文档库 最新最全的文档下载
当前位置:文档库 › 光栅光谱仪

光栅光谱仪

光栅光谱仪
光栅光谱仪

近 代 物 理 实 验 报 告

实验:用光栅光谱仪测量物体的色度值

一、实验目的

1.了解并掌握测色原理;

2.了解1931 CIExy色度图的作用;

3.计算滤色镜的色度值。

二、实验仪器名称

光栅光谱仪,钠光灯,钨灯,发光二极管,滤色片。

三、实验原理和操作步骤

1.实验原理

研究光源或经光源照射后物体透、反射颜色的学科称为色度学。这是一门有着广泛应用的学科,目的是对人眼能观察到的颜色进行定量的测量。无论是在纺织、印染、印刷、染料、涂料、塑料、食品、油漆、建筑等行业,还是在计量、医学、电视、电影、照相、环境美化、交通讯号、产品鉴定以及遥感、信息处理和空间光学等各个领域,都离不开对颜色的测量和研究。色度学本身涉及到物理、生理及心理等领域的知识,是一门交叉性很强的边缘学科。为了把“颜色”这个经过生理及心理等因素加工后的生物物理量变换到客观的纯物理量而能使用光学仪器对色光进行测量,以消除那些因人而异,含混不清的颜色表达方式,需要经过大量的科学实验,将感性认识上升到理性阶段,再去指导人们对颜色的正确测量。我们知道,对颜色的描写一般是使用色调、饱和度和明度这三个物理量。色调是颜色的主要标志量,是各颜色之间相互区别的重要参数。红、橙、黄、绿、青、蓝、紫以及其它的一些混合色名均是因色调的不同而加以区分,饱和度是指颜色的纯洁程度。可见光谱中的单色光纯。如果单色光中混杂白光后,其纯度将会下降。明度

是指物体的透、反射程度.对光源来讲。即相当于它的亮度。实验表明,人眼对相同强度、不同波长的光照射引起的反应是不同的,这包括色调和明度光谱引起人眼球的色调感觉为白色,称为等能白。在可见光范围,太阳光的光谱近似等能光谱,我们可以把人眼看成是一个把光的客观物理量转变到生理和心理反应的转换器,从这个观点出发,就必须找出有普遍意义的转换规律。把两种颜色调整到视觉相同的过程称作颜色匹配,它是利用色光加色法来实现的。图1中左方是一块白屏,上方为红光R、绿光G、蓝光B 三原色光,下方为任意待配色光C,三原色光照射白屏的上半部,待配色光照射白屏幕的下半部,白屏上下用一黑屏隔开,白屏的反射光通过小孔射到观察者的眼中,观察者眼中看到的视场如图右下方所示,视场范围在2°左右,被分成两部分。图右上方还有一束光,照在小孔周围的白版上,使视场周围有一圈均匀色光做为背景。颜色匹配实验通过独立调节上方三原色光的强度混合完成,当视场中的两部分色光相同时,视场中的分界线消失,两部分视场合为同一视场,此时认为待配色光的光色与三原色光的混合光色达到色匹配。

图1颜色匹配实验

图4 1931 CIE-xy色度图

色度图的x坐标相当于红原色的比例,y坐标相当于绿原色的比例。因为z = 1 ? ( x + y),则蓝原色的比例就无需给出。图中的偏马蹄形曲线是光谱轨迹。连接400nm与700nm的直线是可见光谱色中所没有的紫红色,它是由光谱两端的红和紫色混合后得到的非光谱色。凡是偏马蹄形曲线内部的所有坐标点(包括这条封闭曲线本身)都是物理上能够实现的颜

色。

2.实验内容

1.测量钨灯的光谱(380—660nm)。

2.测量不同发光二极管的光谱图。

四、实验数据处理与讨论

1.光谱仪的校准

为了准确的通过光谱仪进行测量,我们必须对光谱仪进行校准。在实验中,我们采用钠光源进行校准。我们知道,由于电子的自旋磁矩和轨道磁矩的相互作用,钠光源有双线

结构,分别是589.592nm和588.995nm,这是实验得到的精准值。我们通过光谱仪分析钠光源的光谱图,可以测得对应的双线波长,通过比较就可以对光谱仪测量的坐标轴进行校准。在实验中我们调整光谱仪的狭缝调整至0.15mm,并调整扫描范围为550nm到600nm,以0.02nm为扫描间隔,获得的纳光源光谱图如图5所示(处理时取580nm到598nm),可以得到,两个极大分别为589.06nm和589.56nm,和标准值相差很小,因此不用进行坐标轴平移。至此,光谱仪校验完毕。

图5 钠光灯的光谱图

2.测量钨光灯的光谱图光谱仪调校完毕后,更换光源为钨光灯,其他设置不变,将扫描范围调整至380nm到660nm,扫描间隔调整至0.10nm,测量得到钨光灯的光谱图,之后加入透明滤色片,按照同样的方法,测量得到滤色片的透过率,并在一张坐标纸上作出钨灯的光谱图和红色滤色片透过率曲线,如图6所示,可以观察到,在添加红色滤色片之后,可以看到,高频部分几乎全部被吸收,而低频部分,则完全透过,在600nm后又一段透射率上升的很快,这和其颜色有密切的关系,即其透过红色附件的波长成分(低频)而滤去高频波长成分。

图6 钨光灯的光谱图及滤色片透过率曲线

3.测量光电二极管的光谱图将光源换为LED灯,扫描范围修改为400nm到660nm,扫描间隔0.10nm其他参数不变,对6个不同色彩的LED灯的光谱图进行测量,在测量过程中,适当的调节了高压,以使得各个颜色的LED灯,其峰值大致相等,并绘制在一张坐标纸上(此时纵坐标失去其作用,我们的目的是观察其峰值位置),可以得到LED灯的光谱图如图3所示。由图7我们可以观察到,LED灯的单色性实际并不是很好,所有颜色的LED灯都有着很宽一段的波长范围,但其峰值随颜色的变化而不一,其强度也受波长的影响(在图中无法体现,但在测量中可以得到),且白色LED的波长范围宽。

图7 LED灯的光谱图

4.绘制1931 CIE-XY 色度图根据实验室提供的数据,绘制1931 CIE-xy色度图。

图8 1931 CIE-xy色度图

5.钨灯、滤色片、LED 的色度坐标值前面已指出,任何颜色光都可以被分解为三个对人眼的颜色刺激值X、Y、Z。所以颜色的测定就归结于如何计算X、Y、Z。而计算的基础就是人眼的光色转换规律:光谱三刺激值。显然对一般的不是

单一波长的多波长色光,应该按波长对光谱三刺激值求和,又考虑到一般色光的功率是随波长变化的,而光谱三刺激值是在等能光谱色条件下测定的,所以应对光谱三刺激值按波长分配功率比例

我们将上述钨灯,加滤色片的钨灯和LED灯的色度坐标置入1931 CIE-xy 色度图中,采用MATLAB编程,则可以得到图9,这里我们和标准的1931 CIE-xy 色度图(图10)相对比,来观察所得的颜色范围是否正确。

图91931CIE-xy色度图

图10 标准的1931 CIE-xy色度图

可以看到,从总体上看,我们的计算出的各个光源的色度坐标所对应的颜色,还是与实际很相符的,其中三个绿色的LED,橘红色LED,蓝色LED和红色滤波片所得的结果很明显是正确对应各个颜色。而钨光灯和白色LED似乎稍有问题。但实际上,我们从其光谱图上来看,白色LED在高频部分,有一个峰值,其整体是向高频(小波长)方向靠的,因此,它向高频方向偏离理想白色(即等能白色),与实际测量时相符的.我们也可以看到钨光灯的所在的位置,大致是在理想白色附件偏向黄和绿的部分,并且在下面计算主波长得到的结果正好对应其光谱图的极大值,因此,是与实际相符合的。

6.钨灯、滤色片、LED 的主波长下面我们来计算钨灯,滤色片和发光二极管的主波长。在1931 CIE-XYZ标准色度系统中,由于三原色的份量各占1/3,所以色度坐标为x=y =z =0.333的E点称为“等能白”。这是一个假想的白光,而用于颜色测量中的三个由CIE规定的标准光源A、C、D则分别位于E 点的周围(物体的颜色与照明光源有关)。为了更好的说明如和计算主波长,以图4为例,其中颜色Q的坐标为:x Q=0.16、y Q=0.55,

颜色S的坐标为:x S=0.16、y S=0.55。

当在标准C光源照明时,可由C点过Q作一直线至光谱轨迹相交处,即得知颜色Q的主波长为511.3nm。此处的光谱轨迹上的颜色就相当于Q的色调(绿色)。同理,由C点经S 点连线后交于光谱轨迹上,又可得知颜色S的主波长为595nm(橙色)。某一颜色离开C点接近光谱轨迹的程度表明此颜色的纯度,即相当于它的饱和度。愈靠近光谱轨迹处,颜色的纯度愈高。QS联线上将能得到此橙绿两种颜色相混合后的各种中间色。通过以上的方式,我们可以得到,实验中各个光源的主波长如下表(表3)所示:

表3 实验中各个光源的主波长

由于色度图制作是依靠散点,因此,得到的主波长只能是一个近似值。我们不妨和其光谱图相对比,可以看到主波长和和光谱图上该光源的极大值对应的波长是很相近的(LED 白色由于其延展的波长较宽,向右有所偏移)可以看到,两个现象的相吻合较好,说明测量是准确的。

五、实验总结

在本次实验中,我们使用Na灯校准了光谱仪,采校准的光谱仪对溴钨灯,发光二级管的光谱图进行了测量,测定了红色滤色片的透过率。并根据实验室提供的光谱三刺激值和色度坐标数据,采用MATLAB制作了1931 CIE-XY色度图,标记出了钨灯,滤色片和各二极管的色度坐标。学习了和了解了1931 CIE-RGB 真实三原色表色系统和1931 CIE-XYZ国

际坐标制表色系统。掌握了光源刺激值、色度坐标和主波长的计算方法。取得了良好的实验结果。

光栅光谱仪的使用(北科大实验报告)

光栅光谱仪的使用实验报告 学院高等工程 师学院 班级自E152学号41518170姓名郑子亮 一、实验目的与实验仪器 【实验目的】 1.了解平面反射式闪耀光栅的分光原理及主要特性 2.了解光栅光谱仪的结构,学习使用光栅光谱仪 3.测量钨灯和汞灯在可见光范围的光谱 4.测定光栅光谱仪的色分辨能力 5.测定干涉滤光片的光谱透射率曲线 【实验仪器】 WDS-3平面光栅光谱仪(200~800nm)。汞灯,钨灯氘灯组件,干涉滤光片等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) (1)平面反射式光栅与光栅方程 规定衍射角Θ恒为正,i与Θ在光栅平面法线的同侧为正,异侧为负。K是光谱级 对于常用的平面光栅光谱仪,谱板中心到光栅中心的连线与入射光线在同一平面内,因此,衍射角Θ可当做入射角i,光谱方程为: (2)闪耀问题 闪耀波长: 2平面光栅光谱仪结构组成 (1)光学系统 (2)电子系统 (3)光栅光谱仪操作

3.色分辨率 光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度 4.滤光片光谱特性 光谱透射率为: 三、实验步骤 (要求与提示:限400字以内) 1.准备工作 开机前,需要缓慢旋转入射狭缝宽度调节旋钮,设置参数 2.校准光谱仪的波长指示值 利用氘灯波长值为486.0nm的谱线校准光谱仪,利用“数据处理”菜单的功能读出测量的氘灯光谱谱线波长,如果有偏差,用“系统操作”菜单中的“波长校正”功能进行校正3.汞灯光谱和光谱仪分辨率的测量 (1)入射缝宽和出射缝宽设定在0.15~0.20nm之间,负压-300~-600之间 (2)移去钨灯&氘灯组件,将汞灯置于入射狭缝前,进行快速全谱扫描,根据光谱测量结果进一步调节狭缝宽度、负高压等参数,使得记录的谱线高度适当,再进行一次慢速全谱扫描,保存实验数据。 4.滤色片光谱特性的测量 5.退出系统与关机 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 1. (1)汞灯光谱

光栅光谱仪与光谱分析讲稿(20210228141228)

光栅光谱仪与光谱分析 实验目的 1、 进一步掌握光栅的原理 2、 了解光电倍增管和线阵 CCD 及其在光谱测量中的应用 3、 学习摄谱、识谱和谱线测量等光谱研究的基本方法 4、 通过测量氢光谱可见谱线的波长,验证巴尔末公式的正确性,从而对玻尔理论的实验基 础有具体的了解。力求准确测定氢的里德伯常数,对近代测量达到的精度有一初步了解。 、实验原理 光谱分析是研究原子和分子结构的重要手段, 现有关于原子结构的知识, 大部分来源于 各种原子光谱的研究。 通过光谱研究,可以得到所研究物质中含有元素的组分和原子内部的 能级结 构及相互作用等方面的信息。 在光谱分析中,用于分光的光谱仪器和检测光的光探测 器对分析结构有着决定性作用 1)光栅光谱仪分光原理与参数 光栅是光栅光谱仪的核心,其分光原理如下: 1. 平面反射光栅的构造与光栅方程 目前最广泛应用的是平面反射光栅, 它是在玻璃基板上镀上铝层, 用特殊刀具刻划出许 多平行而且间距相等的槽面而成, 如图1所示。大量生产的平面反射光栅每毫米的刻槽数目 为600条、1200条、1800条和2400条。铝在近红外区和可见光区的反射系数都较大,而且 几乎是常数,在紫外区的反射系数比金和银都大,加上它比较软,易于刻划,所以通常都用 铝来刻制反射光栅。 我们将看到,在铝层上只要刻划出适当的槽形, 就能把光的能量集中到 某一极,克服透射光栅光谱线强度微弱的缺点。 铝制反射光栅几乎在红外、可见光和紫外区 都能用。用一块刻制好的光栅(称原制光栅或母光栅) 反射光栅在分光仪器中得到越来越多的应用。 在图1中,衍射槽面(宽度为 a )与光栅 平面的夹角为0,称为光栅的闪耀角。当平行光 束入射到光栅上,由于槽面的衍射及各个槽面衍 射光的叠加,不同方向的衍射光束强度不同。考 虑槽面之间的干涉,当满足光栅方程 时,光强度将出现极大。式中 i 及]分别是入射光及衍射 光与光栅平面法线的夹角(入射角 和衍射角)。d 为光栅常数,m= ± 1,± 2,土 3,…,为干涉级,'是出现极大值的波长。 当入射线与衍射线在法线同侧时,公式取正号,异侧取负号。 由式(1)可知,当入射角i 一定时,不同的波长对应不同的衍射角,因而经光栅衍射 后按不同方向排列成光谱,成像于谱面中心的谱线波长称为中心波长。本仪器采用的光路, 对中心波长'0而言,入射角与衍射角相等, i = 一:(图2),这种布置方式称为 littrow 型, 因此对中心波长'0有 可以复制出多块光栅。 由于这些优点, (1)

光栅光谱仪的应用 复旦介绍

光栅光谱仪的应用 摘要:本实验通过光栅光谱仪,测量并分析不同光源的发射光谱、溶液的吸收光谱、滤光片的透射光谱以及实验条件对光谱的影响。 关键词:光栅光谱仪、光电倍增管、发射光谱、吸收光谱、透射光谱 Abstract:In this experiment, the emission spectra of different light source, the absorption spectra of the solution, the transmission spectra of optical filters with several colours, and the effects caused by experimental conditions are measured and analyzed with the help of the grating spectrometer. Keywords: grating spectrometer, photomultiplier, emission spectrum, absorption spectrum, transmission spectrum.

一、引言 光栅光谱仪,是将成分复杂的光分解为光谱线的科学仪器。本实验利用定标后的光栅光谱仪,测量不同光源的发射光谱、物质吸收光谱以及透射光谱,并研究分析实验条件对光谱的影响,了解光谱特性。 二、实验原理 1.发射光谱: 物体发光直接产生的光谱叫做发射光谱1。处于高能级的原子或分子在向较低能级跃迁时产生辐射,将多余的能量发射出去形成的光谱。 由于产生的情况不同,发射光谱又可分为连续光谱和明线光谱。 稀薄气体发光是由不连续的亮线组成(实际由于光线通过时会产生吸收光谱,特定频率的光被吸收后形成暗线或暗带,剩下的就是光谱中的明线),这种发射光谱又叫做明线光谱,原子产生的明线光谱也叫做原子光谱。 固体或液体及高压气体的发射光谱,是由连续分布的波长的光组成的,这种光谱叫做连续光谱。 白炽灯与汞灯的发射光谱区别就在于,前者是连续光谱而后者是明线光谱。 2.吸收光谱: 物质吸收电磁辐射后,以吸收波长或波长的其他函数所描绘出来的曲线即吸收光谱。是物质分子对不同波长的光选择吸收的结果,是对物质进行分光光度研究的主要依据2。 吸光度是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数(即lg(Iin/Iout))3。 吸光度与物质的浓度、温度、本身性质等有关。 在多组分体系中,如果各组分的吸光质点彼此不发生作用,那么吸光度便等于各组分吸光度之和,这一规律称吸光度的加和性。 [I0为入射光强,I为出射光强] (1) 吸光度公式:Aλ=log I0 I 对较稀溶液,有比尔—朗伯定律: A=αlc [α是吸收系数,l是光在样本中经过距离,c是浓度] (2) 3.光栅单色仪: 1引自《百度百科·发射光谱》; 2引自《百度百科·吸收光谱》; 3

WGD8组合式多功能光栅光谱仪

WGD8/8A 组合式多功能光栅光谱仪 https://www.wendangku.net/doc/c87516251.html,/Products.htm 【产品介绍】 组合式多功能光栅光谱仪系列 组合式多功能光栅光谱仪系列是专为院校,科研院设计的。产品设计新颖,性能优越,尤其是采用了积木组合式结构,方便了各种数学实验和检测,该产品已被推荐为大转院校物理实验室首选仪器。产品以崭新的面貌、完善的功能为广大用户提供了先进的测试手段。 用途 ■吸收光谱测量:可对被测物质(气体、液体、固体)进行吸收光谱分析 ■发射光谱测量:测量发射光源特性 ■荧光光谱测量 ■其它:利用氢光谱测量德伯常量,接收元件灵敏特性的测量、色度测量 仪器简介 WGD-8型/8A型多功能光栅光谱仪可用于各大学及研究部门,作为物理实验教学及光谱分析之用。仪器有两路出射狭缝分别用光电倍增管与CCD接收,WGD-8A型光谱仪是专门为大学的氢氘实验、钠光谱实验设计的仪器,选用优质光电倍增管、光栅、狭缝。确保分辨率达到0.06nm WGD-8型 波长范围光电倍增管接收 200-800nm CCD接收300-900nm 焦距500mm 狭缝宽度0-2mm连续可调 示值精度 0.01mm 相对孔径 D/F=1/7 波长精度 ±0.4nm 波长重复性 0.2nm 分辨率优于0.1nm 杂散光≤10-3 外形尺寸 560*380*230mm 重量30kg WGD-8A型 波长范围光电倍增管接收 200-660nm CCD接收 320-900nm 焦距 500mm 狭缝宽度0-2mm连续可调 示值精度0.01mm 相对孔径D/F=1/7 波长精度±0.4nm

波长重复性0.2nm 分辨率优于0.06nm 杂散光≤10-3 外形尺寸560*380*230mm 重量 30kg 【产品特点】 ■更换不同的光栅、光谱区间可以从0.2-15μ,并有较高的分辨功利。 ■积木组合式、着重提高学生的动手能力 ■光电接收器件:分别采用光电倍增管、热释电探测器及CCD,便于教师做相关的教学及试验研究。 ■采用CCD接收的WGD-6型光学多道分析器,其测量速度快,可实时测量光谱随时间的变化、 三维坐标显示。 ■单光子计算器与WGD-3型单色仪组合,可做弱信号测量 ■WGD-8A型具有极高分辨率,可做氢氘及钠光谱实验

光栅光谱仪实验报告

光栅光谱仪的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1 实验目的 1.了解光栅光谱仪的工作原理。 2.学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。 2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。

CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号。单缝衍射中央主极大的条件是u=0,即sinΦ=-sinθ或Φ=θ。将此条件代入到多缝干涉因子中,恰好满足v=0,即0 级干涉大条件。这表明单缝衍射中央极大与多缝衍射0 级大位置是重合的(图9.1a),光栅衍射强度大的峰是个波长均不发生散射的0 级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿型的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”。与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状

光栅光谱仪的使用

光栅光谱仪的使用实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解平面反射式闪耀光栅的分光原理及主要特性; (2)了解光栅光谱仪的结构,学习使用光栅光谱仪; (3)测量钨灯和汞灯在可见光范围的光谱; (4)测定光栅光谱仪的色分辨能力; (5)测定干涉滤光片的光谱透射率曲线。 2.实验仪器 WDS-3平面光栅光谱仪(200~800nm),汞灯,钨灯&氘灯组件,干涉滤光片。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.平面反射式闪耀光栅原理 (1)θ方向的光强:I θ=(sinα α )2(sinNβ sinβ )2 (2)光栅方程:d(sinθ+sin i)= kλ (3)闪耀光栅:光强最大的方向就是槽面反射定律所规定的方向,0级谱线出现在光栅平面反射的方向,闪耀光栅能够把能量集中在需要的光谱级里。 (4)闪耀波长的计算:λ=2dsinγ k 2.平面光栅光谱仪的结构与组成 (1)光学系统结构:

光栅:1200/mm;闪 耀波长250nm;M1 和M2凹面镜焦距 为300mm;狭缝0- 2mm连续可调。 电子系统:电源系统、光接收系统、步进电动机系统组成。 光学接收系统:光电倍增管及其放大电路组成。 光电倍增管:光信号转变成电信号。是测光仪器和光电自动化设备中的主要探测元件。 目前测量光信号最灵敏的器件之一。 结构: 3.色分辨率 光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度。 以汞灯的两条黄谱线(波长为 577.0nm和579.1nm)为例测出谱 线λ1和λ2峰间的间隔a以及峰 的半宽度b,则色分辨能力为: Δλ =b α δλ δλ=λ 2-λ 1 =2.10nm 4.滤光片光谱特性

高分辨率阶梯光栅光谱仪的光学设计

文章编号 1004-924X(2003)05-0442-06 高分辨率阶梯光栅光谱仪的光学设计 武旭华,朱永田,王 磊 (中国科学院国家天文台南京天文光学技术研究所,江苏南京210042) 摘要:简述阶梯光栅的基本原理和在天文学中的应用,分析并比较了阶梯光栅光谱仪与普通平面闪耀光栅光谱仪的区别。为正在研制中的一架国产4m 通光口径的光谱巡天望远镜(简称L AM OST )设计了高分辨率阶梯光栅光谱仪的光学方案,该设计方案采用了白光孔径准直镜系统,大闪耀角的R4阶梯光栅和无遮拦的离轴折叠Schmidt 照相机。关 键 词:天文光学;光谱仪;阶梯光栅中图分类号:T H744.1 文献标识码:A Optical design of high resolution echelle spectrograph WU Xu -hua,ZHU Yong -tian,WANG Lei (National A stronomical Observatory /Nanj ing I nstitute of Astronomical Op tics and Technology ,Chinese Academy o f Sciences ,N anj ing 210042,China) Abstract:The g eneral theories behind echelle and its applications in astronomy are briefed,and the differ -ences betw een echelle spectrog raph and plane grating spectrograph are analyzed and compared.An optical design,w hich features the use of w hite pupil collimator system,R4echelle w ith large blaze angle,and the fold and of-f ax ial Schm idt camera without center obstruction,has been made for a hig h resolution echelle spectrog raph (Large Sky Area Mult-i Object Fiber Spectroscopic T elescope)under development,a more pow erful tool for astrophysical research using hig h -resolution spectroscopy in China.Key words:astronom ical optics;spectrograph;echelle grating 1 引 言 20世纪70年代前,天文高分辨率光谱仪多采用大面积普通闪耀光栅,以满足光通量方面的要求。普通闪耀光栅在实际应用中,为了避免级次重叠,只能用于低级次(第1级或第2级),因此要获得高分辨率光谱只能采用大面积细刻线光栅,仪器尺寸非常庞大。这种一维排列的光谱仪要求焦距4m,通光口径1.5m 的大型照相机,探测元件只好采用低效率的照相乳胶和高噪声的Reticon 。 G.R.Harrison 于1949年研制出一种新的衍 射光栅)))阶梯光栅(echelle),并对这种光栅的 刻划技术做了开拓性的工作[1-3] 。阶梯光栅实质 上是一种粗光栅,具有较大的闪耀角,典型的是63b 26c 、69b 和76b ,可以用于很高的干涉级次,通常10~100级,因此可获得极高的分辨率。阶梯光栅在光谱学的许多领域都是非常有用的,特别是它集中了宽波段、高色散、高分辨率等特点,引起了天文学家的极大兴趣,率先得到天文应用[4]。 二维高效光电成像探测器件的出现,尤其是大面积低噪声高量子效率CCD 的发展,引起了人 收稿日期:2003-04-07;修订日期:2003-08-01. 第11卷 第5期2003年10月 光学精密工程 O ptics and Precision Engineer ing Vol.11 No.5 Oct.2003

WGD-8_8A型_组合式多功能光栅光谱仪_说明书

WGD-8_8A型_组合式多功能光栅光谱仪_说明书一(规格与主要技术指标 500mm 焦距 8A200-660 nm 8200-800 nm 波长区间型:型: D/F1/7 相对孔径, 8A2400l/mm =250nm 81200l/mm =250nm 光栅型:λ型:λ闪闪200660nm 200800nm 波长范围,波长范围, ,3 10 杂散光? 8A0.06nm 80.1nm 分辨率型:优于型:优于 8A 8 光电倍增管接收型:型: 200660nm 200-800 nm 波长范围, 0.2nm 0.4nm 波长精度???? 0.1nm 0.2nm 波长重复性???CCD() 电荷耦合器件 2048 接收单元 8A300660nm 8300-900 nm 光谱响应区间型:,型: 88 积分时间档 25kg 重量

S1 M2 M1 G M3 S2 S3 图2-1 光学原理图

M1反射镜、M2准光镜、M3物镜、G平面衍射光栅 S1入射狭缝、S2光电倍增管接收、S3 CCD接收 二(基本原理 WGD8A,型组合式多功能光栅光谱仪~由光栅单色仪~接收单元~扫描系统~电子放A/D大器~采集单元~计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。 C-T2-1 光学系统采用型~如图 02mm入射狭缝、出射狭缝均为直狭缝~宽度范围,连续可调~光源发出的光束进入入 S1S1M2S1M2射狭缝~位于反射式准光镜的焦面上~通过射入的光束经反射成平行光束 1 G M3S2S3 投向平面光栅上~衍射后的平行光束经物镜成象在上或上。 M2M3 500mm 、焦距 G 8A2400l/mm =250nm 81200l/mm =250nm 光栅型:λ型:λ闪闪 200660nm 200800nm 波长范围,波长范围, 8A 320500nm 8 320500nm 滤光片工作区间型:白片,型:白片, 500660nm 500800nm 黄片,黄片,注:8型和8A型的使用操作方法一致,使用同一软件进入程序后~只要选择相对应光栅数即可, 三(安装 3.1 开箱 打开仪器的包装后~请对照装箱单对仪器的齐套性进行认真清点验收~如发现与装箱单 不符或者仪器表面有明显的受损现象请立即与售方联系解决。 仪器的齐套性请参阅仪器的装箱单。

Zemax模拟光栅光谱仪王忠杰、张蒙、岑剡ZEMAX是美国Radiant

Zemax模拟光栅光谱仪 王忠杰、张濛、岑剡 ZEMAX是美国Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。 本文介绍用Zemax模拟光栅光谱仪的方法,其中各元件的位置数据和参数参照实际实验。 打开Zemax,进入如下界面,该界面为序列模式界面。 Zemax分为序列模式、非序列模式、序列-非序列混合模式,其中序列模式是研究光路严格的按照从一个参照面到下一个参照面的直线顺序的情况,对于光栅光谱仪这种各元件三维非直线次第排列的情况,我们选择非序列模式来进行模拟。 点击左上角下拉按钮文件-非序列模式,选择删除所有序列模式数据并进入纯非序列模式,进入页面:

其中objective type为元件类型,后面有各项参数,如x、y、z坐标等。Null object即“无”的意思。 要模拟的CCD光栅光谱仪结构如图: 从左到右依次是:矩形光源-透镜-狭缝-平面反射镜-球面反射镜-光栅-球面反射镜-探测器。 上述光栅的最终结果如图

按下菜单栏下的L3n按钮,即可调出如上图的原件分布,其中向右为z方向,向上为y方向,垂直纸面向外为x方向。在该视图中可以实现放大-缩小,旋转来观察系统等功能。 按下L3n旁的LSn按钮,可看到上了色的3D实际系统图像。 下面在非序列模式中构造上述光栅。 点击非序列部件编辑中的第一个面,按Insert键即可在其后再插入一个面。 1.插入矩形光源: 实验中所用的汞灯实际上是矩形光源,右击第一个面的Objective type,进入如下界面 点开“类型”下拉按钮,选择Sourse Rectangle 每个面后都有参数可以调整x、y、z坐标及绕x、y、z轴旋转的角度,我们在模拟实际实验的情况下模拟光栅,其中光源面的参数如下(长度的单位为mm):未提及的参数都为默认值0.

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

光栅光谱仪实验报告

光栅光谱仪的使用 学号2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年3 月14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。

2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角

基于Offner结构分视场成像光谱仪光学设计

第!!卷! 第"期!!!!!!!!!!!!光谱学与光谱分析#$%&!!!'$&"!(( )),)-)),=)*+!年"月!!!!!!!!!!!!.(/012$30$(4567.(/0125%865%43938:; :31!)*+!!基于"::425结构分视场成像光谱仪光学设计 吴从均+ ) 颜昌翔+" 刘!伟+ 代!虎+ )+<中国科学院长春光学精密机械与物理研究所空间光学一部!吉林长春!+!**!! )<中国科学院大学!北京! +***J I 摘!要!为满足航天应用中仪器小型和轻量化)大视场的观测要求!通过分析现有C R R 6/2成像光谱仪!给出了一种简单的采用凸面光栅设计成像光谱仪的方法"并据此方法设计了一应用于J **^P 高度!波段范围为*&J " +*P !焦距为,)*P P !E 数为L !全视场大小为J &!V 的分视场成像光谱仪系统"分视场采用光纤将望远系统的细长像面连接到光谱仪的三个不同狭缝而实现"三狭缝光谱面共用一个像元数为+*)J c +*)J !像元大小+"*Pc +"*P 的B B E 探测器"通过g H S 8N 软件优化和公差分析后!系统在)"%(+P P \+处S ?>优于*&=)!光谱分辨率优于L 6P !地面分辨率小于+*P !能很好的满足大视场应用要求!该光学系统 刈幅宽度相当于国内已研制成功的同类最好仪器的三倍"关键词!C R R 6/2 %成像光谱仪%分视场%光学设计中图分类号 C J !!!!文献标识码 8!!!%"& +*&!I =J K &9336&+***-*L I ! )*+! *"-)),)-*L !收稿日期 )*+)-++-)+ 修订日期 )*+!-*)-+=!基金项目 国家# "=!计划$项目#)*++88+)8+*!$资助!作者简介 吴从均!+I "=年生!中国科学院长春光学精密机械与物理研究所博士研究生!!/-P 59%&Q :0$6;K :6,"I ! +=!<0$P "通讯联系人!!/-P 59%&4560j ! 09$P (<50<06引!言 !!星载超光谱成像仪按地面像元分辨率分为中分辨率和高 分辨率!中分辨率超光谱成像仪地面分辨率为数百米至数千 米量级!高分辨率超光谱成像仪为数十米量级' +("目前制约星载成像光谱仪发展的主要是探测器和分光方式!国内星载设备探测器一般都通过国外购买!价格昂贵!而且购买的渠道越来越窄%分光方式上!光栅和棱镜作为传统的分光元件!各自存在一定的缺点"傅里叶变换光谱仪虽然是一种比较理想的成像光谱仪形式!但环境要求非常高!往往信噪比并不是很高%基于8C ?>)T B ?> )波带片等二元光学元件和折衍射系统组合的分光在星载应用中相对还不成熟')!!("传 统光谱仪系统包括准直和成像系统!一些独特结构的光谱仪系统采用汇聚光路!这种方法在很大程度上都采用了准直和成像对称形式!C R R 6/2结构就是一种对称严格的结构形式"C R R 6/2光栅成像光谱仪在)*世纪I *年代初就已经被提 出了!随着光栅制造水平的提高!其结构简单)利于小型化 的突出优势逐渐被放大!已经在应用中崭露头角'J ("文献 'L !=(分别从如何消除像散等离轴像差上分析了C R R 6/2成像 光谱仪的设计方法!文献',(给出了在汇聚光路中和在发散光路中分别采用光栅和曲面棱镜设计成像光谱仪的光学系统 并比较了两者的优缺点!程欣等' "(采用在汇聚光路中加入>p 24棱镜作为分光元件设计了光谱范围在* &J ")&L *P 的成像光谱仪"一些相关文献中还对C R R 6/2成像光谱仪的机械结构设计'I ()图像数据压缩)装调方法'+*(和杂散光'++(的分 析研究" 分视场成像光谱仪#3:Z -R 9/%79P 5;96;3(/012$P /1/2!.>@. $能有效增大地面刈副宽度!利用视场分割思想!将望远镜宽线视场分割)折叠成窄线视场阵列!通过一个光谱仪进行分光!充分发挥面阵探测器的优势!各窄线视场的光谱图像数据按序首尾相连!便得到了宽线视场情况下的高分辨率超光谱成像数据"早期的宽视场大部分采用视场分离器分 别进入不同光谱仪系统' +)(!这种情况下光谱仪必须根据视场分离的结果置很多台!而且体积大"本方法大大减小了仪器的体积和重量" +!C R R 6/2光谱仪的设计方法!!对于C R R 6/2结构的数值分析设计在文献'L !=(中给出了详细的设计过程!而且这些结构都是通过离轴形式对其进行分析!过程极为繁琐"下面从同轴结构出发进行分析!可以很快得到这种初始结构"'('!确定凸面光栅的曲率半径

WGD-3型 组合式多功能光栅光谱仪

WGD-3型组合式多功能光栅光谱仪 基本原理 WGD-3 型组合式多功能光栅光谱仪,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。光学系统采用C-T型,如图1 图1 光学原理图 M1反射镜、M2准光镜、M3物镜、G平面衍射光栅 S1入射狭缝、S2光电倍增管接收、S3 观察口 入射狭缝、出射狭缝均为直狭缝,宽度范围0-2.5mm连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成象在S2上或S3上。 M2、M3 焦距302.5mm 光栅G 每毫米刻线1200条闪耀波长550nm 二块滤光片工作区间白片 320-500nm 黄片 500-800nm 仪器使用: 1. 使用场地 该仪器是实验用仪器。为了提高仪器的工作质量和延长仪器的使用寿命,在选择仪器安装场地时应注意以下几点: a 环境温度20±5℃ b 净化湿度 <65% c 无强振动源、无强电磁场干扰。 d 室内保持清洁、无腐蚀性气体。 e 仪器应放置在坚固的平台上。

f 仪器放置处不可长时间受阳光照射。 g 室内应具稳压电源装置对仪器供电,装有地线,保证仪器接地良好。 2. 使用方法 WGD-3型组合式多功能光栅光谱仪系统,系精密仪器。因此仪器安装的场合应满足安装环境的要求。工作台必须平稳。系统联线示意图如图2: 图2 连线示意图 (1)接通电源前,认真检查接线是否正确。 (2)狭缝的调正。 狭缝为直狭缝,宽度范围0-2.5mm连续可调,顺时针旋转为狭缝宽度加大,反之减小,每旋转一周狭缝宽度变化0.5mm。为延长使用寿命,调节时注意最大不超过2.5mm,平日不使用时,狭缝最好开到0.1-0.5mm左右。 (3)滤光片 为去除光栅光谱仪中的高级次光谱,在使用过程中,操作者可根据需要把备用的滤光片插入入缝插板上。滤光片共二片,工作区间: 白色滤光片 320-500nm 黄色滤光片 500-800nm (4)转换开关 检查转换开关的位置,确认是否是工作位置,若光电倍增管接收,请将扳手放在“光电倍增管”档;若观察谱线,可将旋钮指示停在“观察”档。 3. 软件使用 软件使用具体参见软件使用说明书和软件帮助文件。

用多功能光栅光谱仪进行钠光谱测量实验

用多功能光栅光谱仪进行钠光谱测量实验 碱金属原子的光谱和氢原子光谱相似,也可以归纳成一些谱线系列,而且各种不同的碱金属原子具有非常相似的谱线系列。碱金属原子的光谱线主要由4个线系组成:主线系、第一谱线系(漫线系)、第二辅线系(锐线系)和柏格曼线系(基线系)。进一步对碱金属原子光谱精细结构的研究证实了电子自旋的存在和原子中电子的自旋与轨道运动的相互作用,这种作用较弱,由它引起了光谱的精细结构。钠原子光谱及其相应的能级结构具有碱金属原子光谱和能级结构的典型特征。 【实验目的】 1、加强学生对光栅光谱仪的原理和基本组件的了解。 2、对钠原子光谱的进行测量和分析,加深对相关理论的理解与掌握。 3、由钠原子光谱确定各光谱项值及能级值, 量子缺Δ。 【实验器材】 本实验用到的仪器主要有:WGD-8A 多功能光栅光谱仪,钠光灯,计算机。 光谱仪是能将入射光按不同波长分成单色光谱的光学仪器,它由准直系统、色散系统和聚焦成像系统组成。准直系统通常由入射狭缝和准直物镜组成。入射狭缝位于准直物镜的焦平面上。对于光谱仪来说,入射狭缝实际上是光谱仪的光源,待测信号光经照明系统照射入射狭缝,入射狭缝发出的光束经准直镜后成为平行光投射到色散系统。 色散元件通常为棱镜,光栅和法布里-珀罗干涉仪。色散元件为光栅的光谱仪称作光栅光谱仪。聚焦成像系统是利用成象物镜把经过色散系统后,在空间上色散开的各波长的光束会聚或成象在成象物镜的焦平面上。形成一系列的按波长排列的单色狭缝象,即通常所看到的光谱图。

图1-1 WGD-8/8A 型 多功能光栅光谱仪仪器外观 图1-2 电箱正视图 WGD -8A 型组合式多功能光栅光谱仪,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。光学系统采用的是切尔尼--特纳装置(C-T )型,如图2-1所示。 1 2 3 1 光电倍增管接收器 2 CCD 接收系统 3 入射狭缝 1 2 3 4 5 6 10 9 8 7 1 负高压调节 2 负高压指示 3 USB 口电源指示 4 工作指示 5 通讯指示 6 电源开关 7 USB 讯号线 8 CCD 电缆线 9 单色仪电缆线 10 光电倍增管电缆线

光栅光谱仪与光谱分析讲稿

光栅光谱仪与光谱分析 实验目的 1、 进一步掌握光栅的原理 2、 了解光电倍增管和线阵 CCD 及其在光谱测量中的应用 3、 学习摄谱、识谱和谱线测量等光谱研究的基本方法 4、 通过测量氢光谱可见谱线的波长,验证巴尔末公式的正确性,从而对玻尔理论的实验基 础有具体的了解。力求准确测定氢的里德伯常数,对近代测量达到的精度有一初步了解。 、实验原理 光谱分析是研究原子和分子结构的重要手段, 现有关于原子结构的知识, 大部分来源于 各种原子光谱的研究。 通过光谱研究,可以得到所研究物质中含有元素的组分和原子内部的 能级结 构及相互作用等方面的信息。 在光谱分析中,用于分光的光谱仪器和检测光的光探测 器对分析结构有着决定性作用 1)光栅光谱仪分光原理与参数 光栅是光栅光谱仪的核心,其分光原理如下: 1. 平面反射光栅的构造与光栅方程 目前最广泛应用的是平面反射光栅, 它是在玻璃基板上镀上铝层, 用特殊刀具刻划出许 多平行而且间距相等的槽面而成, 如图1所示。大量生产的平面反射光栅每毫米的刻槽数目 为600条、1200条、1800条和2400条。铝在近红外区和可见光区的反射系数都较大,而且 几乎是常数,在紫外区的反射系数比金和银都大,加上它比较软,易于刻划,所以通常都用 铝来刻制反射光栅。 我们将看到,在铝层上只要刻划出适当的槽形, 就能把光的能量集中到 某一极,克服透射光栅光谱线强度微弱的缺点。 铝制反射光栅几乎在红外、可见光和紫外区 都能用。用一块刻制好的光栅(称原制光栅或母光栅) 反射光栅在分光仪器中得到越来越多的应用。 在图1中,衍射槽面(宽度为 a )与光栅 平面的夹角为0,称为光栅的闪耀角。当平行光 束入射到光栅上,由于槽面的衍射及各个槽面衍 射光的叠加,不同方向的衍射光束强度不同。考 虑槽面之间的干涉,当满足光栅方程 时,光强度将出现极大。式中 i 及]分别是入射光及衍射 光与光栅平面法线的夹角(入射角 和衍射角)。d 为光栅常数,m= ± 1,± 2,土 3,…,为干涉级,'是出现极大值的波长。 当入射线与衍射线在法线同侧时,公式取正号,异侧取负号。 由式(1)可知,当入射角i 一定时,不同的波长对应不同的衍射角,因而经光栅衍射 后按不同方向排列成光谱,成像于谱面中心的谱线波长称为中心波长。本仪器采用的光路, 对中心波长'0而言,入射角与衍射角相等, i = 一:(图2),这种布置方式称为 littrow 型, 因此对中心波长'0有 可以复制出多块光栅。 由于这些优点, (1)

光栅光谱仪实验报告(doc)

光栅光谱仪实验报告(doc) 09级应用物理学03班 40908020323 肖金龙 2012.03.28 光栅光谱仪系统 (Grating spectrum-meter system) 光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。 一、实验目的 1. 掌握发射光谱测试系统,光学元件的透射率光谱,反射率光谱测试系统以 及荧光光谱测试系统的搭建 2. 学习利用电脑自动扫描多光栅单色仪测试各种光源特性谱线,学会分析 各种光学元件的反射、透射谱线。 学习利用组合多光栅单色仪测试物质荧光光谱,分析荧光物质成分。 3. 二、光栅光谱仪测试系统组件名称 1(LHT75溴钨灯光源室+LPT75溴钨灯稳流电源(bromine tungsten) 2(LHM254波长校准汞灯光源

(The Hg lamp house for calibrating grating, the character wavelength is 254nm) 3(NFC-532-15陷波滤波装置 The 532nm wavelength is bound when light from the lamp house crossing the filter. 4(SPB300 300mm光栅光谱仪(the focus is 300nm) 5(SPB500 500mm光栅光谱仪 6(SD 六挡滤光片轮the light filer for six steps 7(SAC 三口样品室sample house 10. DCS102数据采集器data acquisition implement 11. PMTH-S1-CR131 光电倍增管photo multiplier tube 12. HVC1005 高压稳压电源regulated power supply in high voltage 三、光栅基础知识及实验原理图 当一束复合光线进入单色仪的入射狭缝,首先由光学准直镜汇聚成平行光,再通过衍射光栅色散为分开的波长(颜色)。利用每个波长离开光栅的角度不同,由聚焦反射镜再成像出射狭缝。通过电脑控制可精确地改变出射波长。 1. 光栅基础光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可做到高光谱分辨率。选择光栅主要考虑如下因素:

物理实验论文光栅光谱仪的使用

光栅光谱仪的使用 ——比较两种眼镜片的优劣 姓名: 班级: 学号: 指导老师:

光栅光谱仪的使用 ——比较两种眼镜片的优劣 【摘要】:在本次实验中,我用已校准的WGD-3型组合式多功能光栅光谱仪,测量了两种镜片:溴化银镜片、pc加强树脂镜片的透过率和吸光度的光谱曲线,并分析比较了两种镜片在透过率和吸光度角度上的优劣。 【关键词】:光谱仪;镜片;透过率;吸光度 1 引言: 光谱分析是根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法,是研究原子和分子结构的主要手段,现有关于原子结构的知识,大部分来自对各原子的光谱研究。通过光谱研究,可以得到所研究物质中所含元素的组分和原子内部的能级结构及相互作用等方面的信息。在光谱测量中,用于分光的光谱仪器和检测光的光探测器对分析结构有决定性作用。 2 多功能光栅光谱仪: 光谱仪是指利用折射或颜衍射产生色散的一类本光谱测量仪器。光栅光谱仪是光谱测量中最常用的仪器。光栅光谱仪有着很大的应用前景,在很多科学领域以及工业领域都有着举足轻重的地位: 1、在工业中的应用 在地质采矿中需要应用光栅光谱仪进行快速的光谱分析以辨别土地中金属以及稀土元素的类别。在冶金工业中其应用更加广泛,各种型号、大小、功率的光栅光谱仪运用在生产的各个环节,其主要是在炉前分析所需要元素的类别和含量。在制造工业中则是用它来进行原料和产品的分析和检验。在轻工业、农业和食品工业中光栅光谱仪都充当着不同但都很重要的角色。 2、在生物学和医学中的应用 人体中含有少量的微量元素,但是它们在身体中扮演着非常重要的角色,分析这些元素,各种光谱仪器是必不可少的,另外在生物细胞和各种维生素的研究过程中也经常用到此类仪器,有时经常用到此类仪器分析大分子的结构,对于解决生物学和医学的一些基本问题有着积极的推动作用。不可否认在制药工业中光谱仪都是很受用的。 3、在物理学和化学中的应用 其主要作用是研究物质的辐射、结构,以及光和物质之间的相互作用。光谱仪器可以研究原子和分子的能级分布、精细结构甚至是超精细结构,同时原子、核子物理学的发展也促进了高分辨率光谱仪器的发展 4、在天文学以及天体物理学中的应用 光谱仪器的出现促使天文学产生了巨大的飞跃,从而诞生了天体物理学,使我们能够更加详细的了解各种星体的大小、成分、重量以及温度等重要的信息。 实验中使用的是WGD-3型组合式多功能光栅光谱仪。WGD-3型组合式多功能光栅光谱仪由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。该设备机集光学、精密机械、电子学、计算机技术于一体。光学系统采用C-T型,如图1

相关文档
相关文档 最新文档