文档库 最新最全的文档下载
当前位置:文档库 › 波动方程时空域有限差分数值解及吸收边界条件研究进展

波动方程时空域有限差分数值解及吸收边界条件研究进展

波动方程时空域有限差分数值解及吸收边界条件研究进展
波动方程时空域有限差分数值解及吸收边界条件研究进展

边界条件的设置

第二章:边界条件 这一章主要介绍使用边界条件的基本知识。边界条件能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。 §2.1 为什么边界条件很重要 用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。 作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果。 当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间,Ansoft HSS使用了背景或包围几何模型的外部边界条件。 模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。 §2.2 一般边界条件 有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。 1、激励源 波端口(外部) 集中端口(内部) 2、表面近似 对称面 理想电或磁表面 辐射表面 背景或外部表面 3、材料特性 两种介质之间的边界 具有有限电导的导体 §2.3 背景如何影响结构 背景边界:所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。 有耗边界:如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与

泊松方程边界元解法

二、泊松方程边界元解法 泊松方程 21u b ?=, (2.1) 式中 1b 为己知函数.如果(,)ξη位于边界上,文【1】给出其解为 11111(,)()2S p u u u p d S b p d ξηηηΩ??=-+Ω???? (2.2) 如果(,)ξη位于区域内, 文【l 】给出 1111(,)()S p u u u p dS b p d ξηηη Ω??=-+Ω???? (2.3) 式中Ω为求解区域,S 为Ω边界,S 的单位外法线为n ,1p 为拉普拉斯方程基本解, 对于二维问题, 211ln 4p r π = 222()()r x y ξη=-+- 文【1】给出的(2.2)式和(2.3)式仍含有区域积分 11b p d ΩΩ?,这区域积分虽不含有求解的未知数u ,但仍需要对区域进行离散数值积分. 如果令 212p p =? 那么由格林公式,(2.2)式和(2.3)式的区域积分可以写成 21112b p d b p d ΩΩ Ω=?Ω?? 2211221()S p b b p dS p b d ηη Ω??= -+?Ω???? (2.4) 如果再令 223p p =? 212b b ?= 那么(2.4)式的区域积分又可写成 222123p b d b p d ΩΩ ?Ω=?Ω?? 2322332()S p b b p dS p b d ηη Ω??=-+?Ω???? (2.5)

如此类推,(2.2)式和(2.3)式的区域积分可写成 1211111()n j j j j n n S j p b b p d b p dS p b d ηη+++ΩΩ =??Ω=-+?Ω??∑??? (2.6) 21j j b b +=? (1,2,,) j n =??? ????? (2.7) 21j j p p +?= 1p 为拉普拉斯方程基本解,这里称为一阶拉普拉斯算子基本解, 1p 称为j 阶拉普拉斯算子基 本解.下面求1p 表达式.由于 212p p =? 211ln 4p r π= 那么可求得 22211(ln 2)44p r r π= ?- (2.8) 又由 232p p ?= 可得 42311(ln 3)464 p r r π=- (2.9) 比较1p ,2p 和3p 的表达式,可以看出j p 有下列形式,即 2(1)21(ln )4j j j j p C r r D π -=- (2.10) 下面确定系数j C 和j D , 2(2)211[(1)l n (1)]2() 4j j j j p C r j r j D x x ξπ-+?=----? 22(8)222(2)2211[(1)(2)ln (1)(2)23]4()[(1)ln (1 44j j j j j j p C r j j r j j D j x C r j r j x ξππ--?=-----+--+---?

第二章工程的本质与特征

第二章工程的本质与特征 一、工程的本质 工程的本质可以被理解为,工程是围绕着一个新的存在物的各种工程要素的集成过程、集成方式和集成模式的统一。简而言之,工程就是工程要素的集成过程。这种集成方 式和过程是工程与科学和技术相区别的一个本质特点。 工程要素的集成主要包括科技要素与非科技要素,工程是科技要素 和非科技要素的统一体,这两类要素相互作用相互制约,其中科技要素构 成了工程的内核,非科技要素构成了工程的边界,包括资源环境、文化政 治和经济社会等各种要素。 (一)技术要素的集成 1. 从要素的角度,技术是工程的基本组成 技术一般指根据生产实践经验和自然科学原理而发展成的各种 工艺操作方法与技能,运用这些方法和技能所创造的一些产品,比如机器、硬件或工具器皿等等通常也可以叫做技术。一项工程活动中,往往包含了多种技术,或者说,若干技术的组合便构成了工程的基本状态,技术是工程活动的基本要素。 技术作为工程的要素具有以下特点:第一,局部性。技术总是工程中的一个子项或个别部分。除了技术之外,工程的实施还受很多非技术因素的影响。第二,多样性。工程中诸多技术有着不同的地位,起着不同的作用,它们之间往往存在着不同的功能。第三,不可分割性。不同的技术作为工程构成的基本单元,在一定的环境条件下,以不可分割的集成形态构成工程整体。 2、从过程的角度,工程是技术的集成和物化 技术能力一旦转化为实际的操作过程、形成新的存在物的时候,就形成了工程。或者说当若干技术从观念形态向实物形态转化时,这就伴随着工程活动。所以,我们说工程总是与“物”的建造联系在一起,它必须要形成新的存在物。 比方说,建筑师在没有实施建筑之前,就已经掌握了足够的建筑技术,一旦当他将图纸、规划付诸实施,进行实际的建筑活动,那么这就是一项工程活动。当我们说生物技术的时候,它往往指的是各种方法、技能的体系,当我们说生物工程的时候,往往指的是通过各种生物技术的集成而构造一个新的存在物(比如一个目的基因片段)的过程。 工程作为技术的集成则具有以下特征:(1)统一性。工程是技术及其相互关联中产生的整体。(2)协同性。(结构元素各自之间的协调、协作形成拉动效应,推动事物共同前进,对事物双方或多方而言,协同的结果使个个获益,整体加强,共同发展。导致事物向积极方向发展。)工程至少是由两个或两个以上的技术复合而成,不同技术之间具有相互协同关系。(3)相对稳定性。工程都是技术的有序、有效集成,不是简单加合,其结构和功能在一定条件下具有相对稳定性。 (二)非技术要素的集成

边界元与有限元

边界元与有限元 边界元法boundary element method 定义:将力学中的微分方程的定解问题化为边界积分方程的定解问题,再通过边界的离散化与待定函数的分片插值求解的数值方法。 所属学科:水利科技(一级学科) ;工程力学、工程结构、建筑材料(二级学科) ;工程力学(水利)(三级学科) 边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点.但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。 简介 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。又称边界积分方程-边界元法。它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

有限元边界条件和载荷

X边界条件和载荷 10.1边界条件 施加的力和/或者约束叫做边界条件。在HyperMesh中,边界条件存放在叫做load collectors的载荷集中。Load collectors可以通过在模型浏览器中点击右键来创建(Create > Load Collector)。 经常(尤其是刚开始)需要一个load collector来存放约束(也叫做spc-单点约束),另外一个用来存放力或者压力。记住,你可以把任何约束(比如节点约束自由度1和自由度123)放在一个load collector中。这个规则同样适用于力和压力,它们可以放在同一个load collector中而不管方向和大小。 下面是将力施加到结构的一些基本规则。 1.集中载荷(作用在一个点或节点上) 将力施加到单个节点上往往会出现不如人意的结果,特别是在查看此区域的应力时。通常集中载荷(比如施加到节点的点力)容易产生高的应力梯度。即使高应力是正确的(比如力施加在无限小的区域),你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形? 因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。 2.在线或边上的力 上图中,平板受到10N的力。力被平均分配到边的11个节点上。注意角上的力只作用在半个单元的边上。

上图是位移的云图。注意位于板的角上的红色“热点”。局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上),我们应该在板的边线上添加均匀载荷。 上述例子中,平板依然承受10N的力。但这次角上节点的受力减少为其他节点受力的一半大小。 上图显示了由plate_distributed.hm文件计算得到的平板位移的云图分布。位移分布更加均匀。 3.牵引力(或斜压力) 牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。垂直于此区域的力称为压力。

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。 通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中

拉普拉斯方程拉普拉斯方程为:Δ u=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量电磁场拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出,如 果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-V高斯定理微分式,即可导出静电场的泊松方程: 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i ,j 指分界面两边的不同分区,σ 为界面上的自由电荷密度,n 表示边界面上的内法 线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物 理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷 ,叫做诺埃曼边界条件。 静电场的唯一性定理: 设区域V 内给定自由电荷分布)(x ,在V 内电势满足泊松方程 或拉普拉斯方程,在V 的边界S 上给定电势 ,或V 边界上给定电势的法线方向偏导数 ,则V 内场(静电场)唯一确定。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。 各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任 何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI 制中,静磁场满足的方程为 ,式中j 为传导电流密度。第一式表明静磁 场可引入磁矢势r)描述: 。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程 为 。 选用库仑规范,,则得磁矢势A 满足泊松方程 ,式中纯数μr 为媒质的相对磁导率, 真空磁导率μo =1.257×10-6亨/米。在传导电流密度j=0的区域里,上 式简化为拉普拉斯方程 。

解析气态方程之内在本质(稿)

解析气态方程之内在本质 胡良 深圳市宏源清实业有限公司 摘要:阿伏加德罗常数符号(N A )的含义是1mol 任何粒子所含的粒子数就是阿 伏加德罗常数。其内涵,就是在相同温度及相同压强条件下,其相同体积中的任何气体总具有相同的分子个数。气态方程表达了,由很多自由的孤立量子体系组成的宏观孤立量子体系的属性,揭示了宏观与微观的内在联系。 关键词:理想气体常数,阿佛加德罗常数,玻尔兹曼常量,对称性,场,相位作者,总工,高工,硕士 Analyze the connotation of the gas equation The energy constant (Hu)is the smallest energy unit,Hu =h *C=Vp*C^(3),which reflects the intrinsic relationship between the vacuum speed of light (C)and Planck's constant (h). Keywords:Ideal gas constant,Avogadro constant,Boltzmann constant,symmetry,field,phase 1阿佛加德罗常数的内涵 阿伏伽德罗常量(N A )属于热学常量,阿伏伽德罗常量与物质单元的数量相关; 摩尔(作为物质单元的数量的单位)的含义就是基本单元数量,即,阿伏伽德罗常量(N A );其中,基本单元可是任何一种聚集的物质(例如原子,分子及离子)。 阿伏伽德罗常数(N A )是一个比值,在一个孤立量子体系中,所含的基本单元 数(N),与其所含的物质的量(n,其单位是摩尔)间的比值。 可用公式表达为,N A =N/n。 体现为一种粒子的摩尔质量(即一摩尔时的质量)及其质量之间比例常数。阿伏伽德罗常数体现为,一摩尔物质所含的基本单元(例如原子或分子)之数量。因此,阿伏伽德罗数是一个无量纲的数量,与用基本单位表示的阿伏伽德罗常量数值一致。但阿伏加德罗常数(N A )不是纯数,其单位为/mol;即每摩尔物质含 有微粒数量定为阿伏加德罗常数。 例如,一摩尔电子的电荷是一个常数(法拉第常数);将一摩尔电子的电荷除以单个电子的电荷,就可得到阿伏伽德罗常量。 总之,摩尔是表达物质的数量的单位,而每摩尔物质含有阿伏加德罗常数个微粒。基本单元是指原子,分子,离子及电子等粒子。 阿伏加德罗常数符号(N A )的含义是1mol 任何粒子所含的粒子数就是阿伏加 德罗常数。其内涵,就是在相同温度及相同压强条件下,其相同体积中的任何气体总具有相同的分子个数。 2玻尔兹曼常量的内涵 玻尔兹曼常数(k)体现为单个气体分子的平均平动动能随热力学温度(T)变化的系数。 T k E k **)2/3( , 其中,k E 表达单个分子的平均平动动能,T 表达热力学温度。 动能的量纲,[L^(3)T^(-1)]*[L^(2)T^(-2)];

多孔介质边界条件(精)

7.19多孔介质边界条件 多孔介质模型适用的范围非常广泛,包括填充床,过滤纸,多孔板,流量分配器,还有管群,管束系统。当使用这个模型的时候,多孔介质将运用于网格区域,流场中的压降将由输入的条件有关,见Section 7.19.2.同样也可以计算热传导,基于介质和流场热量守恒的假设,见Section 7.19.3. 通过一个薄膜后的已知速度/压力降低特性可以简化为一维多孔介质模型,简称为“多孔跳跃”。多孔跳跃模型被运用于一个面区域而不是网格区域,而且也可以代替完全多孔介质模型在任何可能的时候,因为它更加稳定而且能够很好地收敛。见Section 7.22. 7.19.1 多孔介质模型的限制和假设 多孔介质模型就是在定义为多孔介质的区域结合了一个根据经验假设为主的流动阻力。本质上,多孔介质模型仅仅是在动量方程上叠加了一个动量源项。这种情况下,以下模型方面的假设和限制就可以很容易得到: ?因为没有表示多孔介质区域的实际存在的体,所以fluent默认是计算基于连续性方程的虚假速度。做为一个做精确的选项,你可以适用fluent中的真是速度,见section7.19.7。 ?多孔介质对湍流流场的影响,是近似的,见7.19.4。 ?当在移动坐标系中使用多孔介质模型的时候,fluent既有相对坐标系也可以使用绝对坐标系,当激活相对速度阻力方程。这将得到更精确的源项。 相关信息见section7.19.5和7.19.6。 ?当需要定义比热容的时必 右边第一项,和惯性损失项(方程7.19-1右边第二项

(7.19-1 式中,si是i(x,y,z动量方程的源项,是速 (7.19-2式中是渗透性系数,是惯 和,其 (7.19-3 式中and是用 在幂函数型模型中,压降是均匀的,的单多孔介质中的达西定律

裂缝性油藏等效渗透率张量的边界元求解方法

?油气藏工程? 裂缝性油藏等效渗透率张量的边界元求解方法 姚 军,李亚军,黄朝琴,王子胜 (中国石油大学(华东)石油工程学院,山东青岛266555) 摘要:等效渗透率张量是裂缝性油藏渗流分析的重要参数,应用边界元算法可计算裂缝性油藏的等效渗透率张量。根据流量等效原理,考虑每条裂缝的空间分布和属性参数对流动的影响,建立了求解裂缝性多孔介质等效渗透率张量的数学模型,并给出了数学模型的边界元求解方法。实例研究表明,边界元法数值计算结果与解析结果较为一致;裂缝对介质的渗透能力有重要影响,忽略渗透率张量的非对角线元素将产生较大误差;等效渗透率张量能够反映裂缝性多孔介质的非均质性和各向异性。 关键词:裂缝性油藏;等效渗透率张量;连续介质;边界元方法;周期边界条件;数学模型 中图分类号:TE344文献标识码:A 文章编号:1009-9603(2009)06-0080-04 裂缝性油藏在中国油气资源中占有重要的地 位[1],由于裂缝性油藏内在的复杂性、模型基本假 设、裂缝识别技术和计算机硬件等因素的限制[2-3], 传统的双重介质模型[4-5]和近年出现的离散裂缝网 络模型[6-7]都有其局限性。等效连续介质模型则结 合了两者的优点,具有广泛的研究前景。等效渗透 率张量用来表征裂缝性油藏的非均质性和各向异 性,是等效连续介质模型的重要参数。 渗透率张量理论由Snow [8]提出,以解决裂缝含 水介质渗透各向异性的问题,这种基于优势节理组 统计特征的渗透率张量计算方法在实际工程中得到 广泛应用,但由于该方法不考虑实际裂缝的连通情 况及空间分布情况,计算结果存在误差。Long [9]利 用连续介质理论计算了裂缝性岩体的等效渗透率张 量,没有考虑基岩的渗透性。Tei m oori 等[10]应用边 界元方法计算裂缝性油藏的等效渗透率张量,将裂 缝假设成一维线形裂缝。 笔者根据等效连续介质模型的原理,建立求解 裂缝性油藏等效渗透率张量的数学模型,利用边界 元方法求解模型,并进行了实例研究。1 渗透率张量 渗透率是岩石的固有属性,是表征油藏非均质 性和各向异性的重要参数,具有二阶张量形式。二维情况下的渗透率张量可表示为k =k xx k xy k yx k (1) 式中:k 为渗透率张量,μm 2;k ζτ(ζ,τ=x,y )为渗透率张量的分量,μm 2;ζ为渗流速度方向;τ为位势梯度方向。为保证渗透率张量具有物理意义,其应为对称张量[11],即k ζτ=k τζ。当渗透率主轴方向与坐标轴方向平行时,k 为对角形式k =k x 00 k (2) 式中:k x 和k y 分别为x 和y 方向的渗透率主值,μm 2。对于裂缝性多孔介质,其等效渗透率张量综合考虑了网格块中基岩和裂缝对整个系统渗透性的影响,可描述任意裂缝分布和几何形态储层的岩石特征。 2 数学模型 2.1 模型假设 实际储层中的裂缝分布极为复杂,研究流体在其中的渗流规律,建立储层的理论模型,须对裂缝系 收稿日期2009-09-09;改回日期2009-10-15。 作者简介:姚军,男,教授,1984年毕业于华东石油学院采油工程专业,从事油气田开发工程的教学与科研工作。联系电话:(0532)86981707,E -mail:yaojunhdpu@https://www.wendangku.net/doc/c56353423.html, 。 基金项目:国家科技重大专项专题“离散裂缝网络油藏数值模拟技术”(2008Z X05014-005-03)和国家“973”项目“碳酸盐岩缝洞型油藏 开发基础研究” (2006CB202404) 第16卷 第6期 油 气 地 质 与 采 收 率 Vol .16,No .6 2009年11月 Petr oleu m Geol ogy and Recovery Efficiency Nov .2009

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量 电磁场 拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k 除以它们到任意观察点P 的距离r k ,并且把这些商加在一起,其总和 m k r k n k=1 = V x ,y ,z 即P 点的势函数,势函数对空间坐标的偏导数正比于在 P 点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ?2V ?x +?2V ?y +?2V ?z =0,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出, 如果观察点P 在充满引力物质的区域内部,则拉普拉斯方程应修改为?2V ?x 2 + ?2V ?y 2 + ?2V ?z 2 =?4πρ, 叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V 在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-?V 高斯定理微分式??E =ρ/εr ε0,即可导出静电场的泊松方程:?2V ?x 2+?2V ?y 2+?2V ?z 2=?2V =?ρ/εr ε0 式中ρ为自由电荷密度,纯数 εr 为各分区媒质的相对介电常数,真空介电常数εo =8.854×10-12 法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程?2V =0 。 在各分区的公共界面上,V 满足边值关系V i =V j , ε0εri ?V ?n i ?ε0εrj ?V ?n j =??,

边界单元法基础(直接法讲义)教材

边界单元法基础(直接法)

一、概述 近年来在边界法方面人们发表了大量的文章和著作。这些方法是以不同的名称而提出来的,如“边界积分方程方法”“边界积分解”,等等。这种方法的数值解形式是把所考虑的域的边界划分为一系列的单元。 边界单元法简称BEM是七十年代兴起

的一种新的计算方法。它将边界上的广义位移和广义力作为独立变量且同时用满足场方程的奇异函数(源函数)作为加权函数。所以,它是一种特殊格式的加权余量法。 边界元法只需将求解域的边界划分成单元,故使求解问题的维数降低,如三维问题可转变成二维问题求解。二维问题可化为一维问题。因而,输入数据大为减少,计算时

间缩短。由于它只对边界离散,故离散误差仅为来源于边界,而域内变量可由解析式的离散形式直接求得。因此,提高了计算精度。求域内变量时,只须改变其数量和坐标位置即可。 和有限元法一样,边界元法可广泛地用来解决各种工程问题,如弹性力学、断裂力学、塑性力学、流体力学、温度场和电磁场

等。 边界元法分为直接法和间接法。直接法是用物理意义明确的变量来建立积分方程,其中未知函数就是所求的物理量在边界上的值;间接法是用物理意义不一定很明确的变量来建立积分方程,如位势问题中用单层位势和双层位势表示物理量。本部分着重叙述直接法。

在用加权余量法建立积分方程时,所使用的权函数是数学上的“基本解”。基本解在数学上是作为微分方程的特殊的非齐次解定义的,它在每个问题上分别具有不同的物理含义。求这个解,特别是便于解析的形式,一般是不容易的,这是数学上的难点。然而,除了特殊问题以外,主要微分方程的基本解,数学教科书中有所推导,工程技术人员可直

IDESA有限元分析_第6篇第26章 基于几何施加边界条件

第26章MasterFEM 教程:定义边界条件 前面的教程简单介绍了仿真分析的流程。本篇将介绍更多高级定义边界条件的内容(载荷和约束)。 用户将学会: ?创建约束和约束集。 ?创建载荷和载荷集。 ?创建边界条件集。 ?解算定义以上边界条件的模型。 ?创建均布载荷。 ?解算定义以上边界条件的模型。 ?比较不同工况下的结果。 开始前必备知识: 熟悉MasterFEM界面和创建零件。 熟悉在模型文件中管理零件。 熟悉拉伸特征和旋转特征的布尔运算。 熟悉仿真分析流程。 熟悉自由网格划分。 设置1/3 如果还没有运行一个新的模型文件,创建一个新文件并命名。 ·1·

·2· File Open 打开模型文件菜单 确信用户是在以下工作状态和任务当中 : 设置工作单位为毫米(mm) Options Units 设置2/3 工作内容:按照以下尺寸草绘封闭形状的图形。 提示 : 为什么:这个零件代表了典型机构连杆的应力集中部位。

工作内容: 命名零件 提示: 命名菜单 设置3/3 工作内容:创建一个和零件关联的有限元模型(FEM1)。 提示 保存模型文件。 File Save 警告! 如果软件提示用户保存模型文件,用户应选择:No 记住:只有教程中提示保存模型文件,而不是软件提示保存的时候,用户才可以执行保存文件操作。 为什么: 在上一次保存以后的错误操作不能撤销恢复,用户可以选择重新打开文件,恢复到上一次保存时的状态。 提示: ·3·

重新打开模型文件的快捷键:按Control-Z。 创建约束和约束集1/3 工作内容:全约束以下高亮表面。 怎样做: 表面上定义约束的菜单 OK 创建约束和约束集2/3 注意事项: 会产生约束符号。 在几何边缘、表面、顶点的约束用不同的颜色和符号表示。 ·4·

第六章溅射物理

溅射物理 我们知道具有一定能量的离子入射到固体表面上时,它将同表面层内的原子不断地进行碰撞,并产生能量转移。固体表面层内的原子获得能量后将做反冲运动,并形成一系列的级联运动。如果某一做级联运动的原子向固体表面方向运动,则当其动能大于表面的结合能时,它将从固体表面发射出去,这种现象称为溅射。早在1853年Grove就观察到了溅射现象,他发现在气体放电室的器壁上有一层金属沉积物,沉积物的成份与阴极材料的成份完全相同。但当时他并不知道产生这种现象的物理原因。直到1902年,Goldstein 才指出产生这种溅射现象的原因是由于阴极受到电离气体中的离子的轰击而引起的,并且他完成了第一个离子束溅射实验。到了1960年以后,人们开始重视对溅射现象的研究,其原因是它不仅与带电粒子同固体表面相互作用的各种物理过程直接相关,而且它具有重要的应用,如核聚变反应堆的器壁保护、表面分析技术及薄膜制备等都涉及到溅射现象。1969年,Sigmund 在总结了大量的实验工作的基础上,对Thompson的理论工作进行了推广,建立了原子线性级联碰撞的理论模型,并由此得到了原子溅射产额的公式。对于低能重离子辐照固体表面,可以产生原子的非线性级联碰撞现象,通常称为“热钉扎”(thermalized spike) 效应。在1974年,这一现象被H.H. Andersen 和H. L. Bay的实验所验证。 本章主要介绍溅射物理过程的一些基本概念和特征、计算溅射产额的Sigmund的线性级联碰撞模型、Matusnami 等人的溅射产额经验公式、热钉扎溅射以及溅射过程的计算机模拟等。最后,我们还对表面腐蚀现象与溅射过程之间的关系进行简要的讨论。 §6.1 溅射过程的一般描述 溅射过程可以用溅射产额Y这个物理量来定量地描述,其定义为平均每入射一个粒子从靶表面溅射出来的原子数,即

有限元法有限差分法有限体积法的区别

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值

相关文档
相关文档 最新文档