文档库 最新最全的文档下载
当前位置:文档库 › 正装与倒装

正装与倒装

正装与倒装
正装与倒装

为什么要倒装天线?

由于地理位置的影响,正装卫星天线不能接收到足够强的信号,这时倒装卫星是一个很好的解决办法(编者注:真的是这样吗?)。因此我在看了几篇网上的关于倒装卫星的教学文章后,就准备自己动手干了。由于我自己装的是76.5°E亚太2R的卫星,所以我就以这颗卫星为例说一下卫星天线的倒装。

天线:0.6米南京中卫高精度Ku偏馈天线

高频头:百昌Ku波段11.3GHz双极化单输出高频头

接收机:百胜961S

首先我记录了一下正装卫星的位置(见图1和图2)。

对于卫星天线的正装与倒装,最大的区别,实际上也是唯一的区别就是天线的仰角,(编者注:无论是正装还是倒装偏馈天线,其在相同地点接收同一卫星其仰角是一致的,没有区别),对于偏转角来说没有影响。一般来讲,偏馈天线与正馈天线的仰角相差20度左右,(编者注:偏馈天线与正馈天线在接收同一卫星时仰角是相同的,没有相差20度的差异。之所以如此说,是有人把偏馈天线的支撑高频头的支杆的夹角或者说偏馈天线“锅”面的夹角与天线的仰角搞混了。偏馈天线的仰角不是偏馈天线支杆的夹角,或者说也不是Ku天线所谓“锅”面的夹角,这个相差大约20度左右的角度差应称为偏焦角,其因天线设计不同而有不同的差角)。对于偏馈天线,在正装的时候,我们一般把查到的正馈天线仰角数据减去20度(对0.6米的偏馈Ku天线),大致就应该是我们偏馈天线的仰角数据,在上海以76.5度亚太2R为例,正馈天线的仰角为29.7度,因此在正装偏馈天线时的仰角应为9.7度左右(见图2)。而倒装偏馈天线的仰角则恰恰相反,是在正馈天线的仰角数据上加20度,我借用了一些网上的教程中的贴图,具体算出来的。(编者注:正是由于对仰角确切概念搞错了,才有正装倒装仰角的不同,所谓网上教程应予纠正。但是这种安装时使用的计算方法还是可以借鉴的)

根据以上的原理我把原来的卫星天线的固定夹具拆了下来倒转180度后装上去(这个可千万别忘了,否则不能倒装的哦,呵呵),算好仰角在上海接收,以76.5度亚太2R来说应该是49.7度,然后装到支架上(见图3,图4),卫星天线的方位角还是原来的方位角,南偏西62.6度。我装上天线后一转到原来的方位角位置(我原来做过记号了),信号马上就出来了,我稍稍固定了一下后看了几个频道的信噪比强度,基本上和原来正装时相差不是很大,说明倒装天线不比正装天线差多少。(编者注:偏馈天线无论正装与倒装在设备和场强相同的情况下,其接收效果应该是完全一样的,这是因为正装部分天线与倒装部分天线合起来就是付正馈天线,或者说一付正馈天线可以分解成上下或左右两部分完全一样的偏馈天线,这两付偏馈天线当然接收效果应该是一样的。)

在信号有遮挡的情况下,倒装更多、更有利信号的采收。无遮挡正装倒装信号一个样。

偏馈天线正装和倒装的区别

注意:您只要知道偏馈天线有“角度差”就可以了,其中75CM的角度差是20度,60CM天线角度差是24度。那么这个角度差怎么用呢?正装偏馈天线调仰角的时候要从软件计算出来的角度上减去20度(75CM天线),比如您地区收76.5的时候软件计算的卫星仰角是38度,在安装调试测量的时候应该把天线的仰角量成38-20=18度。

另外,倒装占用的空间就比较小!同一口KU锅不管正装和到装增益是一样的。也就是说,不管正装还是倒装,它接收信号的能力是相同的,正装适用于前方视野开阔的地方,倒装适用于前方有障碍物,而上方开阔的地方,多星接收两种方法没有什么区别,倒装抗风能力稍好些,正装和倒装要根据实际情况而定!

正装倒装效能是一样的。如果说偏馈天线是取的正馈天线的一辫的话,正装是用的上边辫,倒装是选用的下边辫,他们所受到的幅照是相等的。区别在于:在室外,正装可以不积灰、不积雪,而在阳台、窗内,为了节省空间、并让天线面尽量接受幅照,则采用倒装居多。

新天11号卫星场强图

倒装芯片(FC,Flip-Chip)装配技术

倒装芯片(FC,Flip-Chip)装配技术 时间:2010-05-27 23:04:25 来源:网络 倒装芯片焊接完成后,需要在器件底部和基板之间填充一种胶(一般为环氧树酯材料)。底部填充分为于“ 毛细流动原理” 的流动性和非流动性(No-follow )底部填充。 上述倒装芯片组装工艺是针对C4 器件(器件焊凸材料为SnPb 、SnAg 、SnCu 或SnAgCu )而言。另外一种工艺是利用各向异性导电胶(ACF )来装配倒装芯片。预先在基板上施加异性导电胶,贴片头用较高压力将器件贴装在基板上,同时对器件加热,使导电胶固化。该工艺要求贴片机具有非常高的精度,同时贴片头具有大压力及加热功能。对于非C4 器件(其焊凸材料为Au 或其它)的装配,趋向采用此工艺。这里,我们主要讨论C4 工艺,下表列出的是倒装芯片植球(Bumping )和在基板上连接的几种方式。 倒装倒装芯片几何尺寸可以用一个“ 小” 字来形容:焊球直径小(小到0.05mm ),焊球间距小(小到0.1mm ),外形尺寸小(1mm 2 )。要获得满意的装配良率,给贴装设备及其工艺带来了挑战,随着焊球直径的缩小,贴装精度要求越来越高,目前12μm 甚至10μm 的精度越来越常见。贴片设备照像机图形处理能力也十分关键,小的球径小的球间距需要更高像素的像机来处理。 随着时间推移,高性能芯片的尺寸不断增大,焊凸(Solder Bump)数量不断提高,基板变得越来越薄,为了提高产品可靠性底部填充成为必须。

对贴装压力控制的要求 考虑到倒装芯片基材是比较脆的硅,若在取料、助焊剂浸蘸过程中施以较大的压力容易将其压裂,同时细小的焊凸在此过程中也容易压变形,所以尽量使用比较低的贴装压力,一般要求在150g 左右。对于超薄形芯片,如0.3mm ,有时甚至要求贴装压力控制在35g 。 对贴装精度及稳定性的要求 对于球间距小到0.1mm 的器件,需要怎样的贴装精度才能达到较高的良率?基板的翘曲变形,阻焊膜窗口的尺寸和位置偏差,以及机器的精度等,都会影响到最终的贴装精度。关于基板设计和制造的情况对于贴装的影响,我们在此不作讨论,这芯片装配工艺对贴装设备的要求里我们只是来讨论机器的贴装精度。为了回答上面的问题,我们来

倒装芯片(FC-Flip-Chip)装配技术

摘要:倒装芯片在产品成本,性能及满足高密度封装等方面体现出优势,它的应用也渐渐成为主流。由于倒装芯片的尺寸小,要保证高精度高产量高重复性,这给我们传统的设备及工艺带来了挑战。 器件的小型化高密度封装形式越来越多,如多模块封装(MCM )、系统封装(SiP )、倒装芯片(FC ,Flip-Chip )等应用得越来越多。这些技术的出现更加模糊了一级封装与二级装配之间的界线。毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工 艺也更具先进性与高灵活性。 由于倒装芯片比BGA 或CSP 具有更小的外形尺寸、更小的球径和球间距、它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。 倒装芯片的发展历史 倒装芯片的定义 什么器件被称为倒装芯片?一般来说,这类器件具备以下特点: 1. 基材是硅; 2. 电气面及焊凸在器件下表面; 3. 球间距一般为4-14mil 、球径为2.5-8mil 、外形尺寸为1 -27mm ; 4. 组装在基板上后需要做底部填充。 其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机,便于贴装,也由于这一翻转过程,而被称为“倒装芯片”。 图1 图2

图3 倒装芯片的历史及其应用 倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collap se Chip Connection,可控坍塌芯片联接)。过去只是比较少量的特殊应用,近几年倒装芯片已经成为高性能封装的互连方法,它的应用得到比较广泛快速的发展。目前倒装芯片主要应用在Wi- Fi、SiP、M CM、图像传感器、微处理器、硬盘驱动器、医用传感器,以及RFID等方面(图5)。 图4

倒装芯片研究

倒装芯片研究 1.为什么倒装? (1)由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层ITO层。P区引线通过该ITO膜引出。为获得好的电流扩展,ITO层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,ITO膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。而且p电极也会遮挡住部分光,限制了LED芯片的出光效率。 采用倒装结构的LED芯片,不但可以同时避开P电极上导电层吸收光和电极垫遮光的问题,还可以通过在p-GaN表面设置低欧姆接触的反光层来将往下的光线引导向上,这样可同时降低驱动电压及提高光强。另一方面,图形化蓝宝石衬底(PSS)技术和芯片表面粗糙化技术同样可以增大LED芯片的出光效率50%以上。 (2)散热更好。LED是靠电子在能带间跃迁产生光的,其光谱中不含有红外部分,所以LED的热量不能靠辐射散发。一旦LED的温度超过最高临界温度(跟据不同外延及工艺,芯片温度大概为150℃),往往会造成LED永久性失效。与传统正装结构以蓝宝石衬底作为散热通道相比,垂直及倒装焊芯片结构有着较佳的散热能力。垂直结构芯片直接采用铜合金作为衬底,有效地提高了芯片的散热能力。倒装焊(Flip-Chip)技术通过共晶焊将LED芯片倒装到具有更高导热率的硅衬底上(导热系数约120W/mK,传统正装芯片蓝宝石导热系数约20W/mK),芯片与衬底间的金凸点和硅衬底同时提高了LED芯片的散热能力,保障LED的热量能够快速从芯片中导出。 (3)防静电能力增强。抗静电释放(ESD)能力是影响LED芯片可靠性的另一因素。对于InGaN/AlGaN/GaN 双异质结,InGaN 活化簿层厚度仅几十纳米,对静电的承受能力有限,很容易被静电击穿,使器件失效。可以在LED芯片中加入齐纳保护电路防止静电。通常需要在封装过程中通过金线并联一颗齐纳芯片以提高ESD防护能力,不仅增加封装成本和工艺难度,可靠性也有较大的风险。通过在硅衬底内部集成齐纳保护电路的方法,可以大大提高LED芯片的抗静电释放能力(ESDHBM=4000~8000V),同时节约封装成本,简化封装工艺,并提高产品可靠性。 (4)在封装过程中通过焊线(Wire-bonding)的方式实现芯片与支架的电路连接,而焊接过程中瓷嘴对LED的芯片的冲击是导致LED漏电、虚焊等主要原因,传统正装和垂直结构LED,电极位于芯片的发光表面,因此焊线过程中瓷嘴的正面冲击极易造成发光区和电极金属层等的损伤,在LED芯片采取倒装结构中,电极位于硅基板上,焊线过程中不对芯片进行冲击,极大地提高封装可靠性和

FC倒装芯片装配技术介绍

FC倒装芯片装配技术介绍 器件的小型化高密度封装形式越来越多,如多模块封装(MCM)、系统封装(SiP)、倒装芯片(FC,Flip-Chip)等应用得越来越多。这些技术的出现更加模糊了一级封装与二级装配之间的界线。毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工艺也更具先进性与高灵活性。 由于倒装芯片比BGA或CSP具有更小的外形尺寸、更小的球径和球间距、它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。 倒装芯片的发展历史 倒装芯片的定义 什么器件被称为倒装芯片?一般来说,这类器件具备以下特点: 1. 基材是硅; 2. 电气面及焊凸在器件下表面; 3. 球间距一般为4-14mil、球径为2.5-8mil、外形尺寸为1-27mm; 4. 组装在基板上后需要做底部填充。 其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机,便于贴装,也由于这一翻转过程,而被称为“倒装芯片”。 倒装芯片的历史及其应用 倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collapse Chip Connection,可控坍塌芯片联接)。过去只是比较少量的特殊应用,近几年倒装芯片已经成为高

性能封装的互连方法,它的应用得到比较广泛快速的发展。目前倒装芯片主要应用在Wi- Fi、SiP、MCM、图像传感器、微处理器、硬盘驱动器、医用传感器,以及RFID等方面(图5)。 与此同时,它已经成为小型I/O应用有效的互连解决方案。随着微型化及人们已接受SiP,倒装芯片被视为各种针脚数量低的应用的首选方法。从整体上看,其在低端应用和高端应用中的采用,根据TechSearch International Inc对市场容量的预计,焊球凸点倒装芯片的年复合增长率(CAGR)将达到31%。 倒装芯片应用的直接驱动力来自于其优良的电气性能,以及市场对终端产品尺寸和成本的要求。在功率及电信号的分配,降低信号噪音方面表现出色,同时又能满足高密度封装或装配的要求。可以预见,其应用会越来越广泛。 倒装芯片的组装工艺流程 一般的混合组装工艺流程在半导体后端组装工厂中,现在有两种模块组装方法。在两次回流焊工艺中,先在单独的SMT生产线上组装SMT器件,该生产线由丝网印刷机、贴片机和第一个回流焊炉组成。然后再通过第二条生产线处理部分组装的模块,该生产线由倒装芯片贴片机和回流焊炉组成。底部填充工艺

FC(倒装)

倒装芯片 Flip chip(倒装芯片):一种无引脚结构,一般含有电路单元。设计用于通过适当数量的位于其面上的锡球(导电性粘合剂所覆盖),在电气上和机械上连接于电路。 起源于60年代,由IBM率先研发出,具体原理是在I/Opad上沉积锡铅球,然后将芯片翻转加热利用熔融的锡铅球与陶瓷板相结合,此技术已替换常规的打线接合,逐渐成为未来封装潮流。Flip Chip既是一种芯片互连技术,又是一种理想的芯片粘接技术.早在30年前IBM公司已研发使用了这项技术。但直到近几年来,Flip-Chip已成为高端器件及高密度封装领域中经常采用的封装形式。今天,Flip-Chip封装技术的应用范围日益广泛,封装形式更趋多样化,对Flip-Chip封装技术的要求也随之提高。同时,Flip-Chip也向制造者提出了一系列新的严峻挑战,为这项复杂的技术提供封装,组装及测试的可靠支持。以往的一级封闭技术都是将芯片的有源区面朝上,背对基板和贴后键合,如引线健合和载带自动健全(TAB)。FC则将芯片有源区面对基板,通过芯片上呈阵列排列的焊料凸点实现芯片与衬底的互连.硅片直接以倒扣方式安装到PCB从硅片向四周引出I/O,互联的长度大大缩短,减小了RC延迟,有效地提高了电性能.显然,这种芯片互连方式能提供更高的I/O密度.倒装占有面积几乎与芯片大小一致.在所有表面安装技术中,倒装芯片可以达到最小、最薄的封装。 Flip chip又称倒装片,是在I/O pad上沉积锡铅球,然后将芯片翻转佳热利用熔融的锡铅球与陶瓷机板相结合此技术替换常规打线接合,逐渐成为未来的封装主流,当前主要应用于高时脉的CPU、 GPU(GraphicProcessor Unit)及Chipset 等产品为主。与COB相比,该封装形式的芯片结构和I/O端(锡球)方向朝下,由于I/O引出端分布于整个芯片表面,故在封装密度和处理速度上Flip chip已达到顶峰,特别是它可以采用类似SMT技术的手段来加工,因此是芯片封装技术及高密度安装的最终方向。倒装片连接有三种主要类型C4(Controlled Collapse Chip Connection)、DCA(Direct chip attach)和FCAA(Flip Chip Adhesive Attachement)。 C4是类似超细间距BGA的一种形式与硅片连接的焊球阵列一般的间距为0.23、 0.254mm。焊球直径为0.102、0.127mm。焊球组份为97Pb/3Sn。这些焊球在硅片上可以呈完全分布或部分分布。 由于陶瓷可以承受较高的回流温度,因此陶瓷被用来作为C4连接的基材,通常是在陶瓷的表面上预先分布有镀Au或Sn的连接盘,然后进行C4形式的倒装片连接。C4连接的优点在于:

倒装芯片工艺与SMT组装探讨

倒装芯片工艺挑战SMT组装 1引言 20世纪90年代以来,移动电话、个人数字助手(PDA)、数码相机等消费类电子产品的体积越来越小,工作速度越来越快,智能化程度越来越高。这些日新月异的变化为电子封装与组装技术带来了许多挑战和机遇。材料、设备性能与工艺控制能力的改进使越来越多的EMS公司可以跳过标准的表面安装技术(SMT)直接进入先进的组装技术领域,包括倒装芯片等。由于越来越多的产品设计需要不断减小体积,提高工作速度,增加功能,因此可以预计,倒装芯片技术的应用范围将不断扩大,最终会取代SMT当前的地位,成为一种标准的封装技术。 多年以来,半导体封装公司与EMS公司一直在携手合作,在发挥各自特长的同时又参与对方领域的技术业务,力争使自己的技术能力更加完善和全面。在半导体工业需求日益增加的环境下,越来越多的公司开始提供\\\"完整的 解决方案\\\"。这种趋同性是人们所期望看到的,但同时双方都会面临一定的挑战。 例如,以倒装芯片BGA或系统封装模块为例,随着采用先进技术制造而成的产品的类型由板组装方式向元件组装

方式的转变,以往似乎不太重要的诸多因素都将发挥至关 重要的作用。互连应力不同了,材料的不兼容性增加了,工艺流程也不一样了。不论你的新产品类型是否需要倒装芯片技术,不论你是否认为采用倒装芯片的时间合适与否,理解倒装芯片技术所存在的诸多挑战都是十分重要的。 2 倒装芯片技术 \\\"倒装芯片技术\\\",这一名词包括许多不同的方法。每一种方法都有许多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,无论它是有机材料、陶瓷材料还是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必须决定采用哪一种技术,选购哪一类工艺部件,为满足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作成本降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如此,为了确保可制造性、可靠性并达到成本目标也应考虑到该技术的许多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,柔顺凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸

影响倒装芯片底部填充胶流动的因素分析解读

第2卷第2期 2008年6月 材料研究与应用MATERIALSRESEARCHANDAPPLICATION Vo112,No12Jun12008 文章编号:167329981(2008)0120151204 影响倒装芯片底部填充胶流动的因素分析 张良明 (广州大学,广东广州510006) 摘要:材料特性对倒装芯片底部填充胶流动的影响因素主要有表面张力、1在考虑焊球点影响的情况下,主要影响因素有焊球点的布置密度及边缘效应.关键词:倒装芯片;填充胶;焊球点;表面张力;接触角中图分类号:O35文献标识码:A 在对外形尺寸要求苛刻的中,,在温,使连接芯片与电路基板的焊球点(凸点)断裂,从而使元件的电热阻增加,甚至使整个元件失效.解决这个问题既直接又简单的办法是,在芯片与电路基板之间填充密封剂(简称填充胶).这样可以增加芯片与基板的连接面积,提高二者的结合强度,对凸点起到保护作用.底部填充是倒装芯片互连工艺的主要工序之一,对倒装芯片可靠性的影响很大,所以研究填充胶的流动性有着重 要的意义. σ为填充胶流动前端与空气之间的表式(1)中: 面张力,xf为填充胶流动前端所走过的距离,θ为填充胶流动过程中与芯片所形成的接触角,μ为牛顿流体的填充胶的粘度,h为芯片与电路底板之间的缝隙高度.当填充完成时,填充胶流动的距离L即为方形芯片的长度.在不考虑焊球的影响和假设填充胶是牛顿流体的情况下,上述因素都会影响填充胶的流动.1.1.1表面张力 填充胶在流动的过程中,壁面的粘滞力是其在晶片与基板间隙间流动的唯一推动力.表面张力σ与压力差VP和接触角θ之间的关系[3]可以表示为: VP= . h (2)

SMT环境中倒装芯片工艺与技术应用

SMT环境中倒装芯片工艺与技术应用 1、引言 倒装芯片的成功实现与使用包含诸多设计、工艺、设备与材料因素。只有对每一个因素都加以认真考虑和对待才能够促进工艺和技术的不断完善和进步,才能满足应用领域对倒装芯片技术产品不断增长的需要。 2、倒装芯片技术 “倒装芯片技术”这一名词包括许多不同的方法。每一种方法都有许多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,无论它是有机材料、陶瓷材料还是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必须决定采用哪一种技术,选购哪一类工艺部件,为满足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作成本降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如此,为了确保可制造性、可靠性并达到成本目标也应考虑到该技术的许多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,柔顺凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸点。 焊柱凸点技术的实现要采用焊球键合(主要采用金线)或电镀技术,然后用导电的各向同性粘接剂完成组装。工艺中不能对集成电路(1C)键合点造成影响。在这种情况下就需要使用各向异性导电膜。焊膏凸点技术包括蒸发、电镀、化学镀、模版印刷、喷注等。因此,互连的选择就决定了所需的键合技术。通常,可选择的键合技术主要包括:再流键合、热超声键合、热压键合和瞬态液相键合等。 上述各种技术都有利也有弊,通常都受应用而驱动。但就标准SMT工艺使用而言,焊膏倒装芯片组装工艺是最常见的,且已证明完全适合SMT。 3、焊膏倒装芯片组装技术 传统的焊膏倒装芯片组装工艺流程包括:涂焊剂、布芯片、焊膏再流与底部填充等。但为了桷保成功而可靠的倒装芯片组装还必须注意其它事项。通常,成功始于设计。 首要的设计考虑包括焊料凸点和下凸点结构,其目的是将互连和IC键合点上的应力降至最低。如果互连设计适当的话,已知的可靠性模型可预测出焊膏上将要出现的问题。对IC键合点结构、钝化、聚酰亚胺开口以及下凸点治金(UBM)结构进行合理的设计即可实现这一目的。钝化开口的设计必须达到下列目

正装与倒装芯片的封装

倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: (1).固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; (2).焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根φ1.0~φ1.25mil的金线; (3).荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; (4).胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; (5).点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下:

LED芯片倒装工艺原理

LED芯片倒装工艺原理以及应用简介 倒装晶片所需具备的条件: ①基材材是硅;②电气面及焊凸在元件下表面;③组装在基板后需要做底部填充。 倒装晶片的定义: 其实倒装晶片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装晶片”。 倒装芯片的实质是在传统工艺的基础上,将芯片的发光区与电极区不设计在同一个平面这时则由电极区面朝向灯杯底部进行贴装,可以省掉焊线这一工序,但是对固晶这段工艺的精度要求较高,一般很难达到较高的良率。 倒装芯片与与传统工艺相比所具备的优势: 通过MOCVD技术在兰宝石衬底上生长GaN基LED结构层,由P/N结髮光区发出的光透过上面的P型区射出。由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni-Au组成的金属电极层。P区引线通过该层金属薄膜引出。为获得好的电流扩展,Ni-Au金属电极层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。 倒装LED芯片技术行业应用分析: 近年,世界各国如欧洲各国、美国、日本、韩国和中国等皆有LED照明相关项目推行。其中,以我国所推广的“十城万盏”计划最为瞩目。路灯是城市照明不可缺少的一部分,传统路灯通常采用高压钠灯或金卤灯,这两种光源最大的特点是发光的电弧管尺寸小,可以产生很大的光输出,并且具有很高的光效。但这类光源应用在道路灯具中,只有约40%的光直接通过玻璃罩到达路面,60%的光通过灯具反射器反射后再从灯具中射出。因此目前传统灯具基本存在两个不足,一是灯具直接照射的方向上照度很高,在次干道可达到50Lx以上,这一区域属明显的过度照明,而两个灯具的光照交叉处的照度仅为灯下中心位置的照度的20%-40%,光分布均匀度低;二是此类灯具的反射器效率一般仅为50%-60%,因此在反射过程中有大量的光损失,所以传统高压钠灯或金卤灯路灯总体效率在70-80%,均匀度低,且有照度的过度浪费。另外,高压钠灯和金卤灯使用寿命通常小于6000小时,且显色指数小于30;LED有着高效、节能、寿命长(5万小时)、环保、显色指数高(>75)等显著优点,如何有效的将LED应用在道路照明上成为了LED及路灯厂家现时最热门的话题。一般而言,根据路灯的使用环境对LED的光学设计、寿命保障、防尘和防水能力、散热处理、光效等方面均有严格的要求。作为LED路灯的核心??LED芯片的制造技术和对应的封装技术共同决定了LED未来在照明领域的应用前景。 1) LED芯片的发光效率提升 LED芯片发光效率的提高决定着未来LED路灯的节能能力,随着外延生长技术和多量子阱结构的发展,外延片的内量子效率已有很大提高。要如何满足路灯使用的标准,很大程度上取决于如何从芯片中用最少的功率提取最多的光,简单而言,就是降低驱动电压,提高光强。传统正装结构的LED芯片,一般需要在p-GaN上镀一层半透明的导电层使电流分布更均匀,而这一导电层会对LED发出的光产生部分吸收,而且p 电极会遮挡住部分光,这就限制了LED芯片的出光效率。而采用倒装结构的LED芯片,不但可以同时避开P电极上导电层吸收光和电极垫遮光的问题,还可以通过在p-GaN表面设置低欧姆接触的反光层来将往下的光线引导向上,这样可同时降低驱动电压及提高光强。(见图1)另一方面,图形化蓝宝石衬底(PSS)技术和

倒装芯片

倒装芯片:向主流制造工艺推进 时间:2009-12-08来源:责任编辑: 对较小外形和较多功能的低成本电子设备的需求继续在增长。这些快速调整的市场挑战着电子制造商,降低制造成本以保证可接受的利润率。倒装芯片装配(flip chip assembly)被认为是推进低成本、高密度便携式电子设备的制造所必须的一项技术。 在低成本应用中,倒装芯片的成功是因为它可达到相对于传统表面贴装元件包装更大的成本效益。例如,一款新的寻呼机利用了倒装芯片技术将微控制器装配于PCB,因为倒装芯片使用较少的电路板空间,比传统的塑料球栅阵列(PBGA, plastic ball grid array)成本较低。 材料 集成电路(Integraded circuit) 在这款寻呼机中的集成电路(IC, integrated circuit)是一个5 x 5.6 mm 的微控制器,要求100个输入/输出(I/O)连接于PCB。将四周I/O重新分配为2.5排减少点数(depopulated)的球栅阵列形式来接纳PCB的线/空格以及通路孔焊盘的限制。锡球(bump)布局与间距如图一所示。 使用了电镀共晶锡/铅锡球,因为与其它的替代者比較,它的成本低得多。锡球的直径大约为125 %26mu;m,球下金属(UBM, under bump metalization)为一个顾客要求的45%26mu;m的铜柱,如图二。 印刷电路板(PCB, printed circuit board) 成本因素决定这款寻呼机的PCB的布局。PCB是标准的FR-4,四个金属层和一个无电镀镍/金表面涂层。因为增加材料成本和有限的可获得性,所以没有使用高密度互连(HDI, high-density interconnect)技术。无电镀镍/金表面涂层满足所有作品的要求。实录可靠性问题排除了选择有机可焊性保护层(OSP, organic solderability preservative),选择性镍-金的成本增加也没有吸引性。 最低成本的PCB供应商的工艺才能限制板的密度为100%26mu;m线/空和0.5mm的通路孔焊盘。因此,所有通路孔(via)都是通孔(t人力资源ough-hole)型,避免盲孔(blind via)的成本增加。这些限制和阻焊层公差决定IC的分布形式、锡球尺寸和装配间距,并定义芯片贴放要求。 限制通路孔的焊盘尺寸为最小的0.5mm,意味着芯片(die)底下只能放13个通路孔(via)剩下的I/O不得不用100%26mu;m的线与空在基板顶面走出去。只使用定面金属层来布线剩下的87个I/O,这给IC的重新分布形式定下了一个标准。100%26mu;m线与空的设计要求将最终装配间距固定在200%26mu;m(图三)。 阻焊层(soldermask)的设计与工艺限制对直接芯片安装(DCA, direct chip attachment)的装配过程是关键的。必须控制电镀共晶锡球的熔湿(wet),以防止回流期间焊接点的完全倒塌和断源。阻焊层可用来限制焊锡熔湿和控制锡球塌落的程度。这个控制是通过为每个锡球座设计离散的阻焊层开口来搞定的(图四)。在本文所述的应用中,工艺的限制和贴装设备的才能使得不能使用单独定义的锡球座。 低成本PCB供应商一般只能够维持大批量生产时的%26plusmn;75%26mu;m阻焊层对位精度。用于芯片贴装(die placement)的导向丝杆设备的精度才能为%26plusmn;50%26mu;m。这些公差的累积要求0.375mm的阻焊层开口来保

LED倒装芯片知识全解

LED倒装芯片知识全解 什么是LED倒装芯片?近年来,在芯片领域,倒装芯片技术正异军突起,特别是在大功率、户外照明的应用市场上更受欢迎。但由于发展较晚,很多人不知道什么叫LED倒装芯片,LED倒装芯片的优点是什么?今天慧聪LED屏网编辑就为你做一个简单的说明。先从LED正装芯片为您讲解LED倒装芯片,以及LED 倒装芯片的优势和普及难点。 要了解LED倒装芯片,先要了解什么是LED正装芯片 LED正装芯片是最早出现的芯片结构,也是小功率芯片中普遍使用的芯片结构。该结构,电极在上方,从上至下材料为:P-GaN,发光层,N-GaN,衬底。所以,相对倒装来说就是正装。 LED倒装芯片和症状芯片图解 为了避免正装芯片中因电极挤占发光面积从而影响发光效率,芯片研发人员设计了倒装结构,即把正装芯片倒置,使发光层激发出的光直接从电极的另一面发出(衬底最终被剥去,芯片材料是透明的),同时,针对倒装设计出方便LED 封装厂焊线的结构,从而,整个芯片称为倒装芯片(Flip Chip),该结构在大功率芯片较多用到。 正装、倒装、垂直LED芯片结构三大流派 倒装技术并不是一个新的技术,其实很早之前就存在了。倒装技术不光用在LED行业,在其他半导体行业里也有用到。目前LED芯片封装技术已经形成几个流派,不同的技术对应不同的应用,都有其独特之处。

目前LED芯片结构主要有三种流派,最常见的是正装结构,还有垂直结构和倒装结构。正装结构由于p,n电极在LED同一侧,容易出现电流拥挤现象,而且热阻较高,而垂直结构则可以很好的解决这两个问题,可以达到很高的电流密度和均匀度。未来灯具成本的降低除了材料成本,功率做大减少LED颗数显得尤为重要,垂直结构能够很好的满足这样的需求。这也导致垂直结构通常用于大功率LED应用领域,而正装技术一般应用于中小功率LED。而倒装技术也可以细分为两类,一类是在蓝宝石芯片基础上倒装,蓝宝石衬底保留,利于散热,但是电流密度提升并不明显;另一类是倒装结构并剥离了衬底材料,可以大幅度提升电流密度。 LED倒装芯片的优点 一是没有通过蓝宝石散热,可通大电流使用;二是尺寸可以做到更小,光学更容易匹配;三是散热功能的提升,使芯片的寿命得到了提升;四是抗静电能力的提升;五是为后续封装工艺发展打下基础。 什么是LED倒装芯片 据了解,倒装芯片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装芯片”。 倒装LED芯片,通过MOCVD技术在蓝宝石衬底上生长GaN基LED结构层,由P/N结发光区发出的光透过上面的P型区射出。由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni-Au组成的金属电极层。P区引线通过该层金属薄膜引出。为获得好的电流扩展,Ni-Au金属电极层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。 在倒装芯片的技术基础上,有厂家发展出了LED倒装无金线芯片级封装。 什么是LED倒装无金线芯片级封装 倒装无金线芯片级封装,基于倒装焊技术,在传统LED芯片封装的基础上,减少了金线封装工艺,省掉导线架、打线,仅留下芯片搭配荧光粉与封装胶使用。作为新封装技术产品,倒装无金线芯片级光源完全没有因金线虚焊或接触不良引起的不亮、闪烁、光衰大等问题。相比于传统封装工艺,芯片级光源的封装密度增加了16倍,封装体积却缩小了80%,灯具设计空间更大。倒装无金线芯片凭借更稳定的性能、更好的散热性、更均匀的光色分布、更小的体积,受到越来越多LED灯具企业和终端产品应用企业的青睐。 LED倒装芯片普及的难点:

微电子技术之倒装芯片技术

微电子技术之倒装芯片技术 倒装芯片是一种无引脚结构,一般含有电路单元。设计用于通过适当数量的位于其面上的锡球(导电性粘合剂所覆盖),在电气上和机械上连接于电路。在微电子领域中起着重要的作用,是微电子大家庭中不可缺少的一员。 倒装芯片英文名为Flip chip。其起源于60年代,由IBM率先研发出,具体原理是在I/Opad 上沉积锡铅球,然后将芯片翻转加热利用熔融的锡铅球与陶瓷板相结合,此技术已替换常规的打线接合,逐渐成为未来封装潮流。Flip Chip既是一种芯片互连技术,又是一种理想的芯片粘接技术.早在30年前IBM公司已研发使用了这项技术。但直到近几年来,Flip-Chip 已成为高端器件及高密度封装领域中经常采用的封装形式。今天,Flip-Chip封装技术的应用范围日益广泛,封装形式更趋多样化,对Flip-Chip封装技术的要求也随之提高。同时,Flip-Chip也向制造者提出了一系列新的严峻挑战,为这项复杂的技术提供封装,组装及测试的可靠支持。以往的一级封闭技术都是将芯片的有源区面朝上,背对基板和贴后键合,如引线健合和载带自动健全(TAB)。FC则将芯片有源区面对基板,通过芯片上呈阵列排列的焊料凸点实现芯片与衬底的互连.硅片直接以倒扣方式安装到PCB从硅片向四周引出I/O,互联的长度大大缩短,减小了RC延迟,有效地提高了电性能.显然,这种芯片互连方式能提供更高的I/O密度.倒装占有面积几乎与芯片大小一致.在所有表面安装技术中,倒装芯片可以达到最小、最薄的封装。 其次倒装芯片技术是芯片以凸点阵列结构与基板直接安装互连的一种方法。不仅如此倒装芯片是在在I/O pad上沉积锡铅球,然后将芯片翻转加热利用熔融的锡铅球与陶瓷机板相结合此技术替换常规打线接合,逐渐成为未来的封装主流,当前主要应用于高时脉的CPU、GPU(GraphicProcessor Unit)及Chipset 等产品为主。与COB相比,该封装形式的芯片结构和I/O端(锡球)方向朝下,由于I/O引出端分布于整个芯片表面,故在封装密度和处理速度上Flip chip已达到顶峰,特别是它可以采用类似SMT技术的手段来加工,因此是芯片封装技术及高密度安装的最终方向。 倒装芯片连接有三种主要类型C4、DCA和FCAA,它们分别是Controlled Collapse Chip Connection、Direct chip attach和Flip Chip Adhesive Attachement的缩写。而C4是类似超细间距BGA的一种形式与硅片连接的焊球阵列一般的间距为0.23、0.254mm。焊球直径为0.102、0.127mm。焊球组份为97Pb/3Sn。这些焊球在硅片上可以呈完全分布或部分分布。C4在工厂中起着非常重要的作用。由于陶瓷可以承受较高的回流温度,因此C4在陶瓷制作品方面常被用来作为连接的基材。通常是在陶瓷的表面上预先分布有镀Au或Sn的连接盘,然后进行C4形式的倒装片连接。 对于这么重要的C4来说,有着以下几个优点:首先具有优良的电性能和热特性其次在中等焊球间距的情况下,I/O数可以很高再其次C4不受焊盘尺寸的限制,这点有着非常重要的作用,不仅如此它还可以适于批量生产因此可大大减小尺寸和重量。 而对于DCA来说,DCA和C4类似是一种超细间距连接。DCA的硅片和C4连接中的硅片结构相同,两者之间的唯一区别在于基材的选择。DCA采用的基材是典型的印制材料。DCA的焊球组份是97Pb/Sn,连接焊接盘上的焊料是共晶焊料(37Pb/63Sn)。对于DCA由于间距仅为0.203、0.254mm共晶焊料漏印到连接焊盘上相当困难,所以取代焊膏漏印这种方式,在组装前给连接焊盘顶镀上铅锡焊料,焊盘上的焊料体积要求十分严格,通常要比其它超细间距元件所用的焊料多。在连接焊盘上0.051、0.102mm厚的焊料由于是预镀的,一般略呈圆顶状,必须要在贴片前整平,否则会影响焊球和焊盘的可靠对位。 但是FCAA连接同样存在多种形式,当前仍处于初期开发阶段。硅片与基材之间的连接不采用焊料,而是用胶来代替。这种连接中的硅片底部可以有焊球,也可以采用焊料凸点

倒装芯片封装

Flip-chip LEDs倒装芯片封装指导 倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: 1. 固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; 焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~2. φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根 φ1.0~φ1.25mil的金线; 3. 荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,

而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; 4. 胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; 5. 点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下: 6 灌胶成型:正装芯片通常采用在模粒中先灌满环氧树脂然后将支架插入高温固化的方式;而倒装功率芯片则需要采用从透镜其中一个进气孔中慢慢灌入硅胶的方式来填充,填充的过程中应提高操作避免烘烤后出

相关文档