x f x -<. 其中正确命题的序号是( ) A .①③ B .②③ C .②④ D .③④ 7.过双曲线)0,0(122 22>>=-b a b y a x 的右焦点F 作一条直线,当直线斜率为1时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为( ) A . B . C . D . 8.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()() 12120f x f x x x -<-,且函数 ()1y f x =-的图象关于(1,0)成中心对称,若,s t 满足不等式()()2222f s s f t t -≤--,则当14s ≤≤时, 2t s s t -+的取值范围是( ) A .13,2? ?--???? B .13,2??--???? C .15,2??--???? D .15,2??--???? 9.已知12,F F 分别为双曲线22 22:1(0,0)x y C a b a b -=>>的左右焦点,过1F 的直线l 与双曲线C 的左右两支分别交于,A B 两点,若22::3:4:5AB BF AF =,则双曲线的离心率为( ) A .2 D 10 .已知函数0()ln(1),0 x f x x x ≥=?--

相关文档
相关文档 最新文档