文档库 最新最全的文档下载
当前位置:文档库 › 高数公式大全

高数公式大全

高数公式大全
高数公式大全

高等数学公式·平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

三角函数的角度换算

[编辑本段]

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-s inα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

部分高等内容

[编辑本段]

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。特殊三角函数值

a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 None

cota None √3 1 √3/3 0

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u

du

dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:

a

x x a

a a ctgx x x tgx x x x ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(22

=

'='?-='?='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'?

?????????+±+=±+=+=+=+-=?+=?+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222?

????++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

π

π

三角函数公式: ·诱导公式:

·和差角公式: ·和差化积公式:

2

sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβ

αβα-+=--+=+βαβαβαβαβαβαβαβαβαtg tg tg tg tg ?±=

±=±±=±1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x

x x

x x

x -+=-+±=++=+-=

=+=

-=

----11ln

21)

1ln(1ln(:2

:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1

1(lim 1

sin lim

0==+=∞→→e x

x

x

x x x

·倍角公式:

·半角公式:

α

α

αααααααααααα

α

ααα

cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12

2

cos 12cos 2cos 12

sin -=

+=-+±=+=-=+-±

=+±=-±=ctg tg

·正弦定理:R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+=

·反三角函数性质:arcctgx arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式:

)

()

()()2()1()(0

)

()()

(!

)1()1(!2)1()

(n k k n n n n n

k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+

'+==---=-∑

中值定理与导数应用:

拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=

---'=-)(F )

()

()()()()())(()()(ξξξ

曲率:

α

ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=

-=-=α

α

αααααααααα

αα22222212221

2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=

-=

-=-=-==

.

1

;0.)

1(lim M s M M :.,13202a

K a K y y ds d s K M M s

K tg y dx y ds s =='+''==??='?'???=

=''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α

ααα

α

定积分的近似计算:

???----+++++++++-≈

++++-≈

+++-≈

b

a

n n n b

a

n n b

a n y y y y y y y y n

a

b x f y y y y n a b x f y y y n

a

b x f )](4)(2)[(3)(])(2

1

[)()()(1312420110110 抛物线法:梯形法:矩形法:

定积分应用相关公式:

??--==?=?=b

a

b a dt t f a b dx x f a b y k r

m

m k F A

p F s

F W )(1)(1

,2221均方根:函数的平均值:为引力系数引力:水压力:功:

空间解析几何和向量代数:

代表平行六面体的体积为锐角时,

向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22

2

2

2

2

2

212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k

j i

b a

c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M

d z

y

x z y x

z

y x

z

y

x

z y x

z

y x z y x z

z y y x x z z y y x x u u

??==??=?=?==?=++?++++=++=?=?+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:

同号)

(、抛物面:、椭球面:二次曲面:

参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:

1

1

3,,2221

1};,,{,1

30

2),,(},,,{0)()()(122

222222

22222

222

22220000002

220000000000=+-=-+=+=++??

?

??+=+=+===-=-=-+++++=

=++=+++==-+-+-c

z b y a x c z b y a x q p z q y p x c z b y a x pt

z z nt

y y m t

x x p n m s t p z z n y y m x x C B A D

Cz By Ax d c z

b y a x D Cz By Ax z y x M C B A n z z C y y B x x A

多元函数微分法及应用

z

y z x y x y x y x y x F F y z

F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y

v

dx x v dv dy y u dx x u du y x v v y x u u x

v

v z x u u z x z y x v y x u f z t

v

v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z

u dy y u dx x u du dy y z dx x z dz -

=??-=??=?

-??

-??=-==??+??=??+??=

==???

??+?????=??=?????+?????==?+?=≈???+??+??=??+??=

, , 隐函数+, , 隐函数隐函数的求导公式:

时,,当

多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

)

,(),(1),(),(1),(),(1),(),(1),(),(0

),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F v

G u

G v F

u

F v u

G F J v u y x G v u y x F v

u v u ???-=?????-=?????-=?????-=??=????????=??=???== 隐函数方程组:

微分法在几何上的应用:

)

,,(),,(),,(30

))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0

),,(0),,(0))(())(())(()()()(),,()

()()

(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y

x y

x x z x z z y z y -=

-=-=-+-+-==????

?====-'+-'+-''-=

'-='-??

?

??===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:

上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线

ωψ?ωψ?ωψ?方向导数与梯度:

上的投影。在是单位向量。方向上的

,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。

轴到方向为其中的方向导数为:沿任一方向在一点函数l y x f l f

l j i e e y x f l

f j y

f i x f y x f y x p y x f z l x y f

x f l f l y x p y x f z ),(grad sin cos ),(grad ),(grad ),(),(sin cos ),(),(??∴?+?=?=????+??=

=??+??=??=

????

?

多元函数的极值及其求法:

????

???

??=-<-???><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22

000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x

重积分及其应用:

??????

??????????????

????++-=++=++==>===

=

==

???

?

????+??? ????+==='

D

z D

y D

x z y x D

y D

x D

D

y D

x D

D D

a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M

M y d y x d y x x M

M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2

3

22

2

2

3

22

2

2

3

22

2

22D

2

2

)

(),()

(),()

(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ

ρσ

ρσ

ρσρσρσ

ρσ

ρσ

ρσ

ρθ

θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面

柱面坐标和球面坐标:

????????????????????????????????????Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

ΩΩ+=+=+====

=

=

===???=??

???=====???

??===dv

y x I dv z x I dv z y I dv

x M dv z M

z dv y M

y dv x M

x dr

r

r F d d d drd r

r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z

z r y r x z y x r ρρρρρρρ?θ??

θθ??θ?θ

??θ???θ?θ?θθθθθθθπ

πθ?)()()(1,1,1sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )

,sin ,cos (),,(,),,(),,(,sin cos 22222220

)

,(0

2

2

2

, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:

曲线积分:

??

?==<'+'=≤≤?

?

?==?

?)()()()()](),([),(),(,)()(),(22t y t

x dt t t t t f ds y x f t t y t x L L y x f L

?βαψ?ψ?βαψ?β

α

特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):

第一类曲线积分(对弧

,通常设的全微分,其中:才是二元函数时,=在:二元函数的全微分求积注意方向相反!

减去对此奇点的积分,,应。注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;

、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。上积分起止点处切向量分别为

和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·212,)()()cos cos ()}()](),([)()](),([{),(),()()(00

)

,()

,(00==+=

+????????-===??-??=-=+=??-??+=??-??+=+'+'=+?

?

?==??????????????y x

dy y x Q dx y x P y x u y x u Qdy Pdx y

P

x Q y

P

x Q G y x Q y x P G ydx

xdy dxdy A D y P x Q x Q y P Qdy Pdx dxdy y P

x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt

t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D L

D L D L L

L

L

βαβαψψ??ψ?ψ?β

α

曲面积分:

??????????????????????

++=++±=±=±=++++=ds

R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy

z y x R dzdx z y x Q dydz z y x P dxdy y x z y x z y x z y x f ds z y x f zx

yz

xy

xy

D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)],(,,[),,(2

2γβα系:两类曲面积分之间的关号。,取曲面的右侧时取正

号;,取曲面的前侧时取正

号;,取曲面的上侧时取正

,其中:对坐标的曲面积分:对面积的曲面积分:

高斯公式:

??????????????????Ω

Ω

∑=++==?

A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n

div )cos cos cos (...

,0div ,div )cos cos cos ()(

成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:

—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:

?????????Γ

Γ

∑∑

Γ

?=++Γ??

????=

??=

????=????=????????

=??????++=??-??+??-??+??-??ds

t A Rdz Qdy Pdx A R

Q P z y x A y P

x Q x R z P z Q y R R

Q

P

z y x R Q P z y x dxdy dzdx dydz Rdz Qdy Pdx dxdy y P

x Q dzdx x R z P dydz z Q y R

的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k

j i rot cos cos cos )()()(

γβ

α

常数项级数:

是发散的

调和级数:等差数列:等比数列:n

n

n n q q q q q n n 1

312112

)1(3211111

2

+++++=++++--=

++++-

级数审敛法:

散。

存在,则收敛;否则发、定义法:

时,不确定

时,级数发散

时,级数收敛

,则设:、比值审敛法:

时,不确定时,级数发散

时,级数收敛

,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞

→+∞→∞

→+++=???

??=><=???

??=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ

。的绝对值其余项,那么级数收敛且其和

如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤?????=≥>+-+-+-+-n n n n

n n n n u r r u s u u u u u u u u u u u

绝对收敛与条件收敛:

∑∑∑∑>≤-+++++++++时收敛

1时发散p

级数: 收敛;

级数:收敛;

发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11

1

)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n

幂级数:

01

0)3(lim

)3(111

1111

221032=+∞=+∞

===

≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n

n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定

时发散时收敛

,使在数轴上都收敛,则必存收敛,也不是在全

,如果它不是仅在原点 对于级数时,发散

时,收敛于

ρρρ

ρρ

函数展开成幂级数:

+++''+'+===-+=+-++-''+-=∞→++n

n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !

)0(!2)0()0()0()(00

lim )(,)()!1()

()(!

)()(!2)())(()()(2010)1(00)(2

0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ

一些函数展开成幂级数:

)

()!12()1(!5!3sin )11(!

)1()1(!2)1(1)1(1

21532+∞<<-∞+--+-+-=<<-++--++-+

+=+--x n x

x x x x x x n n m m m x m m mx x n n n

m 欧拉公式:

???

????-=+=+=--2sin 2cos sin cos ix

ix ix

ix ix

e e x e e x x i x e 或 三角级数:

上的积分=在任意两个不同项的乘积正交性:。

,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )

sin cos (2)sin()(00101

0ππω???ω-====++=++=∑∑∞

=∞

= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n

傅立叶级数:

是偶函数 ,余弦级数:是奇函数

,正弦级数:(相减)

(相加)

其中,周期∑?

∑???∑+=

==

======+-+-=++++=

+++=

+++???

?

???=====++=--∞

=nx a a x f n nxdx x f a b nx b x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n

n n n n n n n cos 2

)(2,1,0cos )(2

0sin )(3,2,1n sin )(2

012413121164

1312112461412185

1311)3,2,1(sin )(1)2,1,0(cos )(1

2)sin cos (2)(0

2

2222

2222

2

222

221

0 π

π

π

ππ

ππ

π

πππππππ

周期为l 2的周期函数的傅立叶级数:

???

?

???=====++=??∑--∞=l

l n l l n n n n n dx l x n x f l b n dx l x

n x f l a l

l

x n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos

)(12)sin cos (2)(10 其中,周期ππππ

微分方程的相关概念:

即得齐次方程通解。

代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:

为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x

y

y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0

),(),(),(???

一阶线性微分方程:

)

1,0()()(2))((0)(,0)()

()(1)()()(≠=+?

+?=≠?

===+?--n y x Q y x P dx

dy

e C dx e x Q y x Q Ce y x Q x Q y x P dx

dy

n dx x P dx x P dx

x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:

全微分方程:

通解。

应该是该全微分方程的,,其中:分方程,即:

中左端是某函数的全微如果C y x u y x Q y u

y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),(),(),(0),(),(),(0),(),(

二阶微分方程:

时为非齐次

时为齐次,0)(0)()()()(2

2≠≡=++x f x f x f y x Q dx dy

x P dx y d 二阶常系数齐次线性微分方程及其解法:

2

122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:

为常数;,其中?'''=++?=+'+''式的通解:

出的不同情况,按下表写、根据(*),321r r

二阶常系数非齐次线性微分方程

为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x ++=+-==+= -= ----1ln(:2 :2:22) 双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学公式总结(绝对完整版).

高等数学公式大全 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

大一高数公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数知识点公式大全

高等数学公式 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

高数公式大全

大学数学公式 常用导数公式: 常用积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?= 11()(1)ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +?=22311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2d () x x ax b +?=211ln ()ax b C b ax b b x +-++

的积分 10 .x C 11 .x ? =22(3215ax b C a -+ 12 .x x ? = 22232(15128105a x abx b C a -++ 13 .x =22(23ax b C a -+ 14 .2x =22232(34815a x abx b C a -++ 15 . =(0)(0)C b C b ?+>+< 16 . 2a b 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分

19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22d x x a -?=1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0)(0)x C b C b ?+>???+< 23.2d x x ax b +?=21ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 21ln 2x C b ax b ++ 26.22d ()x x ax b +?=21d a x bx b ax b --+? 27.32d ()x x ax b +?=2222 1ln 22ax b a C b x bx +-+

同济高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

小学到大学所有数学公式

小学到大学所有数学公式.txt真正的好朋友并不是在一起有说不完的话题,而是在一起就算不说话也不会觉得尴尬。你在看别人的同时,你也是别人眼中的风景。要走好明天的路,必须记住昨天走过的路,思索今天正在走着的路。1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形

高等数学常用公式汇总————

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++ ++≥ 倒数关系:sinx ·csc x=1 tanx ·cot x=1 cosx ·sec x=1 商的关系:tanx=sinx/cosx cotx=cosx/sinx 平方关系:sin^2(x)+cos^2(x)=1 tan^2(x)+1=sec^2(x) cot^2(x)+1=csc^2(x) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-si n^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 降幂公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 两角和差: sin(α±β)=sinα·cosβ±cosα·sinβ

(完整版)大学高数公式大全

精心整理 高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数:两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='=' 22 1 11 )(arccos 11 )(arcsin x x x x -- ='-= '? ?+±+=±+=C a x x a x dx C shx chxdx )ln(222 2C a x arctg a x a dx ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=++-=++=+=+-=?????1csc ln csc sec ln sec sin ln cos ln 22?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππ

βαβααβαctg tg ±±±±((cos(sin(

·半角公式: ·正弦定理: R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 30 21),,(z y x F M z y x =?? ? ??=曲面在点空间曲线方向 曲线积分: 曲面积分: 高斯公式:

高数积分公式大全

12. (一)含有ax b 的积分(a 1 . dx 1 ax b a =-In ax b 2. 3. 4. 5. 6. 7. 9. 10. 11. 13. 常用积分公式 0) 1 (ax b) dx = a( 1) x 1 dx = -^(ax b ax b a 丄dx =丄 ax b a 3 (ax bln b)2 b) ax b) C 2b(ax b) b 2ln ax b dx x( ax b) dx x 2(ax b) x 2dx (ax b) 2 (^dx 1ln b 1 bx ax ax b 1 = -r(ln a ax b ax b ) 2bln ax b b 2 ax b ) C dx 2 x(ax b) b(ax b) 含有.ax b 的积分 1 2 In b 2 ax b Tax~ dx = — T(ax~b)3 3a x 、、ax bdx = -^(3ax 2b 15a x 2 . ax bdx = ^^(15a 2x 2 12abx 8b 2) ., (ax b)3 C 105a ).(ax b)3 C x 2 - d x = -- 2 (ax 2b)、ax b C ,ax b 3a 2

2 15a 3 dx x ¥ ax b dx x 21 ax b ax b. dx = (3a 2x 2 4abx 8b 2)、、ax b ■, ax b 、. ; b .ax b .b A C (b (b 0) 0) bx 2b x 丫 ax b 2 ax b dx x, ax b ax b , 2 dx = x a dx 2 x 、ax b 14. 15. 16. 17. 18. (三) 19. 20. 21 . (四) 22. 23.

高数公式大全全

高数公式大全 1.基本积分表: 三角函数的有理式积分: 一些初等函数:两个重要极限: 三角函数公式: ·诱导公式: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

·和差角公式:·和差化积公式: 2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβ αβα-+=--+=+-+=--+=+α ββαβαβαβ αβαβ αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ

大学高数公式大全

高等数学公式导数公式: (tgx)’ =sec x (ctgx)' = -CSC x (secx) '=secx tgx (cscx) ‘ = -cscx ctgx (a v vi vii viii ix x r = a x l na (log a xr — xl na (arcsin x),= . 1 2 J1-X2 1 (arccos x)'= —一’ V1—x2 1 (arctgx)'= __2 1 +x (arcctgx),= -— 1 + x 基本积分表: Jtanxdx = -In cos^C Jcotxdx=ln sinx +C Jsecxdx= In secx+tgx +C Jcscxdx = In |cscx -ctg* +C dx J _2 a +x 「dx J 巴 =fsec xdx =tgx +C ' cos x 、 dx 2 J ——=fcsc xdx = -ctgx + C 'sin X ‘ fsecx tgxdx = secx + C J cscx ctgxdx =-cscx+C x fa x d^-^ +C In a f shxdx = chx + C 2 2 x -a dx —2 2 a -x dx I n 2 =Jsin n xdx = Jcos n xdx = jJ x2 +a2dx f J x2 -a2dx jV a2-x2dx 1 x =— arctg — a 丄In 2a 丄In 2a a g +( X +a 匕 +C a -x x = arcsi n- +C a Jchxdx = shx + C

三角函数的有理式积分: □1 I nd n __________ 2 , _________ =—V x^a^ — In(x + V x2+ a2) +C 2 2 __________ 2 L X I 2 2 a.『 =—v x -a ........... 2 2 ________ 2 2 -x2+ "^arcsin- + C 2 -一In X + V x2 -a2+C 2u sin X = ---------- 7c os x=Wy, dx 2du = 2 1 +u

大学高数公式大全

高 等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

大学高数公式大全

大学高数公式大全 对的性对及推对数 用^表示乘方~用log(a)(b)表示以a对底~b的对数 *表示乘~号/表示除号 定对式, 若a^n=b(a>0且a?1) 对n=log(a)(b) 基本性对, 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推对 1.对就不用推了~直接由定对式可得个吧(把定对式中的[n=log(a)(b)]对入 a^n=b) 2. MN=M*N 由基本性对1(对掉M和N) a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)] 由指的性对数 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因对指函是对对函~所以数数数 log(a)(MN) = log(a)(M) + log(a)(N) 3.与2对似对理 MN=M/N 由基本性对1(对掉M和N)

a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)] 由指的性对数 a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因对指函是对对函~所以数数数 log(a)(M/N) = log(a)(M) - log(a)(N) 4.与2对似对理 M^n=M^n 由基本性对1(对掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指的性对数 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因对指函是对对函~所以数数数log(a)(M^n)=nlog(a)(M) 其他性对, 性对一,对底公式 log(a)(N)=log(b)(N) / log(b)(a) 推对如下 N = a^[log(a)(N)] a = b^[log(b)(a)] 对合式可得两 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因对N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {对步不明白或有疑对看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a) 性对二,;不知道什对名字, log(a^n)(b^m)=m/n*[log(a)(b)] 推对如下

同济高等数学公式大全

同济高等数学公式大全文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

大学高等数学公式汇总大全(珍藏版)

大学高等数学公式汇总大全(珍藏版) 常用导数公式: 常用基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

大学数学公式总结大全

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数公式大全(全)

高数公式大全 1、基本积分表: 三角函数得有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -= ----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦

相关文档
相关文档 最新文档