文档库 最新最全的文档下载
当前位置:文档库 › LC固有频率计算公式

LC固有频率计算公式

LC固有频率计算公式
LC固有频率计算公式

Q=wL\R=2πfL\R(因为w=2πf)=1/wCR=1/2πfCR

1. LC并联谐振电路最常见的应用是构成选频电路或选频放大器;

2. LC串联谐振电路最主要用来构成吸收电路,用来构成在众多频率信号中将某一频率信号进行吸收,也就是进行衰减,将某一频率信号从众多频率中去掉;

3. LC并联谐振电路还可用来构成阻波电路,即从众多频率中阻止某一频率信号通过放大器或其他电路;

4. LC并联谐振电路还可以构成移相电路,用来对信号相位进行超前或滞逅移动。

a. 无论是LC并联谐振还是LC串联谐振电路,其频率的计算公式相同,谐振频率又称固有频率,或自然频率。f0=1/(2*pi*sqrt(L1*C1));

b. 品质因数Q值——衡量LC谐振电路振荡质量的重要参数。Q=(2*pi*f0*L1)/R1,R1为线圈L1的直流电阻,L1为谐振电路中电感;

①频点分析:输入信号频率等于该电路谐振电路谐振频率时,LC并联谐振电路发生谐振,此时谐振电路的阻抗达到最大,并且为纯阻性,Z0=Q*Q*R1,Q为品质因数,R1为线圈L1的直流电阻;

②高频段分析:输入信号频率高于谐振频率f0时,LC谐振电路处于失谐状态,电路阻抗下降;

③低频段分析:输入信号频率低于谐振电路f0时,LC并联谐振电路也处于失谐状态,谐振电路的阻抗也要减小。

信号频率低于谐振频率时,LC并联谐振电路的阻抗呈感性电路等效成一个电感(但不等于L1)。

1. 谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。

2. 电路欲产生谐振,必须具备有电感器L及电容器C两组件。

3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。

4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是

X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图

5. 串联谐振电路之特性:

(1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R

(2) 电路电流为最大。即

(3) 电路功率因子为1。即

(4) 电路平均功率最大。即P=I2R

(5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0

6. 串联谐振电路之频率:

(1) 公式:

(2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C

使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子:

(1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

之比,称为谐振时之品质因子。

(2) 公式:

(3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之

间。

8. 串联谐振电路阻抗与频率之关系如图(2)所示:

(1) 电阻R 与频率无关,系一常数,故为一横线。

(2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。

(3) 电容抗与频率成反比,故为一曲线。

(4) 阻抗Z = R+ j(X L?X C)

当f = f r时,Z = R 为最小值,电路为电阻性。

当f > f r时,X L>X C,电路为电感性。

当f <fr时,X L<X C,电路为电容性。

当f = 0或f = ∞时, Z = ∞ ,电路为开路。

(5) 若将电源频率f由小增大,则电路阻抗Z 的变化为先减后增。

9. 串联谐振电路之选择性如图(3)所示:

(1) 当f = f r时, ,此频率称为谐振频率。

(2) 当f = f1或 f 2时, ,此频率称为旁带频率、截止频率或半功率频率。

(3) 串联谐振电路之选择性:电路电流最大值变动至倍电流最大值时,其

所对应的两旁带频率间之范围,即为该电路之选择性,通常称为频带宽度或波宽,以BW表示。

公式:

(4) 当f = f1或f2时,其电路功率为最大功率之半,故截止频率又称为半功率频率。公式:

(5) f 2> f r称为上限截止频率, f 1< f r称为下限截止频率。

公式:

(6) 若将电源频率f 由小增大,则电路电流I 的变化为先增后减,而质量因子Q

值越大,其曲线越尖锐,即频带宽度越窄,响应越好,选择性越佳。

(7) 当频带宽度BW很宽,表示质量因子Q值很低;若Q<10时,上列公式不

适用,此时谐振频率为。

图2

图3

悬臂梁固有频率的计算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到 1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4 A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得 12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得 12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要 求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh ) =0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-; 该方程的根n l β表示振动系统的固有频率:12 2 4 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各 n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,; 若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l l C C l l ββββ+=-+;

高频实验2:LC与晶体振荡器

实验二:LC与晶体振荡器 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能。 3.熟悉静态工作点IEQ对振荡器振荡幅度和频率的影响。 4.熟悉LC谐振回路的电容变化对振荡器振荡频率的影响。 二.实验预习要求 1.做本实验时应具备的知识点: * 三点式LC振荡器 * 克拉泼电路 * 静态工作点值对振荡器工作的影响 2.做本实验时所用到的仪器: * LC与晶体振荡模块实验板 * 双踪示波器 * 频率计 * 万用表 三.实验电路原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振、平衡条件和相位平衡条件。 3.C振荡器的频率稳定度 频率稳定度表示:在一定时间、或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4、LC振荡器的调整和参数选择 以实验采用的改进型电容三点振荡电路(西勃电路)为例 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路,如实验电路图12-1所示。

轴固有频率计算课件

转子固有频率计算方法对比 本文通过理论计算与ansys 模拟两种方法计算转子的固有频率,分别对单盘与多盘情况下作了计算,本文中转子与轴的材料参数如下: 3 .07850101.211==?=μρ泊松比kg/m 密度Pa 弹性模量3E 一、 单盘时计算与对比 1、理论计算 中点C 处挠度EI Fl c 483 -=ω

推出轴的刚度3 48l EI k =,其中l 为轴总长度,E 为弹性模量, I 为惯性矩,F 为外力 64 4 d I π= ,d 为轴的轴径 得:3 4 43l d E k π= 代入数据有: N/m 5 3 41110342.4225 .0401.014.3101.23?=?????=k 质量kg 5.17850025.01.014.34 141 22=????===ρπρa l D V m rad/s 5385 .110342.45 =?==m k n ω HZ 7.8528 .6538 2=== πωn f 2、ansys 模态计算固有频率 约束方式:A 端铰支,即约束X 、Y 、Z 平动自由度,不约束转动自由度,B 端只约束Y 、Z 自由度 用mass21单元:

3、结论: 1).不加集中质量结果偏差较大 2).直接约束与用combin14和matrix27单元模拟与理论计算结果差不多

二、多盘时计算与对比 模型结构图 考虑多个盘时对比较复杂,先画出本文结构如下图: 理论推导示意图 轴系统固有频率计算 ANSYS 中模态分析 直接得出固有频率 通过柔度计算刚度,求 固有频率 根据轴挠度公式计算得柔度,得固有频率 ANSYS 中静力分析求出柔度,推出固有频率

二阶电路分析——LC震荡的推导

二阶电路分析——LC 震荡的推导 如图9.16所示,RLC 串联电路零输入响应的数学分析依KVL ,得 0=-+C L R u u u 按图9.16中标定的电压,电流参考方向有 dt du C i C -= dt du RC Ri u C C -== 22dt u d LC dt di L u C L -== 将以上各式代入KVL 方程,便可以得出以 C u 为响应变量的微分方程,为 02 2=++C C C u dt du RC dt u d LC ()0≥T (9.10) 式(9.10)为一常系数二阶线性齐次微分方程,其特征方程为 012=++RCp LCp 其特征根为 2 022 2 ,1122ωαα-±-=-?? ? ??±-=LC L R L R p 式中:L R 2/=α称为衰减系数;LC /10=ω称为固有振荡角频率。 1.几种不同情况的讨论 (1)当(R/2L)2>1/LC 时,1p 、2p 为不相等的负实根,称为过阻尼情况。特征根为 2 022,1ω-±-=a a p 微分方程的通解为 ()t p t p C e A e A t u 2121+= (9.11) 其中待定常数1A 、2A 由初始条件来确定,其方法是:当+=0t 时刻,则由

式(9.11) 可得 ()21A A t u C += 对式(9.12)求导,可得+=0t 时刻()t u C 对t 的导数的初始值为 ()()()C i p A p A dt t du u t C C +=+-=+=='+0022110 联立求解式(9.12)和式(9.13),便可以解出1A 、2A 。 根据式(9.11)可知,零输入响应()t u C 是随时间按指 数规律衰减的,为非振荡性质。()t u C 的波形如图9. 17所示。 (2).当()LC L R /12/2=时, 1p 、2p 为相等的负实根, 称为临界阻尼情况。特征根为 a p p -==21 微分方程的通解为 ()()at C e t A A t u -+=21 其中常数1A 、2A 由初始条件()+0C u 和()+'0C u 来确定。()t u C 的波形图根据式(9.13)可知,这种情况的响应也是非振荡的。 (3)当时,1p 、2p 为具有负实部的共轭复根,称为欠阻尼情况。待征根为 d j L R LC j L R p ωα±-=?? ? ??-±-=2 2 ,1212 其中 2202 21αωω-=?? ? ??-= L R LC d 称为阻尼振荡角频率。微分方程的通解为 ())sin(e ?ωα+=-t A t u d t C

固有频率的计算

2.8.6.1 液压传动的固有频率 2.8.6.1.1 概述 液压传动装置的固有频率,对于闭环系统的动态特性和系统计算的原点,是一个重要的参数。从稳定性观点来看,一个闭环系统,若系统具有较高的固有频率,则会有一些问题。可粗略地划分为如下的3个频率区: ?低频:3~10Hz,重型机械、机械手、手动设备、注射机。 中频:50~80Hz,位置控制的机床。? ?高频:>100Hz,试验机、注射机、压机。 2.8.6.1.2 基本公式 计算弹簧质量系统固有频率的基本公式为: 式中:(1/s) m=质量(kg) C=弹簧刚度() 弹簧刚度“液压刚度”C,主要由受压的油液体积决定,由下式确定, 式中:E=液压油的弹性模量 =1~1.4×109() =1~1.4×104(bar) A2=油缸面积的平方(m4) V=油液体积(m3) 如基本公式已经表明的那样,一个液压传动系统的固有频率,取决于执行器液压马达或液压缸的尺寸,和驱动的质量。 系统中的其他元件,例如调节阀,也有自已的固有频率。因为整个闭环系统的角频率,是由系统中动态特性最低的元件决定的,因而也要注意闭环调节阀的极限频率。此值在50到150Hz的范围。 2.8.6.1.3 双出杆液压缸 让活塞处于缸的中间位置,得到: 式中:AR=油缸环形面积(┫) h=油缸行程(m) 注:对于死容积,应预先给行程h增加20~50%的附加值。 人们都明确地了解到,活塞面积与行程之比,对固有频率有着重要的影响。A:h的系数也可表示为λ=“长径比”。从提高固有频率观点考虑,较大的面积和较短的行程是比较有利的。面积的确定,还要由其他的一些因素,如规格大小、压力、体积流量等一同来考虑。 在作这些考察时,管道的容积未加考虑。很显然,总要尽可能地减小死容积,这就是说,阀与缸之间的管道短些、刚性大些,有利于提高固有频率。 上面计算固有频率,是按活塞处于中间位置的情况得到的一个最小固有频率值,这是实践中处于最不利情况下必须达到的数值。 例1已知:D=50mm,d=32mm,m=50kg≌[ ],h=500mm=0.5m,E=1.4?109 解: 2.8.6.1.4 单出杆缸

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 222 2 2+-+ +--=

LC固有频率计算公式

Q=wL\R=2πfL\R(因为w=2πf)=1/wCR=1/2πfCR 1. LC并联谐振电路最常见的应用是构成选频电路或选频放大器; 2. LC串联谐振电路最主要用来构成吸收电路,用来构成在众多频率信号中将某一频率信号进行吸收,也就是进行衰减,将某一频率信号从众多频率中去掉; 3. LC并联谐振电路还可用来构成阻波电路,即从众多频率中阻止某一频率信号通过放大器或其他电路; 4. LC并联谐振电路还可以构成移相电路,用来对信号相位进行超前或滞逅移动。 a. 无论是LC并联谐振还是LC串联谐振电路,其频率的计算公式相同,谐振频率又称固有频率,或自然频率。f0=1/(2*pi*sqrt(L1*C1)); b. 品质因数Q值——衡量LC谐振电路振荡质量的重要参数。Q=(2*pi*f0*L1)/R1,R1为线圈L1的直流电阻,L1为谐振电路中电感; ①频点分析:输入信号频率等于该电路谐振电路谐振频率时,LC并联谐振电路发生谐振,此时谐振电路的阻抗达到最大,并且为纯阻性,Z0=Q*Q*R1,Q为品质因数,R1为线圈L1的直流电阻; ②高频段分析:输入信号频率高于谐振频率f0时,LC谐振电路处于失谐状态,电路阻抗下降; ③低频段分析:输入信号频率低于谐振电路f0时,LC并联谐振电路也处于失谐状态,谐振电路的阻抗也要减小。 信号频率低于谐振频率时,LC并联谐振电路的阻抗呈感性电路等效成一个电感(但不等于L1)。

1. 谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是 X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

LC正弦波振荡电路详解

LC正弦波振荡电路详解 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出

当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数

当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)

固有频率参数的理解

固有频率在ADAMS/Linear 和ADAMS/Vibration 中的理解 在ADAMS 中,固有频率是通过本征向量计算的,为了更好的理解计算结果中各个参数的意义,解决仿真中常见的问题,在这里理论联合实际对一些基本知识在ADAMS 中的应用做一基本论述。 在此,不涉及ADAMS/Linear 的扩展命令,所有的线性化命令实际都是在图形界面操作所得的。 对于单自由度系统,如经典的弹簧——质量——阻尼系统,质量m 的运动方程有: 0=++m k x m c x x 或 0=++kx x c x m (1) 这里x 为质量m 的位移,k 为弹簧刚度系数,c 为阻尼系数。根据无阻尼固有圆频率和阻尼比的定义重写等式(1): 022=++x x x n n ωζω (2) 这里: 无阻尼固有圆频率(Undamped Natural Frequency )m k n =ω (3) 阻尼比(Damping Ratio )n m c km c ωζ22== (4) 可以看出,无阻尼固有圆频率n ω只是弹簧刚度k 和质量m 的函数,与阻尼值无关。 ADAMS/Linear 实际上计算无阻尼固有圆频率的方法有所不同,它使用拉普拉斯(Laplace )在仿真运行点对模型变换为线性矩阵,再通过本征值向量(Eigenvalues )计算系统的固有圆频率和阻尼比,但计算结果与上述计算是等效的。一般,本征值λ由实部(Real part )r λ和虚部(Imaginary part )i λ两部分组成:i r λλλ±=,因此,方程式(2)可以写为: 0222=++n n ωλζωλ (5) 本征值λ由下式决定: 当阻尼比ζ>1,12-±-=ζωζωλn n (6) 当阻尼比ζ<1,21ζ ωζωλ-±-=n n j (7) 令:n r ζωλ-=;21ζωλ-=n i 。 当系统阻尼比当ζ<1时,ADAMS/Linear 使用下式计算无阻尼固有圆频率与阻尼比: 22 i r n λλω+= (8) 即:()()n n n n n n n i r ωωωζωωζξωζωλλ==-+=-+-=+22222222222 1

实验3 电容三点式LC振荡器

实验3 电容三点式LC振荡器 一、实验准备 1.做本实验时应具备的知识点: ●三点式LC振荡器 ●西勒和克拉泼电路 ●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响 2.做本实验时所用到的仪器: ●LC振荡器模块 ●双踪示波器 ●万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能; 3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响; 4.熟悉负载变化对振荡器振荡幅度的影响。 三、实验电路基本原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振

荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图3-1所示。 图3-1 电容三点式LC振荡器交流等效电路 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路。

交流电路及LC振荡电路

交流电路及LC 振荡电路 【考纲要求】 1.熟练掌握正弦交流电产生及交流发电机的原理,能应用有效值、最大值、平均值、瞬时值、周期,频率等物理量定量描述交流电的特征。能用正弦交流电的图像描述它的变化规律。 2.掌握变压器的工作原理,并能应用变压对电压、电流、功率等作定量运算。 3.能够计算电能输送中有关输送电压、电流及电能损失数值。 4.掌握电磁振荡的产生过程及振荡周期公式。 5.了解麦克斯韦电磁理论及电磁场、电磁波的一般知识。 【知识结构】 【热点导析】 1.描述交流电的物理量 描述交流电的物理量有电压(电流)的最大值、瞬时值、平均值、有效值、周期、频率等,其中最难理解最重要的是交流电的有效值。一直流电与一交流电分别通过相同电阻在相同时间内两者产生相等的热量,则这个直流电的数值就叫做这个交流电的有效值。有效值与对应最大值的关系为ε= 2 m ε,I= 2 m I ,U= 2 m U ,其中ε=NBS ω,I m = r R NBS +?,U m =r R R NBS +?。应注意,在交流电路中,凡是安培表和伏特表的示数、用电器的额定电压和额定电流、保险

丝的熔断电流均指交流电的有效值。与功能、功率有关的值也均用有效值来计算。非正弦交流电的有效值的计算按“定义”求得。而在计算通过导体电量时只能用交流电的平均值。 2.变压器原理中的因果关系及有关注意点 理想变压器输入电压决定输出电压;变压器的输出功率决定输入功率,即有功率输出,才可能有功率输入。发电机的端电压由发电机决定。 理想变压器只能改变电流、电压,而无法改变功率和频率。 变压器高压线围匝数多而通过电流较小,故用较细的导线绕制;低压线圈匝数少而通过电流较大,故用较粗的导线绕制。副线圈几组组合使用时要注意区分顺次绕向连接(U 出=U 2+U 3)如图6-12-1(A )所示,和双向绕组连接(U 出=U 2-U 3)如图6-12-1(B )所示。有几组副线圈分别对外供电时,电流与匝数不成反比,应按输入功率与输出功率相等计算电压和电流,即I 1U 1=I 2U 2+I 3U 3+… 常用的“口”字形铁心变压器,穿过每匝线圈的磁通量和磁通量的变化率都相同。“日”字形铁心变压器中,穿过原副线圈的磁通量及变化率不同,故不能用电压与匝数成正比解,而应根据法拉弟电磁感应定律(ε=n t ??? )用匝数与磁通量变化率的乘积比去解。 3.远距离输电 在远距离输电时,输电线上损失能量Q=I 2 R 线t 。在不能无限减小导线电阻的前提下,通常减小输电电流(当输送功率P=IU 一定时,要减小电流I 就要提高输电电压U )来减小线 路损失。输电线功率损失的计算式有P 损=I 2 R 线=(送 送U P )2R 线=线负送R U U 2)(-,而P 损=线送 R U 2为 错误解。 4.LC 电磁振荡 LC 电磁振荡是利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性转化。 要正确理解电磁振荡过程中线圈中电流和线圈两端电压(即电容器两极板间电压)的变化关系,欧姆定律在此不适用,因为阻碍线圈中电流变化的是线圈中产生的自感电动势而不是电阻。I 大U 反而小。LC 振荡回路中以电容器上电量为代表的(含电容器电压、线圈中自感电动势、电场和电场能等)和电感线圈中电流为代表的(含电容器电量变化率、磁场和磁场能等)两类物理量具有完全相反的变化规律,即Q 类物理量值较大(或增大),i 类物理量值较小(或减小),反之亦然。 LC 电磁振荡过程中,i 、q 、、、U C 等变化周期均为2πLC ,而电场能、磁场能 变化周期为π LC 。

固有频率测定方法

固有频率测定方法 Prepared on 24 November 2020

固有频率测定方法 1.概要 固有频率的测定一般采用传递函数测定的方法。这个方法是一种为了测定结构物的各个点中的传递函数,使用数字信号处理技术和FFT算法的方法。 所谓传递函数是指若以系统的输入信号为“X”,从该处输出(应答)信号为“Y”,可以公式:传递函数 H=Y/X (1) 来表示的函数。 振动解析的领域中处理的传递函数,输入X多数为力。输出(应答)Y是哪一个物理量,则取决于测定。如表1所示那样,传递函数H分别具有固有频率。 表1 传递函数的种类 图1所示为测定传递函数顺序。固有频率与传递函数的虚数部中的峰值相一致。此外,除在振幅成为“0”的节点测定的外,在所有的测定点,振幅存在于相同的频率上。

图1 传递函数的测定顺序 以的输入信号 同时采样输入信号和应答 信号 实行采样的波形(信号) 的傅里叶交换 以输入的傅里叶交换实行 应答的傅里交换 2.测定安装方法 以下就传递函数测定法的具有代表性的加振方法——随机加振法、脉冲加振法进行说明。对于试验体的材料、结构、试验目的等,可采用各种各样的加振方法,详细内容请参照参考书。 (1)随机加振法图2 随机加振法 随机加振法是一种如图2所示的那样, 在试验体的加振点安装加振机,给与随机噪 声的加振力,测定应答点的加速度,其信号 输入至FFT模拟装置,进行处理的方法。 图3脉冲加振法 (2)脉冲加振法 脉冲加振法是一种如图3所示的那样,用 脉冲锤子敲打作为测定对象的试验体的加振点,

给与脉冲状的力,检测这个力的时间变化和应 答点的加速度,进行与上述加振法相同的处理 方法。 此外,脉冲信号的频谱也是平坦的,所以, 随机噪声同样作为输入波形使用。 再者,采用这类测定时有必要预先确认加振力和应答加速度的时间波形、频谱、相关函数。 表2 所示为各种加振法的比较。 表2 加振法的比较 3.加振试验时的注意事项 以下汇总了进行加振实验时的注意事项。 (1)随机加振 (a)加振机的选择 为了求得必要的加振力,根据其值,选择应适使用得加振机在。这是 得到高SN比的传递函数的重要条件。

固有频率测定方法.

固有频率测定方法 1.概要 固有频率的测定一般采用传递函数测定的方法。这个方法是一种为了测定结构物的各个点中的传递函数,使用数字信号处理技术和FFT算法的方法。 所谓传递函数是指若以系统的输入信号为“X”,从该处输出(应答)信号为“Y”,可以公式:传递函数H=Y/X (1) 来表示的函数。 振动解析的领域中处理的传递函数,输入X多数为力。输出(应答)Y是哪一个物理量,则取决于测定。如表1所示那样,传递函数H分别具有固有频率。 Y 位移速度加速度 H 顺从性迁移率加速度 (惯性) 图1所示为测定传递函数顺序。固有频率与传递函数的虚数部中的峰值相一致。此外,除在振幅成为“0”的节点测定的外,在所有的测定点,振幅存在于相同的频率上。 图1 传递函数的测定顺序 以的输入信号 同时采样输入信号和应答 信号 实行采样的波形(信号)的 傅里叶交换 以输入的傅里叶交换实行 应答的傅里交换

2.测定安装方法 以下就传递函数测定法的具有代表性的加振方法——随机加振法、脉冲加振法进行说明。对于试验体的材料、结构、试验目的等,可采用各种各样的加振方法,详细内容请参照参考书。 (1)随机加振法图2 随机加振法随机加振法是一种如图2所示的那样, 在试验体的加振点安装加振机,给与随机噪 声的加振力,测定应答点的加速度,其信号 输入至FFT模拟装置,进行处理的方法。 图3脉冲加振法 (2)脉冲加振法 脉冲加振法是一种如图3所示的那样,用 脉冲锤子敲打作为测定对象的试验体的加振点, 给与脉冲状的力,检测这个力的时间变化和应 答点的加速度,进行与上述加振法相同的处理 方法。 此外,脉冲信号的频谱也是平坦的,所以, 随机噪声同样作为输入波形使用。 再者,采用这类测定时有必要预先确认加振力和应答加速度的时间波形、频谱、相关函数。 表2 所示为各种加振法的比较。 项目脉冲加振法随机加振法 测定的难易度·为了稳定地得到具有必要的区 域和水平地脉冲波形,需要熟练 地技术和小诀窍。 ·只有加振器,就能简单地加振。失 败少。 测定时间·一次一次慎重进行加振,化时 间。 ·快 适用范围·适用于小形、轻量的测定对象。·测定对象为小型、轻量,不仅加振 器安装困难。受到加振器的质量影 响,不能正确地进行测定。 ·适合于具有执行元件等加振器的测 定对象。

高考专题:交流电路及LC振荡电路

高考专题:交流电路及LC 振荡电路 【考纲要求】 1.熟练掌握正弦交流电产生及交流发电机的原理,能应用有效值、最大值、平均值、瞬时值、周期,频率等物理量定量描述交流电的特征。能用正弦交流电的图像描述它的变化规律。 2.掌握变压器的工作原理,并能应用变压对电压、电流、功率等作定量运算。 3.能够计算电能输送中有关输送电压、电流及电能损失数值。 4.掌握电磁振荡的产生过程及振荡周期公式。 5.了解麦克斯韦电磁理论及电磁场、电磁波的一般知识。 【知识结构】 【热点导析】 1.描述交流电的物理量 描述交流电的物理量有电压(电流)的最大值、瞬时值、平均值、有效值、周期、频率等,其中最难理解最重要的是交流电的有效值。一直流电与一交流电分别通过相同电阻在相同时间内两者产生相等的热量,则这个直流电的数值就叫做这个交流电的有效值。有效值与对应最大值的关系为ε= 2 m ε,I= 2 m I ,U= 2 m U ,其中ε=NBS ω,I m = r R NBS +?,U m =r R R NBS +?。应注意,在交流电路中,凡是安培表和伏特表的示数、用电器的额定电压和额定电流、保险

丝的熔断电流均指交流电的有效值。与功能、功率有关的值也均用有效值来计算。非正弦交流电的有效值的计算按“定义”求得。而在计算通过导体电量时只能用交流电的平均值。 2.变压器原理中的因果关系及有关注意点 理想变压器输入电压决定输出电压;变压器的输出功率决定输入功率,即有功率输出,才可能有功率输入。发电机的端电压由发电机决定。 理想变压器只能改变电流、电压,而无法改变功率和频率。 变压器高压线围匝数多而通过电流较小,故用较细的导线绕制;低压线圈匝数少而通过电流较大,故用较粗的导线绕制。副线圈几组组合使用时要注意区分顺次绕向连接(U 出=U 2+U 3)如图6-12-1(A )所示,和双向绕组连接(U 出=U 2-U 3)如图6-12-1(B )所示。有几组副线圈分别对外供电时,电流与匝数不成反比,应按输入功率与输出功率相等计算电压和电流,即I 1U 1=I 2U 2+I 3U 3+… 常用的“口”字形铁心变压器,穿过每匝线圈的磁通量和磁通量的变化率都相同。“日”字形铁心变压器中,穿过原副线圈的磁通量及变化率不同,故不能用电压与匝数成正比解,而应根据法拉弟电磁感应定律(ε=n t ??? )用匝数与磁通量变化率的乘积比去解。 3.远距离输电 在远距离输电时,输电线上损失能量Q=I 2 R 线t 。在不能无限减小导线电阻的前提下,通常减小输电电流(当输送功率P=IU 一定时,要减小电流I 就要提高输电电压U )来减小线 路损失。输电线功率损失的计算式有P 损=I 2 R 线=(送 送U P )2R 线=线负送R U U 2)(-,而P 损=线送 R U 2为 错误解。 4.LC 电磁振荡 LC 电磁振荡是利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性转化。 要正确理解电磁振荡过程中线圈中电流和线圈两端电压(即电容器两极板间电压)的变化关系,欧姆定律在此不适用,因为阻碍线圈中电流变化的是线圈中产生的自感电动势而不是电阻。I 大U 反而小。LC 振荡回路中以电容器上电量为代表的(含电容器电压、线圈中自感电动势、电场和电场能等)和电感线圈中电流为代表的(含电容器电量变化率、磁场和磁场能等)两类物理量具有完全相反的变化规律,即Q 类物理量值较大(或增大),i 类物理量值较小(或减小),反之亦然。 LC 电磁振荡过程中,i 、q 、、、U C 等变化周期均为2πLC ,而电场能、磁场能 变化周期为π LC 。

lc振荡电路分析_lc振荡电路工作原理及特点分析

lc振荡电路分析_lc振荡电路工作原理及特点分析 LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC 振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电LC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。频率计算公式为f=1/[2(LC)], 其中f为频率,单位为赫兹(Hz);L为电感,单位为亨利(H);C为电容,单位为法拉(F)。 lc振荡电路工作原理及特点分析LC电磁振荡过程涉及的物理量较多,且各个物理量变化也比较复杂。实际分析过程中,如果注意到电场量(电场能、电压、电场强度)和磁场量(磁场能、电流强度、磁感应强度)的异步变化,电场量、磁场量各自的同步变化,充分利用包含电场能、磁场能在内的能量守恒,由能量变化辐射其他物理变化,就可快速地弄清各物理量的变化情况,判断电路所处的状态。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。由于所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,所以实际上的LC振荡电路都需要一个放大元

lc振荡电路频率怎么计算_lc振荡电路频率计算(计算公式)

lc振荡电路频率怎么计算_lc振荡电路频率计算(计算公式)lc振荡电路LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电LC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。频率计算公式为f=1/[2(LC)], 其中f为频率,单位为赫兹(Hz);L为电感,单位为亨利(H);C为电容,单位为法拉(F)。 工作原理开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率f0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离f0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率f0的振荡信号。 LC振荡电路物理模型的满足条件①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存

LC振荡电路电容和电感的测量设计

LC振荡电路电容和电感的测量设计 2011年02月26日 11:15 本站整理作者:译名用户评论(3) 关键字:电感(52)测量(95)电容(153)LC振荡电路(1) 文中针对电容和电感的测量,简单介绍了关于LC振荡电路测量电容和电感的设计原理。同时通过实验证明该方案能进行高频电感和电容的测量。测量的精度能达到应有要求。 1 测量原理 采用LC振荡器的振荡原理,LC振荡器选择L或是C参数为固定值。通过LC 的组合,振荡器起振,当测量电容时电感固定,测量电感时电容固定。通过LC 振荡器的频率计算公式 其中, ,可以计算出待测的电容或电感数值。 2 电路工作原理 2.1 电路框图设计 如图1所示。框图包括输入切换部分、振荡部分、分频部分、单片机部分、显示部分和键盘部分。此系统由STC89C51单片机作为控制核心,输入切换部分采用双刀双掷继电器完成待测电容或电感的线路切换,振荡电路工作在放大谐振状态,频率有高频管9018的集电极输出,由于频率较高,所以需经过信号分频,再者由于输出的电压幅度大,此处无需再加一级驱动,以74LS393数字分频芯片,把分频端级联实现100分频,最终信号进入单片机,由单片机计算出频率,经过算法设计,实现未知电容或电感参数的测定。图1给出了系统的总体框架图。

2.2 输入切换电路 输入切换电路使用双刀双掷继电器实现,主要负责电容和电感的输入切换,当连接上电容时系统通过继电器K2,如图2所示。连接单片机,K2的固定端直接连接单片机的引脚IO3和IO4,常开节点连接待测电容或电感的引脚两端,并且初始设置两个引脚一个为逻辑高电平5 V,一个为逻辑低电平0 V,当给K2 通电,固定端和常闭端连接,由于IO3和IO4分别为5 V和0 V。电容对直流是开路,所以IO3和IO4电平维持原来的状态。若为电感,由于电感对直流相当于导线,那么5 V的IO会被0 V的拉低。两个IO都为0 V。由此得出没有短路在一起时,单片机判断为电容,从而选择测量电容的方法,此时通过单片机对IO1脚的设置把另一个双刀双掷开关K1,开关拨到上,上为与电容C2并联,如图2所示。而短路在一起时,单片机判断为电感,单片机选择测量电感的方法,此时通过单片机对IO1脚的设置把另一个双刀双掷开关K1开关拨到下,即与电感L 并联。 2.3 振荡电路原理 振荡电路采用LC振荡电路,振荡的频率由L和C确定。振荡管采用9018,Rb1和Rb2为基极偏置,Rc为限流电阻,电容C1、C2和电感L构成正反馈选频

悬臂梁固有频率的计算电子版本

悬臂梁固有频率的计 算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh )=0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根 n l β表示振动系统的固有频率:1224 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;

实验2 正弦波振荡器(LC振荡器和晶体振荡器)

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

相关文档