文档库 最新最全的文档下载
当前位置:文档库 › 发电厂电气课程设计任务书

发电厂电气课程设计任务书

发电厂电气课程设计任务书
发电厂电气课程设计任务书

发电厂电气部分课程设计任务书

发电厂电气部分课程设计目的和要求

1.课程设计的目的:

发电厂电气部分课程设计是在学习电力系统基础课程后的一次综合性训练,通过课程设计的实践达到:

(1)巩固“发电厂电气部分”、“电力系统分析”等课程的理论知识。

(2)熟悉国家能源开发策略和有关的技术规范、规定、导则等。

(3)掌握发电厂(或变电所)电气部分设计的基本方法和内容。

(4)学习工程设计说明书的撰写。

(5)培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。

2.课程设计的任务要求:

(1)分析原始资料

(2)设计主接线

(3)计算短路电流

(4)电气设备选择

3.设计成果:

(1)完整的主接线图一张

(2)设计说明书一份

发电厂电气部分课程设计说明书

1.前言(简要介绍本次设计任务的内容、设计的原则、依据和要求)

2.原始资料分析

3.主接线方案确定

3.1 主接线方案拟定(2~3个,小图)

3.2 主接线方案评定(可靠、灵活、经济)

(本章要求在说明书中明确画出方案拟定示意图,针对图示可以从主接线的三个基本要求列表评价所初选的方案,最终得出结论,对可靠性的定量计算评价,不做要求)。

4.厂用电(所用电)接线设计

5.主变压器(或发电机)的确定

(确定主变压器(或发电机)的型号、容量、台数,列出技术参数表,说明变压器的相数、绕组数、冷却方式等,简要说明确定的理由,为下一章的短路电流计算做准备)

6. 短路电流计算

(画出短路电流计算用的等值阻抗图,注明短路点的选择,列出短路电流计算表,具体的阻抗变换过程、计算过程放在附录中。)

7.电气设备选择

(包括QF、QS、CT、PT、母线、电缆、馈线、电抗器等,按照参考资料积极推荐使用成熟的新产品,不得使用淘汰产品。按照主接线的电压等级,列出各级电压下的电气设备明细表,具体的设备选择及校验过程放在附录中)

8.继电保护和自动装置(本次不涉及)

9.防雷设计(本次不涉及)

10.配电装置(本次不涉及)

结论

结论是课程设计的总结,单独作为一章编写,是整个设计的归宿。要求准确阐述自己的创造性工作或新的见解及其意义和作用,还可进一步提出需要讨论的问题和建议。

参考文献:西北电力设计院.电力工程设计手册.中国电力出版社

熊信银.发电厂电气部分. 中国电力出版社

黄纯华.发电厂电气部分课程设计参考资料. 中国电力出版社

附录

附录A 完整的主接线图(VISO或CAD)

附录B 短路电流计算过程附录C 设备选择及校验

原始资料1 中型火电厂电气设计

火电厂装机容量3350MW ,年利用小时数6000h ,当地年平均最高气温39℃,海拔540m ,土壤电阻率500Ω2m ,无其他特殊环境条件。

(1)

接入系统:2回110kV,17km 线路接入地区变,系统容量无穷大,地区变电所母线最大短路电流17kA (周期分量已计入10年发展),线路阻抗0.4Ω/km 。

(2) 发电机额定电压10.5 kV ,8.0cos =?,次暂态电抗18

.0"=d x (标么值)。 (3) 继电保护:主保护动作时间0.1s ,后备保护动作时间4s 。 (4)

厂用电:机组厂用高压侧计算负荷按机组容量的12%计。

原始资料2 中型水电厂电气设计

水电厂装机容量3334MW ,年利用小时数4000=max T 小时/年,当地年平均最高气温38℃,海拔600m ,地震烈度6级。土壤电阻率400Ω2m ,无其他特殊环境条件。 (1)接入系统:一回220kV,14km 架空线路接入枢纽变电所,系统容量按无穷大,变

电所母线最大短路电流(周期分量,并计入十年发展)27kA ,线路阻抗0.4Ω/km 。

(2)发电机额定电压10.5kV ,8.0cos =?5,次暂态电抗18.0"=d x (标么值)

。 (3)继电保护:主保护动作时间0.08s ,后备保护动作时间3s (4)厂用电:无高压厂用电气设备。

原始资料3 凝汽式火电厂电气设计

1、发电厂情况:

(1)中型凝汽式火电厂;

(2)机组容量与台数:4350 MW ,510.=N U Kv;

(3)电厂所在地区最高温度42℃,年平均温度25℃,气象条件一般; (4)机组年利用小时数6500=max T 小时/年; (5)厂用电率6 %; 2、负荷与系统情况:

(1)发电机电压负荷:最大20MW ,最小15MW ,8.0cos =?,=max T 5200小时;

(2)110kV 负荷:最大40MW ,最小30MW ,8.0cos =?5,=max T 4570小时; (3)其余功率送入220kV 系统,系统容量3500MW ,归算到发电厂220 kV 母线上

"X =0.021(j S =100MVA);

(4)供电回路数:

1)发电机电压:电缆出线6回,每回输送容量按3500KW 设计,长度L=500~

1000m;

2)110kV :架空线出线6回,每回输送容量按6700KW 设计; 3)220kV :架空线一回。

(5)发电机出口处主保护动作时间0.1s ,后备保护动作时间2s

原始资料4 大型水电厂电气设计

装机容量53300MW ,=max T 3246小时,年最高温度35℃,海拔1000m ,地震烈度5级,土壤电阻率600Ω.m ,无特殊环境条件。

(1)接入系统:以4回330kV ,90~240 km 架空线路接入枢纽变电所,系统容量按无穷大考虑,系统归算至水电厂母线最小电抗标么值"X =0.1285(j S =1000MVA ,已计入十年发展)。

(2)发电机额定电压15.75kV , 8.0cos =?75, ="d X 0.2 (3)主变压器,电抗标么值0.14

(4)继电保护:主保护0.06s ,后备保护2s (5)厂用电:无高压厂用电设备

原始资料5

110KV 终端变电站电气设计

1.该站为终端变电站,担负着向开发区用户供电的任务;

2.根据电力系统整体规划,待设计的变电站安装3台主变压器,容量按50MVA 考虑,一期工程按2台考虑,电压等级为110kV/10kV

3.变电站110kV 有2回进线,10kV 按20回出线考虑

4.连接该系统最大运行方式下的短路阻抗分别为9.77Ω,

5.18Ω,进线线路长8.66Km,10.56 Km 5.无特殊环境条件

系统短路阻抗如图:

原始资料6

110/35/10.5变电站接入系统电气初设计

1.建设规模:

1.电压等级:110/35/10.5kV

2.主变容量:23315000KVA ,本期一台

3.各级电压回路数及输送容量:

110kV 进出线4回,每回最大输送容量40000KVA ,本期2回; 35kV 最终6回,本期4回,每回最大输送容量10000KVA ; 10kV 最终8回,本期6回,每回最大输送容量1600KVA ; 2.接入规模: 本变电站110kV 、35kV 均接入系统 最大运行方式的阻抗图:

35KV

110KV

0.106 0.876

终端变

110KV

10KV

3.环境条件

海拔700m ,温度-20~+40℃ 污染等级Ⅰ,即轻度污染 雷暴日小于30天/年

原始资料7

3334MW 水利水力发电厂电气初设计

水电厂装机3334MW ,总容量10.2万KW ,3台发电机,额定电压10.5KV ,

8.0cos =?5,="d X 0.18,机组=max T 4500小时。

主变压器采用SFPL 7-40000型,采用Y 0 /△-11接线方式,低压侧电压10.5KV ,高压侧242±232.5%。

该发电厂以一回220KV ,14 Km 线路接入系统,线路阻抗为0.4Ω/Km ,系统容量按无限大考虑,地区变电所母线最大短路电流27KA

断路器采用SW 6-220型,动作时间0.6s ,固有分闸时间0.06s 。

电厂所在地多年平均最高气温30℃,海拔700m ,地震烈度6级,土壤电阻率400Ω. M ,无其他特殊环境条件。

原始资料8

35 /6.3 kV 变电所电气初设计

1.建设规模 小型终端变电所

容量35 /6.3 kV 变压器2台,年利用小时数=max T 6000小时 2.系统连接情况

变电所联入系统的电压等级35 kV ,电源进线为双回路,距离地区变电所8Km ,阻抗值0.4Ω/ Km

电力系统在地区变电所35 kV 母线上的短路容量=d s 1000KVA 3.负荷情况

变压器低压侧负荷:最大5.8MW 8.0cos =?,=max T 5000小时,一、二级负荷占70%,6KV 馈电线路8回,要求6KV 母线上功率因数补偿到0.9 所用电负荷50KW

4.环境条件

1.当地年最高温度38℃,最热月平均温度28℃

2.海拔不超过1000m

原始资料9

33100 MW火力发电厂电气部分设计

1、电厂为3台100MW汽轮发电机组,一次设计完成。

2、有220 kV 和110kV两级电压与系统连接,220KV出线有4回,每回出线最大

输送容量为50MVA;110KV出线有3回,每回出线输送容量为35MVA。本厂无6~10 kV及35 kV出线。

3、气象条件:年最高温度38℃,年最低温度-7℃。

4、系统阻抗在最大运行方式下(SJ=100MVA),与110kV系统的联系阻抗为0.012,

与220kV系统的联系阻抗为0.068,两系统均视为无穷大容量系统。

5、发电机参数:

型号:QFN-100-2 Pe=100MW Ue=10.5kV Ie=6475A cosφ=0.85 Xd”=0.183

原始资料10

110kV变电站初步设计

该变电站有3台主变压器,初期上2台,分为三个电压等级:110kV、35kV、10kV,各个电压等级均采用单母分段的主接线方式供电,

(1)110kV主接线设计:110KV清河变主要担负着为清河开发区供电的重任,主供电源由北郊变110KV母线供给,一回由北郊变直接供给,另一回由北郊变经大明湖供给形成环形网络,因此有两个方案可供选择:单母线接线;单母线分段接线。

(2)35Kv主接线设计:主要考虑为清河工业园区及周边高陵西部地区供电。

(3)10kV主接线设计:主要考虑为变电站周围地区供电。

为保障电压水平能够满足用户要求,本所选用有载调压变压器,选变压器两台。

3、主要电气设备选择

(1)110kV配电装置选用户外110kV六氟化硫全封闭组合电器(GIS)。开断电流31.5kA。

(2)35kV选用kYN-35型手车式金属铠装高压开关柜,内配真空断路器。开断电流25kA。

(3)10kV选用CP800型中置式金属铠装高压开关柜,内配真空断路器。出线开断电流31.5kA,进线开断电流40kA。

(4)10kV母线避雷器选用HY5WZ-17/45型氧化锌避雷器。

(5)根据《陕西电力系统污秽区分布及电网接线图集》,该站地处Ⅱ级污秽区,考虑到该站距公路较近,污级提高一级,按Ⅲ级户外用电气设备泄漏比距,110kV、35kV、10kV为2.5cm/kV(均按系统最高工作电压确定)。

4、无功补偿及消弧线圈

10kV出线回路数每段母线12回,本期装设2组干式接地变及消弧线圈。接地变容量700/160kVA,消弧线圈600kVA。本期装设2×1800kVar电容器组。

二、负荷发展情况

2004年 43000kW

2009年 60000kW

2014年 90000kW

三、建设规模

主变压器容量本期2331.5MVA,远期3350MVA。110kV本期两回出线,采用单母线分段接线;远期六回出线。35kV本期4回出线,采用单母线分二段接线。10kV本

户外设备基础及构架设计原则如下: 110kV架构及基础本期只安装两回。其余架构及基础只上本期规模,其余均不上,预留位置。三号变基础本期不上,仅预留位置。

二、短路阻抗

归算到本变电所110kV母线ΣZ1=0.0335,ΣZ0=0.0136。

六、运行方式

110kV单母线分段运行,35kV和10kV分列运行。

七、母线回路:

110kV单母线2段(初期上2段)

(1)本变——1# 28000kW

(2)本变——2# 30000kW

35kV母线2段(初期上2段)

(1)本变——1# 9500kW

10kV母线3段(初期上2段)(1)本变——1# 36500kW (2)本变——2# 33000kW (3)备用1段。

八、出线回路:

110kV出线6回(初期上2回)(1)本变——1# 28000kW (2)本变——2# 30000kW (3)备用4回。

35kV出线4回(初期上4回)(1)本变——1# 5000kW (2)本变——2# 4500kW (3)本变——3# 5000kW (4)本变——4# 4200kW 10kV出线36回(初期上24回)(1)本变——1# 4200kW (2)本变——2# 5000kW (3)本变——3# 3000kW (4)本变——4# 800kW (5)本变——5# 3500kW (6)本变——6# 4000kW (7)本变——7# 5000kW (8)本变——8# 3000kW (9)本变——9# 700kW (10)本变——10# 1800kW (11)本变——11# 3000kW (12)本变——12# 2500kW (13)本变——13# 4500kW (14)本变——14# 4000kW (15)本变——15# 3000kW (16)本变——16# 2000kW (17)本变——17# 3200kW (18)本变——18# 600kW (19)本变——19# 500kW (20)本变——20# 2200kW (21)本变——21# 4000kW

(23)本变——23# 3000kW

(24)本变——24# 2800kW

(25)备用12回。

原始资料11

200MW地区凝汽式火力发电厂电气部分设计

1)某地区根据电力系统的发展规划,拟在该地区新建一座装机容量为200MW的凝汽式火力发电厂,发电厂安装2台50MW机组,1台100MW机组,发电机端电压为10.5KV,电厂建成後以10KV电压供给本地区负荷,其中有机械厂、钢厂、棉纺厂等,最大负荷48MW,最小负荷为24MW,最大负荷利用小时数为4200小时,全部用电缆供电,每回负荷不等,但平均在4MW左右,送电距离为3-6KM,并以110KV电压供给附近的化肥厂和煤矿用电,其最大负荷为58MW,最小负荷为32MW,最大负荷利用小时数为4500小时,要求剩余功率全部送入220KV系统,负荷中Ⅰ类负荷比例为30%,Ⅱ类负荷为40%,Ⅲ类负荷为30%。

2)计划安装两台50MW的汽轮发电机组,型号为QFQ-50-2,功率因数为0.8,安装顺序为#1、#2机;安装一台100MW的起轮发电机组,型号为TQN-100-2,功率因数为0.85,安

原始资料12

本次设计为43600MW 大型发电机组的电气主接线,内容包括:电气主接线方案的拟定、比较和选择;短路电流的计算;主要电气设备和导体的选择;电气设备保护配置;设备汇总和绘制主接线图。所设计的内容力求概念清楚、层次分明、图文对照、表格齐备明了。

发电厂是电力系统的重要组成部分,起着电能的生产和一次分配、稳定系统的重要作用。电气主接线是发电厂变电所的主要部分,电气主接线的方式直接影响运行的可靠性、灵活性,它的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定,是发电厂电气部分投资大小的决定性因素。本次设计拟定两套接线方案,经分析比较后选定330KV母线采用3/2断路器接线方式。短路计算按三相短路考虑,分别计算了330KV出线和发电机出口20KV的短路情况,根据已知

参数和计算结果进行主要电气设备和导体的选择,并进行了开关设备的校验,简要的为主要设备配置了保护,最后进行了设备汇总和主接线图的绘制。

1.原始资料

⑴.韩城第二发电厂的作用和设计规模:

电厂的主要作用:韩城第二发电厂系新建工程,主要是为了缓解我省及周边地区电力供应不足,在西电东送的基础上,大力发展我省煤炭资源优势。

装机容量:本厂为凝汽式火电厂,规划容量2400MW,本期工程建设规模为23600MW 燃煤机组,为两机两炉,留有今后再扩建23600MW机组的可能性。

⑵.机组年利用小时为6000小时。

⑶.气象条件:

平均气压: 963.6hpa

平均气温: 13.4℃

极端最高气温: 42.6℃

极端最低气温: -14.8℃

平均相对湿度: 60%

最大风速: 40m/s

平均风速: 2.4m/s

最大冻土深度: 42cm

⑷.厂用电率:本期工程厂用电率为6.5%。

⑸.电力负荷及与电力系统的连接情况

发电机出口电压为20KV,经主变升压至330kV后与电网连接。电厂有四回330KV出线,分别送西高明变、韩城变和渭南变(2回), 以6KV电压级供给厂内高压厂用负荷。

原始资料13

预建一电厂,设计的主要内容、功能及技术指标为:装机4台,容量为4X200MW,UN=10.5kv;Tmax=6200h;年最高温度40度,平均气温25度;厂用电率:8%。功率因数达到0.9及以上。

出线回数背景资料:

a.10kv电压等级:电缆馈线10回,每回平均输送容量1.8MW。10kv最大负荷20MW,最小负荷16MW,功率因数0.85,Tmax=5300h,为Ⅰ类、Ⅱ类负荷。

b.110kv电压等级:架空出线6回,每回平均输送容量11MW。110KV最大负荷70MW,最小负荷60MW,功率因数0.8,Tmax=5000h,为Ⅱ类负荷。

c.220kv电压等级:架空线2回,220kv与无穷大系统连接,接受该发电厂的剩余功率。当取基准容量为100MV.A时,系统归算到220kv母线上。

原始资料14

2335+4315 MW 水力发电厂电气部分初步设计

一、发电厂的建设规模

1、待设计发电厂类型:水力发电厂;

2、发电厂一次设计并建成,计划安装2335+4315MW 的水力发电机组,利用小

时数 4000 小时/年。

二、发电厂与电力系统连接情况

1、待设计发电厂接入系统电压等级为 110 kV,距系统 110 kV 发电厂45km;出线回路数为 4 回;

2、电力系统的总装机容量为 2500 MVA、归算后的电抗标幺值为0.3 ,基准容量

Sj=100MVA;

3、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。

三、电力负荷水平

1、低压负荷:厂用负荷(厂用电率) 1.1 %;

2、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量 250 MW,

cos? = 0.8 ;

四、环境条件

海拔 < 1000m;本地区污秽等级 2 级;地震裂度< 7 级;最高气温36℃,最低温度?2.1°C;年平均温度18°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。

原始资料15

110/35/10KV降压变电所电气部分设计

原始资料:

1、变电所的建设规模

本变电所是中型降压变电所,一次建成。

2、变电所与电力系统连接情况

(1)变电所在电力系统中的地位和作用

本所位于某市郊小工业区中心,交通便利,地质条件好,进出线方便,供当地城市、

工厂及农村用电。

(2)变电所电压等级为110KV、35KV及10KV,系统以两回线向本所供电,35KV有6回出线,10KV有10回出线。

(3)变电所在系统中所处地理位置及与系统连接情况见电力系统图及设备技术表。

3、负荷资料

35KV侧最大负荷为38.5MVA,其中重要负荷占60%,最大的一回负荷为7.5MVA,平均功率因素为0.85,Tmax=6000h,35kv用户除本所外无其它电源。

10KV侧最大负荷为25MVA,最大一回为3.2MVA,平均功率因素为0.8,Tmax=4300h,所用负荷按变电所最大负荷的0.5%计算。

4、最小运行方式:变电所停运一台变压器,同时与变电所连接的发电厂中停用一台容量最大的发电机组。

5、环境条件:

变电所地处平原,年平均气温17℃,最热月平均30℃,绝对最高气温39℃,最热日平均气温为35℃,最低气温-13℃,最热月地下0.8米处土壤平均温度18℃。当地海拔高度400米,雷暴日数29.5日/年;无空气污染。土壤电阻率ρ=200Ω?m。

原始资料16

(1)待设计的变电站为一发电厂升压站

(2)计划安装两台200MW汽轮发电机机组

=15750V

发电机型号:QFSN-200-2 U

e

Cos =0.85 X

=14.13%

g

=200MW

P

e

=200MW (3)220KV,出线五回,预留备用空间间隔,每条线路最大输送容量200MVA,T

max

(4)当地最高温度41.7℃,最热月平均最高温度32.5℃,最低温度-18.6℃,最热月地面下0.8米处土壤平均温度25.3℃。

(5)厂用电率为8%,厂用电电压为6KV,发电机出口电压为15.75KV。

(6)本变电站地处8度地震区。

(7)在系统最大运行方式下,系统阻抗值为0.054。

(8)设计电厂为一中型电厂,其容量为23200 MW=400 MW,最大机组容量200 MW,向系统送电。

(9)变电站220KV与系统有5回馈线,呈强联系方式。

发电厂课程设计(DOC)

长沙理工大学城南学院 教师批阅发电厂电气主系统 课程设计(论文)任务书 城南学院(系)电气工程及其自动化专业1104 班 题目3×200MW大型火电厂电气主接线设计 任务起止日期;2014 年06月16 日~ 2013年06 月27 日 学生姓名学号 指导教师

教师批阅 一绪论 电能是经济发展最重要的一种能源,可以方便、高效地转换成其他能源 形式。提供电能的形式有水利发电,火力发电,风力发电,随着人类社会跨 进高科技时代又出现了太阳能发电,磁流体发电等。但对于大多数发展中国 家来说,火力发电仍是今后很长一段时期内的必行之路。 火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的 环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不 可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力 的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电 技术必须不断提高发展,才能适应和谐社会的要求。 “十五”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国 家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年 审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8 月份,审批项目213个,装机容量168546MW,同比增长420%。如果这些火 电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长 145%。 2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。当 月全国共完成火电发电量2266亿千瓦时,同比增长15.5%,增速同比回落1 个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量环 比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长 10.9%。2006年全年,全国累计完成火电发电量23186亿千瓦时,同比增长 15.8%,增速高于2005年同期3.3个百分点。 随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加 大力度调整火力发电行业的结构。

[百度文库]发电厂电气部分课程设计

西藏农牧学院发电厂电气部分课程设计 某小型水电站电气初步设计 姓名:潘涛 班级: 2014级电自一班学号: 2014601106 院系:电气工程学院 指导教师:李萍老师

摘要 本篇课程设计主要是对某水电站电气部分的设计,包括主接线方案的设计,发电机出口断路器选择,短路电流计算,母线型号、规格的确定。通过对水电站的主接线设计,主接线方案论证,短路电流计算,电气设备选择校验,母线型号及参数的确定,较为细致地完成电力系统中水电站设计。 限于本次课程设计的具体要求和时间限制,对其他方面的分析较少,这有待于在今后的学习和工作中继续进行研究。通过本次课程设计,我们小组也做出了自己的总结,以便于更好的完成接下来的学业任务。 关键字:电气主接线,短路电流计算,电气设备选择校验。

目录 第一章设计任务书--------------------------------------------------------------------------------- 2 一、设计题目 ----------------------------------------------------------------------------------- 2 二、设计原始材料----------------------------------------------------------------------------- 2 三、设计内容: -------------------------------------------------------------------------------- 2 四、设计要求: -------------------------------------------------------------------------------- 2 第二章主接线方案确定 -------------------------------------------------------------------------- 3 一、电气主接线 -------------------------------------------------------------------------------- 3 二、拟定主接线方案-------------------------------------------------------------------------- 4 三、确定主接线方案 ------------------------------------------------------------------------ 6 第三章短路电流计算------------------------------------------------------------------------------ 9 一、短路计算目的 --------------------------------------------------------------------------- 9 二、短路计算概述 --------------------------------------------------------------------------- 9 三、短路计算的一般规定 --------------------------------------------------------------- 10 四、短路计算-------------------------------------------------------------------------------- 11 第四章发电机出口端断路器选择 ----------------------------------------------------------- 15 一、断路器的选择 ------------------------------------------------------------------------- 15 第五章母线型号、规格的确定--------------------------------------------------------------- 19 一、6.3KV母线的选择 --------------------------------------------------------------------- 19 二、10KV母线的选择----------------------------------------------------------------------- 21 三、母线选择结果 ------------------------------------------------------------------------- 22 第六章结束语 ------------------------------------------------------------------------------------- 24 一、水电站电气部分设计结论----------------------------------------------------------- 24 二、设计要点及总结------------------------------------------------------------------------ 24 三、心得与收获 ------------------------------------------------------------------------------ 25

热力发电厂课程设计说明书(国产600MW凝汽式机组全厂原则性热力系统设计计算)

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

2016哈工大发电厂课程设计任务书-2016-1

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:发电厂电气部分课程设计 设计题目:600MW热电厂电气部分 院系:电气工程及其自动化学院 班级:1306141 设计者: 学号: 指导教师:胡林献 设计时间:2017.01.03-2017.01.07 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

学号尾数为1、6的同学做此题!

课程设计说明书 1 原始资料分析 1.1 发电厂类型 根据课程设计任务书的要求,这次设计的是一个热电厂的电气部分。 1.2发电厂设计规模 根据课程设计任务书的要求,该发电厂装设2台50 MW汽轮发电机组,2台100 MW汽轮发电机组,2台200 MW汽轮发电机组,汽轮机组总台数为5台,总容量为700 MW。 1.3 发电厂在系统中的地位 由课程设计任务书可知,总装机容量为700 MW,算不上一个大型电厂,它所接入的系统,220 KV系统是一个无穷大系统,110 KV系统总容量500 MW,由此可以看出,该发电厂在整个系统中所占的比重并不是很大,所以可以确定该发电厂只是一个地方性的电厂。 1.4 电压等级 由课程设计任务书可知,在本系统中,总共涉及到5个电压等级:高压厂用电电压,10.5 KV(QFQ-50-2及TQN-100-2型发电机出口电压),15.75 kV(QFQS-200-2型发电机出口电压),110 KV(系统C2电压),220 KV(系统C1电压)。 1.5 负荷情况 根据电力负荷的分类标准可以知道,该地区附近的负荷主要属于三类负荷,例如轻工业,但也包含二类负荷,比如一些重工业。110 KV和220 KV都是比较重要的线路,应保证供电的可靠性。所以,总体上来说,为了保证人民生命财产安全,为了不影响企业运转,还是应该采用可靠性较高的接线方式。 2 主接线方案拟定 2.1 机组台数分配 由课程设计任务书可知,10.5 KV负荷最大为75 MW,最小为50 MW,初期为52MW,以后每年增加5 MW。110 KV负荷最大为162 MW,最小为115MW,初期为67MW,以后每年增加20MW。 根据负荷和发电机组的情况,我们可以得到以下两条结论:(1)从开始建发电厂,一直到发电厂建设完成,接到10.5 KV母线上的机组总容量应一直为100 MW,这100

发电厂电气部分课程设计

《发电厂电气部分》课程设计100MW火力发电厂电气部分 学院:交通学院 姓名:高广胜 学号:1214010004 专业:13能源与动力工程 指导老师:马万伟 时间:2015年12月

课程设计任务书 一、设计题目 100MW火力发电厂电气部分设计 二.设计内容 1. 对发电厂在系统中的地位和作用及所供用户的分析; 2. 选择发电厂主变压器的台数、容量、型式; 3. 分析确定各电压侧主接线形式; 4. 分析确定厂用电接线形式; 5. 进行选择设备和导体所必须的载流导体的选择; 6. 选择变压器高、中、低压侧的断路器、隔离开关; 7. 选择配电装置型式及设计; 8. 用AutoCAD绘制发电厂电气主接线图。 三、课程设计的要求与数据 1、根据电力系统的发展规划,拟在某地区新建一座装机容量为100MW的凝汽式火力发电厂,发电厂安装1台100MW机组,发电机端电压为10.5kV。电厂建成后以10kV电压供给本地区负荷,其中有钢厂、毛纺厂等,最大负荷为68MW,最小负荷为34MW,最大负荷利用小时数为4200小时,全部用电缆供电,每回负荷不等,但平均在4MW左右,送电距离为3~6km。并以35kV电压供给附近的水泥厂用电,其最大负荷为58MW,最小负荷为32MW,最大负荷利用小时数为4500小时。负荷中I类负荷比例为30%,II类负荷为40%,III类负荷为30%。 2、计划安装两台100MW的汽轮发电机组,功率因数为0.85,厂用电率为6%,机组年利用小时Tmax=5800小时。 5、气象条件:绝对最高温度为35℃;最高月平均温度为25℃;年平均温度为12.7℃;风向以西北风为主. =165kA2s,未知系数0.8-1.2., 6、以100MVA为基准值,母线上阻抗为1.95,Q k 三相短路电流=4.5kA,短路电压=6KV,Sj=100MV.A,Uj=10.5kv. 四、课程设计应完成的工作 1、设计说明书、计算书一份; 2、主接线图一张;

热力发电厂课程设计

学校机械工程系课程设计说明书热力发电厂课程设计 专业班级: 学生姓名: 指导教师: 完成日期:

学校机械工程系 课程设计评定意见 设计题目:国产660MW凝汽式机组全厂原则性热力系统计算 学生姓名:专业班级 评定意见: 评定成绩: 指导教师(签名): 2010年 12 月9日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

《热力发电厂》课程设计任务书 一、课程设计的目的(综合训练) 1、综合运用热能动力专业基础课及其它先修课程的理论和生产实际知识进行某660MW凝气式机组的全厂原则性热力系统的设计计算,使理论和生产实际知识密切的结合起来,从而使《热力发电厂》课堂上所学知识得到进一步巩固、加深和扩展。 2、学习和掌握热力系统各汽水流量、机组的全厂热经济指标的计算,以及汽轮机热力过程线的计算与绘制方法,培养学生工程设计能力和分析问题、解决问题的能力。 3、《热力发电厂》是热能动力设备及应用专业学生对专业基础课、专业课的综合学习与运用,亲自参与设计计算为学生今后进行毕业设计工作奠定基础,是热能动力设备及应用专业技术人员必要的专业训练。 二、课程设计的要求 1、明确学习目的,端正学习态度 2、在教师的指导下,由学生独立完成 3、正确理解全厂原则性热力系统图 4、正确运用物质平衡与能量守恒原理 5、合理准确的列表格,分析处理数据 三、课程设计内容 1. 设计题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算) 2. 设计任务 (1)根据给定的热力系统原始数据,计算汽轮机热力过程线上各计算点的参数,并在h-s图上绘出热力过程线; (2)计算额定功率下的汽轮机进汽量Do,热力系统各汽水流量Dj、Gj; (3)计算机组和全厂的热经济性指标; (4)绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。 3. 计算类型 定功率计算 4. 热力系统简介 某火力发电厂二期工程准备上两套660MW燃煤气轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;汽轮机为Geg公司的亚临界压力、一次中间再热660MW凝汽式汽轮机。 全厂的原则性热力系统如图1-1所示。该系统共有八级不调节抽汽。其中第一、第二、第三级抽汽分别供高压加热器,第五、六、七、八级抽汽分别供低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了留置式蒸汽冷却器,上端差分别为-1.7oC、0oC、-1.7oC。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5oC。

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

发电厂变电所课程设计任务书

《发电厂变电所课程设计》任务书(4) 设计题目:220kV变电所电气一次部分初步设计 设计内容:根据所给定的设计资料,设计一个220kV变电所的电气一次部分,包括: 1.确定电气主接线; 2.确定主变压器的台数、容量和型式; 3.确定所用电接线、所用变压器的台数、容量和型式; 4.确定各电压级的配电装置型式; 5.确定电压互感器和电流互感器的配置; 6.选择各电压级各主要电气设备。 设计要求: 1.编写技术设计说明书,包括: a)主接线和所用电接线设计; b)负荷计算说明及主变压器和所用变压器的台数、容量和型式的确定; c)各回路最大持续工作电流及有关短路电流计算说明和计算结果表; d)主要电气设备选择说明及结果表。 2.编写技术设计计算书,包括: a)负荷计算及变压器容量选择; b)短路电流计算书; c)主要电气设备选择计算书。 3.绘制图纸,包括: 电气主接线简图 参考资料: 1.《发电厂电气部分》熊信银 2.《发电厂变电所课程设计指导书》 3.《发电厂变电所电气接线和布置》 4.《电力工程设计手册》(1、3册) 5.《电力工程电气设计手册》(电气一次部分) 6.《电力工程电气设备手册》(电气一次部分)

附:《发电厂电气主系统》课程设计指导书 一、设计题目:220KV变电所电气一次部分初步设计 二、设计资料: 1)建所目的 由于某地区电力系统的发展和负荷增长,拟建一座220kV变电所,向该地区用110kV 和10kV两个电压等级供电。 3)地区自然条件 年最高气温 40 ℃年最低气温-5 ℃ 年平均气温 18 ℃ 4)出线方向 220kV 向北 110kV 向西 10kV 向东南 三、负荷资料 1)220kV线路 3 回,另预留 1 回备用。架空线路型号选用LGJQ-300。 2)110kV线路8回,其中2回留作备用。架空。 3)10kV线路12回,另有2回备用。架空。

【第一组】发电厂电气部分课程设计

发电厂电气部分课程设计 学院:电气与信息工程学院 专业班级:电气工程及其自动化班xxx班 组号:第x组 指导老师:xxx 时间:2015.7

摘要 本设计是电厂主接线设计。该火电厂总装机容量为2×50+2×150+300=1300MW。厂用电率6%,机组年利用小时 T=6500h。根据所给出的原始资料拟定两种电气主m ax 接线方案,然后对比这两种方案进行可靠性、经济型和灵活性比较厚,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校验设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置。

目录 1设计任务书 (3) 1.1设计的原始资料 (3) 1.2设计的任务与要求 (3) 2电气主接线 (5) 2.1系统与负荷资料分析 (5) 2.2主接线方案的选择 (5) 2.2.1方案拟定的依据 (5) 2.2.2主接线方案的拟定 (7) 2.3 主变压器的选择与计算 (8) 2.3.1变压器容量、台数和型式的确定原则 (8) 2.3.2变压器的选择与计算 (9) 3短路计算 (10) 3.1短路计算的一般规则 (10) 3.2短路电流的计算 (10) 3.2.1各元件电抗的计算 (10) 3.2.2 等值网络的化简 (11) 4电气设备的选择 (16) 4.1电气设备选择的一般原则 (16) 4.2电气设备的选择条件 (16) 4.2.1按正常工作条件选择电气设备 (16) 4.2.2按短路情况校验 (17) 4.2.3 断路器和隔离开关的选择 (19) 4.2.4 电流互感器的选择 (20) 5结束语 (21) 6参考文献 (22)

热力发电厂课程设计报告dc系统

东南大学 热力发电厂课程设计报告 题目:日立250MW机组原则性热力系统设计、计算和改进 能源与环境学院热能与动力工程专业 学号 姓名 指导教师 起讫日期 2015年3月2日~3月13日 设计地点中山院501 2015年3月2日

目录 1 本课程设计任务 (1) 2 ******原则性热力系统的拟定 (2) 3 原则性热力系统原始参数的整理 (2) 4 原则性热力系统的计算 (3) 5 局部热力系统的改进及其计算 (6) 6 小结 (8) 致谢 (9) 参考文献 (9) 附件:原则性热力系统图

一本课程设计任务 1.1 设计题目 日立250MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析。 1.2 计算任务 1、整理机组的参数和假设条件,并拟定出原则性热力系统图。 2、根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s 图上绘出蒸汽的气态膨胀线。 3、对原始热力系统计算其机组内效率,并校核。 4、确定原则性热力系统的改进方案,并对改进后的原则性热力系 统计算其机组内效率。 5、将改进后和改进前的系统进行对比分析,并作出结论。 1.3设计任务说明 对日立MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析,我的任务是先在有DC系统情况下通过对抽汽放热量,疏水放热量,给水吸热量等的计算,求出抽汽份额,从而用热量法计算出此情况下的汽机绝对内效率(分别从正平衡和反平衡计算对比,分析误差)。然后再在去除DC系统的情况下再通过以上参量计算出汽轮机绝对内效率(也是正平衡计算,反平衡校核对比)。最后就是对两种情况下的绝对内效率进行对比,看去除DC系统后对效率有无下降,下降多少。

水电站课程设计

一、原始资料及设计条件 1、概述 1.1工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2. 工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW。 2、水文气象资料 2.1洪水 各频率洪峰流量详见下表1。 (1)下坝址水位~流量关系曲线详见下表2。 表3 上坝址水位~流量关系曲线表(高程系统:85黄海) (3)厂址水位~流量关系曲线详见下表4。 表4 厂址水位~流量关系曲线表(高程系统:85黄海)

多年平均含沙量:0.089kg/m3 多年平均输沙量:22.05万t 设计淤沙高程:169.0m 淤沙内摩擦角:100 淤沙浮容重:0.9t/m3 2.4气象 多年平均气温:16.6℃ 极端最高气温:39.1℃ 极端最低气温:-8.6℃ 多年平均水温:18.2℃ 历年最高气温:34.1℃ 历年最低气温: 2.1℃ 多年平均风速: 1.40m/s 历年最大风速:13.00m/s,风向:NE 水库吹程: 3.0km 最大积雪厚度:21cm 基本雪压:0.25KN/m3 3、工程地质与水文地质 3.1工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2)基岩物理力学指标如下 上坝址 饱和抗压强度:20~30MPa 抗剪指标:f砼/岩=0.6~0.65 抗剪断指标:f′砼/岩=0.8~0.9 c′=0.7~0.8MPa 下坝址 饱和抗压强度:15~25MPa 抗剪指标:f砼/岩=0.6~0.62 抗剪断指标:f′砼/岩=0.7~0.8 c′=0.70MPa 3.2坝址工程地质条件 (1)上坝址工程地形、地质条件 上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m ,左岸冲沟较发育,坝轴线上、下游分别分布2# 及3# 冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m ;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

发电厂专业课程设计

发电厂专业课程设计

发电厂电气部分课程设计 学院:电气与信息工程学院 专业班级:电气工程及其自动化班12-5班 组号:第一组 指导老师:齐辉 时间:2015.7

摘要 本设计是电厂主接线设计。该火电厂总装机容量为2×50+2×600=1300MW。厂用电率6.5%,机组年利用小时T=6500h。根据所给出的原始资料拟定两种电气主接m ax 线方案,然后对比这两种方案进行可靠性、经济型和灵活性比较厚,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校验设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置。

目录 1设计任务书 (3) 1.1设计的原始资料 (3) 1.2设计的任务与要求 (3) 2电气主接线 (5) 2.1系统与负荷资料分析 (5) 2.2主接线方案的选择 (5) 2.2.1方案拟定的依据 (5) 2.2.2主接线方案的拟定 (7) 2.3 主变压器的选择与计算 (8) 2.3.1变压器容量、台数和型式的确定原则 (8) 2.3.2变压器的选择与计算 (9) 3短路计算 (10) 3.1短路计算的一般规则 (10) 3.2短路电流的计算 (10) 3.2.1各元件电抗的计算 (10) 3.2.2 等值网络的化简 (11) 4电气设备的选择 (16) 4.1电气设备选择的一般原则 (16) 4.2电气设备的选择条件 (16) 4.2.1按正常工作条件选择电气设备 (16) 4.2.2按短路情况校验 (17) 4.2.3 断路器和隔离开关的选择 (19) 4.2.4 电流互感器的选择 (20) 5结束语 (21) 6参考文献 (22)

发电厂电气部分课程设计

《发电厂电气部分》课程设计报告110kV降压变电站电气主接线设计 ? 姓名:谭飞翔

& 班级:0314405 学号:0

课程设计是在完成专业课学习后实现培养目标的一个重要教学环节,也是对我们所学知识综合运用的一次测试。通过课程设计初步提高自身综合素质和工程实践能力,使所学的知识得到进一步巩固和升华。同时也对培养我们的敬业品德、独立工作、独立思考、理论联系实际作风具有深远的影响。 根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。该变电站设有两台主变压器,站内主接线分为110kV、35kV 和10kV三个电压等级。110KV电压等级采用双母分段线接线,35KV电压等级采用双母接线,10KV电压等级采用单母线分段接线。 本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。 本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。

1 电气主接线方案设计 (1) 电气主接线方案设计原则及要求 (1) 电气主接线方案设计原则 (1) 电气主接线的基本要求 (1) 可靠性 (1) 灵活性 (2) 经济性 (2) 主接线方案设计 (2) 各电压等级主接线方案选择与论证 (2) 主接线方案的论证 (2) 主接线方案的选择 (3) 接线图示例和总接线图 (4) 各电压等级接线图示例 (4) 电气总接线图 (5) 2 主变压器的选择 (6) 主变压器的选择 (6) 主变压器的台数及容量的确定原则 (6) 主变压器台数及容量的确定 (6) 台数的确定 (6) 容量的确定 (6) 主变压器型号的确定 (7)

热力发电厂课程设计计算书详解

热力发电厂课程设计

指导老师:连佳 姓名:陈阔 班级:12-1 600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。

1.3计算给水泵焓升: 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l =0.015D b (锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5) 3.计算汽轮机各级回热 抽汽量 假设加热器的效率η=1

(1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051()10791.1203(111fw 1=--?==ητααq 09067.06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -212fw 221=--?--?=-=q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02.7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--?--=-=q d d w w )(αηταα200382 .0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’;176 404.0587.43187.6) 587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--?--=-=q w w d )(’αηταα 进小汽机的份额为αt 根据水泵的能量平衡计算小汽机的用汽份额αt

发电厂电气主系统课程设计1任务书

<<发电厂电气主系统>>课程设计原始资料 题目:大型骨干电厂电气主接线 : 1. 发电厂(变电厂)的建设规模 (1) 类型:大型骨干凝汽电厂 (2) 最终容量和台数: MW 3004?+MW 6002? 型号( QFSN-300-2)+ (QFSN-600-2) KV U N 20= 85.0cos =? %6.186=d X %2.19'=d X %3.14"=d X (3) 最大负荷利用小时数:5500小时/年 2. 接入系统及电力负荷情况 (1)220KV 出线 6回 最大负荷: 600MW 最小负荷: 300MW 不允许检修断路器时线路停电。 85.0=?COS a h T MAX /5500= (2)500KV 电压等级: 出线 4回,备用出线2回,接受该厂的剩 余功率. 电力系统装机容量:4500MW,当取基准容量为100MVA 时,系统归算到500KV 母线上的020.0*=s x 85.0=?COS a h T MAX /5500= (3)发电机出口处主保护动作时间s t pr 1.01=,后备保护时间 s t pr 2.12= (4)厂用电率 取6%, 厂用电负荷平均功率因数 取85.0cos =? 3.环境条件:海拔小于1000米,环境温度025c ,母线运行温度080c

世界很大,风景很美;人生苦短,不要让自己在阴影里蜷缩和爬行。应该淡然镇定,用心灵的阳光驱散迷雾,走出阴影,微笑而行,勇敢地走出自己人生的风景! 人们在成长与成功的路途中,往往由于心理的阴影,导致两种不同的结果:有些人可能会因生活的不顺畅怨天尤人,烦恼重重,精神萎靡不振,人生黯淡无光;有人可能会在逆境中顽强的拼搏和成长,历练出若谷的胸怀,搏取到骄人的成就。只有在磨难中成长和成功的人们,才更懂得生活,才更能体味出世态的炎凉甘苦,才更能闯出精彩的人生。 阴影是人生的一部分。在人生的阳光背后,有阴影不一定都是坏事。我们应该感激伤害过自己的人,是他们让你的人生与众不同;感激为难你的人,是他们磨炼了你的心志;感激绊倒你的人,是他们强化了你的双腿;感激欺骗你的人,是他们增强了你的智慧;感激蔑视你的人,是他们警醒了你的自尊;感激遗弃你的人,是他们教会了你该独立。 人生若要走向成功,有好多的阴影需要消除。

发电厂电气部分课程设计

发电厂电气部分课程设计设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1.对原始资料的分析 2.主接线方案的拟定(至少两个方案) 3.变压器台数和容量的选择 4.所选方案的经济比较 5.主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2~3天:分析原始资料,拟定主接线方案 第4天:选择主变压器的台数和容量,对方案进行经济比较 第5~6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1.按照设计计划按时完成 2.设计成果包括:设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 指导教师: 教研室主任: 时间:

发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。 发电厂一次接线,即发电厂电气主接线。其代表了发电厂高电压、大电流的电气部分主体结构,是电力系统网络结构的重要组成部分。它直接影响电力生产运行的可靠性与灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面有决定性的关系。 本设计是对配有2?50MW供热式机组,2?600MW凝汽式机组的的大型火力发电厂电气主接线的设计,包括对原始资料的分析、主接线方案的拟定、变压器台数和容量的选择、方案的经济比较、主接线最终方案的确定。 关键词:火力发电厂;电气主接线

热力发电厂课程设计

1000 MW凝汽式发电机组全厂原则性热力系统的设计 学院:交通学院 专业:热能与动力工程 姓名:高广胜 学号: 1214010004 指导教师:李生山 2015年 12月

1000MW 热力发电厂课程设计任务书 1.2设计原始资料 1.2.1汽轮机形式及参数 机组型式:N1000-26.25/600/600(TC4F ) 超超临界、一次中间再热、四缸四排气、单轴凝汽式、双背压 额定功率:P e =1000MW 主蒸汽参数:P 0=26.25MPa ,t 0=600℃ 高压缸排气:P rh 。i =6.393MPa ,t rh 。I =377.8℃ 再热器及管道阻力损失为高压缸排气压力的8%左右。 MPa 5114.0MPa 393.608.0p rh =?=? 中压缸进气参数:p rh =5.746MPa ,t rh =600℃ 汽轮机排气压力:P c =0.0049MPa 给水温度:t fw =252℃ 给水泵为汽动式,小汽轮机汽源采用第四段抽汽,排气进入主凝汽器;补充水经软化处理后引入主凝汽器。 1.2.2锅炉型式及参数 锅炉型式:HG2953/27.46YM1型变压运行直流燃煤锅炉 过热蒸汽参数:p b =27.56MPa ,t b =605℃ 汽包压力:P drum =15.69MPa 额定蒸发量:D b =2909.03t/h 再热蒸汽出口温度:603t 0 .rh b =℃ 锅炉效率:%8.93b =η 1.2.3回热系统 本热力系统共有八级抽汽,其中第一、二、三级抽汽分别供给三台高压加热器,第五、六、七、八级分别供给四台低压加热器,第四级抽汽作为高压除氧器的气源。七级回热加热器均设置了疏水冷却器,以充分利用本机疏水热量来加热本级主凝结水。三级高压加热器和低压加热器H5分别都设置内置式蒸汽冷却器,为保证安全性三台高压加热器的疏水均采用逐级自流至除氧器,四台低压加热器是疏水逐级自流至凝汽器。 汽轮机的主凝结水经凝结水泵送出,依次流过轴封加热器、四台低压加热器、除氧器,然后由汽动给水泵升压,在经过三级加热器加热,最终给水温度为252℃。 1.2.4其它小汽水流量参数 高压轴封漏气量:0.01D 0,送到除氧器; 中压轴封漏气量:0.003D 0,送到第七级加热器; 低压轴封漏气量:0.0014D 0,送到轴封加热器; 锅炉连续排污量:0.005D b 。 其它数据参考教材或其它同等级汽轮机参数选取。 1.3设计说明书中所包括的内容 1.原则性热力系统的拟定及热力计算; 2.全面性热力系统设计过程中局部热力系统的设计图及其说明; 3.全面性热力系统过程中管道的压力、工质的压力、温度、管道的大小、壁厚的计算; 4.全面性热力系统的总体说明。

水电站课程设计

(中国通常称水头大于70m为高水头水电站,低于30m为低水头水电站,30~70m为中水头水电站) (混流式安装高程以导叶中心线为基准,轴流式则以叶片中心线为基准,卧式机组以主轴水平中心线为基准). 一、水轮机发电机组的选择 (1)选择机组台数、单机容量及水轮机型号(*); 选用4台HL310型机组,单机容量为(总装机容量=机组台数) (2)确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); 转轮直径为,转速为,水电站厂房所在地点海拔高程为,模型气蚀系数修正值为,则水轮机的吸出高度为 . 导叶高度为,取,由于有4台机组,设计尾水位取1台机组流量相应的水位,可按如下过程确定: 一台水轮机工作时的流量为 其中:取水轮机最优工况下的模型效率,即, 此时 限制工况下的模型效率为 则原型最优工况下效率为 修正值为 其中这里取 则修正后的模型限制工况下效率为 单位流量为 流量 则 因则 则水轮机的安装高程为. (3)选择尾水管的型式及尺寸; ①根据已得到的资料,知该水轮机为低水头水轮机(),得可此水电站尾水管对应的尺寸如下:(单位:m)

型式 参数 1 尺寸 为了减小开挖深度以及具有良好的水力性能,可采用弯肘形尾水管,它由进口直锥段、中间弯肘段、出口扩散段三部分组成。 ②进口直锥段: 进口直锥段是一个垂直的圆锥形扩散观,为至椎管的进口直径;对于混流式水轮机由于至椎管与基础环相连接,可取与出口直径相等,其椎管的单边扩散角可取;为直锥管的高度,增大可减小肘管的入口流量,减小流速对管壁的冲刷。 ③肘管: 肘管是一变截面弯管,其进口为圆断面,出口为矩形断面,水流在肘管中由于转弯受到离心力作用,使得压力和流速分布很不均匀,而在转弯后流向水平段时又形成了扩散,因而在肘管中产生了较大的水力损失。影响这种损失的最主要的原因是转弯的我、曲率半径和肘管的断面变化规律,曲率半径越小则产生的离心力越大,一般推荐使用的合理半径为 ,外壁用上限,内壁用作下限,则有.. ④出口扩散段: 出口扩散段是一水平放置断面为矩形的扩散段,起出口宽度一般与肘管出口宽度相等;其顶板向上倾斜,根据其出口宽度并不是很大,所以不需要加设中间支墩。仰角为 ,其中-. ⑤尾水段的高度和水平长度 尾水管的总高度和总长度是影响尾水管性能的重要因素。总高度是由导叶底环平面到尾水 管地板之间的垂直高度。在描述进口直锥管中已经说明,属于低速混流式水轮机。增大尾水管的高度,对减小水力损失和提高是有利的,特别是对大流量的轴流式水轮机更 为显着。但对混流式水轮机尾水管中产生的真空涡带在严重的情况下不仅影响机组的正常运行还会延伸到尾水管地板引起机组和厂房的振动。为了改善这一情况,常采取增大尾水管高 度的方法,但将会增大开挖量,经过试验,对于低转速混流式水轮机,应采取,由上述可知,,满足要求。 (4)选择相应发电机型号、尺寸 已知水轮机单机容量为,根据《水电站机电手册——水力机械》查得,选择发电机的型号为SF50-44/920的半伞式发动机组4台。 主要参数为:

相关文档