文档库 最新最全的文档下载
当前位置:文档库 › 柴油乳化剂简介

柴油乳化剂简介

柴油乳化剂简介
柴油乳化剂简介

柴油乳化剂简介:纳米级复合柴油就是由市售国标柴油80%加上20%的复合添加剂和水,通过固定的设备处理而形成的油料,产品清亮透明。这种复合柴油同原柴油相比,同颜色,同效果,使用功率大,同质量,长久储存,无论是外观颜色,还是使用性能,都与市售柴油基本相同,不分层,启动快,马力大,尾气有害物的排放量大大的抵于国家标准,利用这种剂生产的复合柴油可以单独使用,也可以同市售柴油相混使用。技术特点:一是,颜色同柴油相同,清澈透明;二是,有拒水的可靠性;三是,稳定性好,长期储存不分层;四是,产品的互溶性好,可同柴油任意混合使用;五是,产品的环保性,降低尾气有害物质的排放量30-70%;六是,降低成本;七是,原材料易购;八是,生产设备简单,只要有反应釜储罐计量器和一台专用设备即可;九是,投资小,见效快,十是,占地面积小,只需要50平方的厂房和储罐的占地即可。使用方法:首先把油按比例加入到搅拌罐中(80%),在按比例加入乳化剂(10%)搅拌,同时按比例加入(10%)的净水搅拌至透明,同原柴油相同。在搅拌的同时通过乳化机进行乳化,当达到一个循环后通过放样孔放样检测,达到清澈透明同原柴油一样即可。柴油乳化剂在18度温度时会凝固,需要加热熔化即可使用。乳化柴油质量检测方法:乳化柴油做好后检测质量:A,检测互溶性,取乳化柴油看是否可以和没有加工的柴油互溶,如果不互溶,是加工的细度不到位,或是乳化剂的量不足。B,检测拒水性,取乳化柴油到烧杯中,加入少量的水搅拌一下,看后加的水很快沉淀,是加工的细度不到位,或是乳化剂的量不足。C,加热检测,加热到100度时,乳化柴油不变颜色。乳化剂的量不足。理化指标:名称指标标准及方法水分散度<99.9% 企标有效成分<99.5% 企标粘度40度时<25 国标265 开口闪点实测国标261 外观黄色PH值<7 试纸密度(20度) 0.88-0.90 使用前耐温98 包装:铁桶。180KG/桶。86-0633-3985200 生物柴油的理化指标及测定方法

2007-4-4 9:01:33信息来源:三农在线

生物柴油的理化指标及测定方法生物柴油主要由C、H、0三种元素组成。作为柴油的替代燃料,生物柴油应当满足柴油的使用要求,才能保证其作为燃料使用。因此,评价生物柴油是否可以作为柴油的替代燃料,首先应当看其是否具有同矿物柴油相近的性质,主要有以下几方面的性质和考察指标:①良好的燃烧性能——十六烷值;②良好的蒸发性能——馏程及馏出温度;③良好的常温和低温流动性能——黏度、密度及冷滤点;④良好的安全性——闪点、燃点;⑤对发动机无腐蚀—

https://www.wendangku.net/doc/c37524848.html, 生物谷网站生物柴油主要由C、H、0三种元素组成。作为柴油的替代燃料,生物柴油应当满足柴油的使用要求,才能保证其作为燃料使用。因此,评价生物柴油是否可以作为柴油的替代燃料,首先应当看其是否具有同矿物柴油相近的性质,主要有以下几方面的性质和考察指标:

①良好的燃烧性能——十六烷值;

②良好的蒸发性能——馏程及馏出温度;

③良好的常温和低温流动性能——黏度、密度及冷滤点;

④良好的安全性——闪点、燃点;

⑤对发动机无腐蚀——酸度及酸值;

⑥良好的动力性能——热值。

其次,受生产原料和工艺影响的生物柴油特有指标,如甲醇含量、甘油含量、游离脂肪酸、磷含量等。

1.1十六烷值(CN值)

燃烧性能是评价燃料油品质的重要指标,而CN值是衡量燃料在压燃式发动机中燃烧性能好坏的重要指标。柴油机属压燃式发动机,要求柴油喷入气缸与压缩空气相混和后,在高温高压条件下自燃,并在气缸中燃烧作功。柴油的CN值影响整个燃烧过程。CN值低,则燃料发火困难,滞燃期长,发动机工作时容易爆震;而当CN值过高时,反而会因滞燃期太短而导致燃烧不完全、发动机功率降低、耗油增加和冒黑烟等后果。一般认为,适宜的柴油CN值应为45—60,可以保证柴油均匀燃烧,热功率高,耗油量低,发动机工作平稳,排放正常。根据Harrngton和Gerhard等人的研究,碳链长度的增加有助于CN值的提升,而不饱和双键数目的增加则会使CN值有所降低。生物柴油的CN值比普通矿物柴油要略高,通常为50—60之间。CN值的测定有“临界压缩比法”“延滞点火法”和“同期闪火法”,我国国家标准(GB386-64)规定采用“同期闪火法”。

2馏程(95%)

生物柴油是由一系列复杂的脂肪酸甲酯组成的混合物,因而与纯化合物不同,没有一个固定的沸点,其沸点随气化率的增加而不断升高,因此生物柴油的沸点以某一温度范围表示,这一温度范围称沸程或馏程。柴油的馏程是保证柴油在发动机气缸内迅速蒸发气化和燃烧的

重要指标。为保证良好的低温启动性能,要有一定的轻质馏分,使其蒸发速度快,有利于形成可燃混合气,燃烧速度快。我国轻柴油指标规定,95%的馏出温度不得高于360—365℃。馏程的测定方法采用GB255—64。

3运动黏度

运动黏度是衡量燃料流动性能及雾化性能的重要指标。运动黏度太高,流动性就差,会使成油困难,同时喷出的油滴的直径过大,油流射程过长。使得油滴有效蒸发面积减少,蒸发速度减慢,还会引起混合气组成不均匀,燃烧不完全,燃料消耗量大。而黏度过低时流动性会过高,会使燃料从油泵的柱塞和泵筒之间的空隙流出,致使喷入气缸的燃料减少,发动机效率下降。同时雾化后油滴直径过小,喷出油流射程短,不能与空气均匀混合,燃烧不完全。一般认为黏度在1.9—6.0mm/s之间适合做柴油机燃料使用。生物柴油的碳链长度一般为l4—20个碳原子,而矿物柴油为8一l0个碳原子。因此生物柴油的黏度要比矿物柴油稍高一些(如表1)。将生物柴油以一定比例与矿物柴油或其他溶剂混合,可以有效降低其黏度并改善其低温性能。运动黏度的测定可按GB/T265—88进行。

4 密度

油品密度的大小对燃料从喷嘴喷出的射程和油品的雾化质量影响很大。0号柴油的密度约为0.83g/cm,2号柴油约为0.85g/cm,生物柴油的密度比柴油略高2%-7%,一般在0.86—0.90s/cm之间,详见表1。密度的测定一般采用GB5526-85规定的方法。

5 闪点及燃点

油品在规定条件下加热到它的蒸气与火焰接触发生闪火时的最低温度,称为闪点;油品在规定条件下加热到能被接触到的火焰点着并燃烧且不少于5s时的最低温度,称为燃点。测定油品闪点的意义是:①从油品的闪点可以判断其馏分组成的轻重,一般来说,油品蒸气压越高,馏分组成越轻,其闪点越低;②闪点是油品(汽油除外)的爆炸下限温度,即在此温度下油品遇到明火会立即发生爆炸燃烧。闪点可以鉴定油品发生火灾的危险性,燃点越低,燃料越易燃。生物柴油的闪点最小值为110cI=。闪点的测定有闭口杯法(GB/T261-83)和开

口杯法(GB/T267-88)。

6 酸度及酸值

油脂的酸度(值)是指中和单位质量油脂中的酸性物质所需碱的量。柴油的酸度对发动机的工作状况影响很大,酸度(值)大的柴油会使发动机内积炭增加,造成活塞磨损,使喷嘴结焦,影响雾化和燃烧性能;酸度(值)大还会引起柴油的乳化现象。酸度和酸值是衡量油品腐蚀性和使用性能的重要依据。通过酯交换制备的生物柴油,仅含有极微量的脂肪酸、环烷酸等有机酸和硫等,酸值较低,一般在0.5mgKOH/g以下,远低于优质柴油的酸度值(5mgKOH /g)。酸值的测定可采用GB/T14489.3—93规定的方法。

7 热值

热值是生物柴油应用于发动机的基本衡量指标,关系到发动机的动力性能。生物柴油的质量热值比矿物柴油低10%左右(见表1),但其密度高于矿物柴油,因此其体积热值仅低于矿物柴油3%~4%。而进入柴油机缸内的能量正是以燃油系统每个循环所供给的燃油体积热值来计算的。生物柴油直接应用于柴油机,在每个循环供油量不变的情况下,功率只比燃用柴油略低,而其含氧性却可以大幅降低黑烟排放。热值测定可采用GB384—81规定的方法。

8 碘值

油脂的碘值为每100g油脂吸收碘的克数。碘值的高低反映油脂的不饱和程度,碘值越高则不饱和程度越大。通过碘值的测定,可以计算出油脂中混合脂肪酸的平均双键数,而不饱和键的多少又与生物柴油的燃烧性能、运动黏度、冷滤点等有关,因此碘值可以在一定条件下判断生物柴油的性质。然而,低不饱和度的生物柴油,其碘值低,CN值高,但低温性能差,而高不饱和度的生物柴油,则碘值高,CN值低,但低温性能优异。这样,碘值、CN 值和低温性能就存在相互矛盾的关系。目前已有研究,用基因工程技术可培育出CN值较高的油脂资源。碘值测定方法可参阅GB5532-85。

9 酯含量

生物柴油是由各种油脂经酯交换反应制备的脂肪酸甲酯,因而测定其甲酯含量及结构就可以确定生物柴油的纯度,这对于生物柴油的质量控制具有重要意义。酯含量的测定可采用仪器分析的方法,如气相色谱等,也可参照国家标准GB/T14489.3—93或GB5534-85。

10 硫含量

硫含量对发动机尾气排放有很大影响,低硫燃料油对排放控制主要有两方面作用:直接减少颗粒和SO:排放;确保各类柴油汽车的颗粒物和NO排放控制的工作效能。硫含量的测定可按GB38O—77规定的方法进行。

11 水分和灰分

水分的存在对生物柴油的燃烧性能有很大影响,还会对柴油机产生腐蚀作用。水分还会提高生物柴油的化学活性,使其容易变质,降低存储稳定性。生物柴油中的灰分主要为残留的催化剂(碱催化)和其他原料中的金属元素及其盐类,限制灰分可以限制生物柴油中无机物如残留催化剂的含量等。水分和灰分的测定可分别按GB6283—86(卡尔一费休氏法)和GB5 08—65进行。

12 残炭

油脂在隔绝空气的情况下加热时会蒸发、裂解和缩合,生成一种具有光泽鳞片的焦炭状残留物即为残炭,主要由油品中的胶质、沥青质、多环芳烃及灰分形成。残炭量的高低直接影响油品的稳定性、柴油机焦炭量、积炭等。残炭的测定可按GB/68—87规定的方法进行。

13 腐蚀性

腐蚀性是影响生物柴油使用的重要指标。生物柴油作为一种溶剂可以逐渐溶解人造橡胶,使过滤器和喷口堵塞。腐蚀试验是将紫铜条放入油品中,50cI=下放置3h,然后观察铜片的变化,它与硫含量有很大关系。测定方法参照GB378—64。

14 甲醇含量

生物柴油的生产过程要用大量的甲醇,而甲醇与酯类是互溶的,尽管大部分甲醇都在后续工艺中回收,但仍有微量残存于生物柴油成品中,所含的微量甲醇和甘油会使与之接触的橡胶零件逐渐溶解,进而影响发动机的正常工作。甲醇含量的测定可采用气相色谱及分光光度法等。

15 游离甘油和总甘油

生物柴油中甘油含量的高低取决于酯交换的工艺过程。甘油酯的高黏度是生物柴油在启动和持久性上产生问题的主要原因,甘油酯特别是甘油三酯会在喷嘴、活塞和阀门上产生沉积。许多国家的生物柴油标准均要求游离甘油小于0.02%,总甘油小于0.25%。游离甘油和总甘油的测定通常采用皂化-高碘酸氧化法或比色法。

16 磷含量

生物柴油中高的磷含量会使燃烧排放物中的颗粒物增加,并影响汽车尾气催化剂的性能。植物油的磷含量主要取决于油脂精炼的程度,深度精炼的油脂每升只含有几毫克磷,而粗油和水化脱胶油的含磷量可达lOOmg/L。对磷含量的测定文献报道有分光光度法。

https://www.wendangku.net/doc/c37524848.html, 生物谷网站

乳化柴油

乳化柴油 乳化柴油(微乳化柴油)是水(或甲醇)和柴油通过乳化剂、助乳化剂在一定乳化设备经乳化而形成的油包水(W/O)型(透明)乳液。 一、性质 微乳化柴油是视觉透明的,乳化油则是不透明的; 乳化油的粒径约为0.1~10微米; 微乳的乳化剂用量远大于乳化的用量; 微乳化油的稳定性较乳化油的好。 二、应用特点 操作简单(只需机械搅拌); 原料充足(乳化剂为植物油厂下脚料活炼油厂副产物等) 能耗低(油燃烧释放热的减少低于水量的比重,即燃烧率提高); 污染少(乳化后其燃烧排放的颗粒物(PM10)、氮氧化物(NOx)明显减少); 提高燃油效率等优点(二次雾化的结果等); 税收优惠(产品为节能减排项目,享受税收减免政策,政府部门大力支持)。 三、研发背景 随着经济的不断发展和世界人口的急剧增加,能源危机日益凸显,并逐渐成为制约各国经济发展的主要因素,开源和节流成为人类应对能源危机的两大主要措施。柴油作为传统能源具有高热值、难挥发等特点,在人类活动中占有重要地位。2006年中国柴油消费量为10 962万t,缺口840万t,国内柴油供不应求。因此,柴油燃烧节能问题日益重要。燃油的乳化是指在乳化剂的存在下,通过机械搅拌、超声等手段形成油包水型乳液的过程。由于乳化柴油具有乳化过程简单、乳化油燃烧效率高、燃烧过程污染物排放少等诸多优点而备受关注。乳化柴油的应用研究已成为燃料节能减排研究领域中的热点。乳化柴油适用于各种拖拉机、农用运输车、抽水机、发电机、燃油热风炉、烘干炉、柴油机轮船等。此种新型燃料与柴油性能相当,并且能大大提高燃烧效率,不污染环境,这种清洁柴油经权威机构检测,环保指标还优于柴油,价格比原柴油低1000元/吨以上,是一种经济高效的新型燃料。 四、效益分析 环境效益: 有赖于其独特的燃烧特性,乳化柴油发挥的环境效益远超柴油。视乎发动机的类型、机龄和条件、服务历史、维护、占空比、驱动程序行为和水含量,广泛的测试证明了乳化柴油常见的减排幅度为: · 氮氧化物 --- 10% 至 30% · 一氧化碳 --- 10% 至 60% · 二氧化碳 --- 1% 至 3% · 颗粒物 --- 高达 60% · 烟 --- 基本上消除

(整理)乳化剂类型分类介绍

乳化剂类型分类介绍 乳化剂从来源上可分为天然物和人工合成品两大类。而按其在两相中所形成乳化体系性质又可分为水包油(O/W)型和油包水(W/O)型两类。 衡量乳化性能最常用的指标是亲水亲油平衡值(HLB值)。HLB值低表示乳化剂的亲油性强,易形成油包水(W/O)型体系;HLB值高则表示亲水性强,易形成水包油(O/W)型体系。因此HLB值有一定的加和性,利用这一特性,可制备出不同HLB值系列的乳液。 乳化剂类型 乳化剂分子中有亲水和亲油两个部分。根据它们的亲水部分的特征,可以分为三种类型。 负离子型乳化剂为在水中电离生成带有烷基或芳基的负离子亲水基团的乳化剂,如羧酸盐、硫酸盐和磺酸盐等。这类乳化剂最常用,产量最大,常见的商品有:肥皂(C15~17H31~35CO2Na)、硬脂酸钠盐(C17H35CO2Na)、十二烷基硫酸钠盐(C12H25OSO3Na)和十二烷基苯磺酸钙盐(结构式如)等。负离子型乳化剂要求在碱性或中性条件下使用,不能在酸性条件下使用。在使用多种乳化剂配制乳液时,负离子型乳化剂可以互相混合使用,也可与非离子型乳化剂混配使用。负离子型和正离子型乳化剂不能同时使用在一个乳状液中,如果混合使用会破坏乳状液的稳定性。 正离子型乳化剂为在水中电离生成带有烷基或芳基的正离子亲水基团。这类乳化剂的品种较少,都是胺的衍生物,例如 N-十二烷

基二甲胺,可用于聚合反应。 非离子型乳化剂为一类新型的乳化剂,其特点是在水中不电离。它的亲水部分是各种极性基团,常见的有聚氧乙烯醚类和聚氧丙烯醚类。它的亲油部分(烷基或芳基)直接与氧乙烯醚键结合。典型的产品有对辛基苯酚聚氧乙烯醚(结构式如)。非离子型乳化剂的聚醚链上的氧原子可以与水产生氢键缔合,因而可以溶解在水中。它既可在酸性条件下使用,也可在碱性条件下使用,而且乳化效果很好,广泛用于化工、纺织、农药、石油和乳胶等的生产。 乳化剂的种类 第一大类:非离子表面活性剂 一、醚类非离子助剂 1、烷基酚聚氧乙烯醚类 1)壬基酚聚氧乙烯醚 NP系列、农乳100号 110 120 130 140 壬基酚/环氧乙烷质量比 1:1 1:2 1:3 1:4 EO平均摩尔数 4-5 9-10 14-15 19-20 2)辛基酚聚氧乙烯醚乳化剂OP系列、磷辛10号(仲辛基酚聚氧乙烯醚) · 3)双、三丁基酚聚氧乙烯醚 (C4H9)- -O(EO)nH 4)烷基酚聚氧乙烯醚聚氧丙烯醚乳化剂11号(旅顺化工厂) 5)苯乙基酚聚氧丙烯聚氧乙烯醚乳化剂12号(旅顺化工厂) 2、苄基酚聚氧乙烯醚 1)二、三苄基酚聚氧乙烯醚乳化剂BP、梧乳BP,浊点65-70℃

微乳柴油实验报告

柴油微乳液拟三元相图的绘制及燃烧性能测定 1.实验背景 Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。1985年,Shah定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。 燃油掺水是一个既古老又新兴的课题。早在一百多年前就有人使用掺水燃油。由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应用受到了很大的限制。 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按 合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率更高,其节油率可达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x 和CO 的排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 近年来,随着我国农业和交通运输业的飞速发展,对石油的需求量增大,而石油资源有限,于是出现了石油供应不足、价格上涨的趋势。2004全年我国进口原油12,272吨,2005年中国的石油日需求量比去年增11%;2006年石油消费量增长了%。我国进口原油的30%用于汽车消耗,据预测,中国未来能源供需缺口将越来越大,即使在采用先进技术、推进节能,加速可再生能源开发利用以及依靠市场力量优化资源配置的条件下,2010年仍将短缺能源8%,石油进口依存度,预计2010年将上升为23%。现在我国年耗汽油和柴油总量约为亿吨,进口原油及成品油已成为国家财政的沉重负担而且天然石油的储备是有限的,人类面临日益严峻的能源危机。但经济的可持续发展必须是在保护生存环境、节约宝贵资源和降低能耗的前提下的发展。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。 2.微乳柴油与燃烧减排机理 乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W), 在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内 相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。一些燃烧机理包括: 物理作用—“微爆现象”

常用表面活性剂

AEO-7 化学组成:脂肪醇聚氧乙烯(7)醚 产品规格: 外观:(25°C);无色或微黄色透明液体 溶解性:易溶于水 HLB值:12-12.5 PH 值:6-7 浊点(1%aq.):47-56°C 特性与用途:具有良好的乳化性,分散性和去污性,广泛用作洗涤剂和工业表面活性剂。 AEO-9 化学组成:脂肪醇聚氧乙烯(9)醚 产品规格: 外观:(25°C);白色膏状物 溶解性:易溶于水 PH 值:6-7 HLB值:12.5 浊点:75-81°C 特性与用途:本品具有良好的乳化、去污、净洗等性能,广泛用于配制民用洗涤剂,用作工业乳化剂和金属清洗剂等。 AEO-15(平平加OS-15) 化学组成:脂肪醇聚氧乙烯(15)醚 产品规格: 外观:白色膏体 溶解性:易溶于水 PH值:6-7 HLB值:14.5 浊点:≥100°C 特性与用途:本品除具有乳化、分散、净洗等性能外,还具有独特的润湿性能,是良好的水溶性乳化剂,耐酸碱和硬水,广泛用于印染工业的退煮漂、染色、印花等工序,作渗透、匀染、分散和净洗剂,也是化纤油剂的主要成分,在金属加工做金属净洗剂,在制革工业中做乳化剂、净洗剂、脱脂剂。 AEO-20(平平加O-20) 化学组成:脂肪醇聚氧乙烯醚 产品规格: 外观:白色固体 溶解性:易溶于水 浊点:(5%CaCl12)≥85°C PH 值:6-7 HLB值:16.5 特性与用途:具有良好的乳化、分散、净洗和润湿性能,在印染工业中做匀染剂和煮炼助剂,印花净洗剂和原毛洗涤剂中的乳化剂,在一般工业做乳化剂,对矿、植物油有较好的乳化性能。 乳化剂SE-10

化学组成:硬脂酸聚氧乙烯(10)酯 产品规格: 外观:蜡状软固体 溶解性:分散于水中 PH 值:6-7 HLB值:12 滴点:27±2°C 特性与用途:具有良好的乳化性和增稠作用,对纤维有柔软作用。适用于化妆品,膏体鞋油等产品的乳化,制得产品均匀细腻,是纺织乳蜡的重要组分,对化纤具有抗静电作用。 乳化剂LAE-9 化学组成:月桂酸聚氧乙烯(9)酯 产品规格: 外观(25℃):无色透明液体 溶解性:易溶于水 PH值:6-7 浊点:34~40℃ 特性与用途:合成纤维油剂组份之一,对纤维具有良好的集束,抱合、柔软、平滑作用及抗静电性能。一般工业中用作乳化剂、净洗剂。 NP-4(OP-4) 化学组成:烷基酚聚氧乙烯(4)醚 产品规格: 外观:无色透明液体 溶解性:易溶于油和多种有机溶剂 PH 值:6-7 HLB值:5.0 水数:15-20ml 特性与用途:本品为亲油型乳化剂,用于W/O乳液的制备。在一些有机合成反应中作为反应介质,可缩短反应时间,提高反应转化率,如在塑料聚氯乙烯聚合时,作为整料剂,不仅能使聚氯乙烯成型颗粒均匀,且可杜绝反应物粘锅形象。NP-6(OP-6) 化学组成:烷基酚聚氧乙烯(6)醚 产品规格: 外观:无色透明液体 溶解性:溶于油及有机溶剂,在水中呈分散状 PH 值:6-7 HLB值:10.9 水数:26-35ml 特性与用途:本品具有较好的乳化性能和良好的抗静电作用。用作煤矿井下塑料制品传送带的抗静电剂,可消除其运作中生产的静电感应,杜绝电火花现象,有利于安全生产。在一般工业中可用作乳化剂。 NP-7(OP-7) 化学组成:烷基酚聚氧乙烯(7)醚 产品规格:

乳化柴油工艺配方大全

乳化柴油工艺配方大全 微乳化柴油 微乳化柴油,属于一种乳化油。微乳化柴油,是由柴油、油酸、水和乙醇胺配制成,其配料比按重量百分比计:柴油%、油酸3-15%、水5-30%、乙醇胺%。微乳化柴油与其它乳化油相比,具有透明,保存期长,生产工艺简单,成本低,可作为商品油大量推广应用等优点。 微乳化复合柴油添加剂 本发明涉及一种复合燃料所使用的添加剂,特别是制造微乳化复合柴油燃料。本发明的微乳化复合柴油添加剂组成为:按重量百分比,油酸60-80%、浓氨水15-20%、一乙醇胺1-5%、乙酸1-5%、烷基萘%、肼6-10%。本添加剂用于制造微乳化柴油复合燃料,配制时按重量百分比为,柴油∶水∶添加剂=58%∶30%∶12%。该燃料的物理指标和化学指标与柴油接近,具有成本低、外观透明、稳定性好、热值高、对发动机无副作用。同时,本发明的添加剂可起到改善柴油燃烧性能、节省能源、减少排气污染的效果。 含有柴油、醇和水的乳化液及其制备方法 本发明涉及一种液体燃料及其制备方法,特别是涉及一种含有柴油、醇和水的乳化液新型液体燃料及其制备方法。在非塑料容器中,以含有柴油、醇和水的乳化液的总重量百分比计,加入60%-90%的柴油和%-8%的高效复合乳化剂,然后将频率为18KHZ-26KHZ超声波探头放入液面之下,经超声波作用接近1分钟后,逐次加入2%-11%的醇和%-21%的水,再经超声波作用两到三分钟,在整个过程中,保证液体温度不超过80℃,即可形成稳定的含有柴油、醇和水的乳化液。该乳化液稳定性良好,保存一至三个月,作为燃油可以降低NOx、碳黑等的排放,其烟度下降值最大可达50%。 自控优化掺水率的乳化柴油在线合成器 本发明公开了一种自控优化掺水率的乳化柴油在线合成器。包括在蓄水箱出水口依次接有浮子室、由控制器控制的自动剂量阀和手控的电磁阀;油箱经柴油清滤器,装有流量传感器的油路与手控的电磁阀出口的水路连通后接输油泵,随车式油水乳化器安置在输油泵和喷油泵之间的油路中。本发明可以不需添加任何乳化剂,也不需附加其他动力驱动就能获得良好效果的乳化油,并能根据柴油机负荷对水在燃油中的比例进行自动优化,提高节油水平。安装于柴油机上,边乳化边使用,降低柴油机油耗、减少排气烟度,具有节能和环保效益。本发明结构简单,操作方便。 自动旋转壁孔剪切式柴油乳化器 本发明公开了一种自动旋转壁孔剪切式柴油乳化器。其进油口和出油口分别设置在同一根中心轴的两端中心孔,在轴的中间通过轴承配合安装了能自动产生高速旋转的乳化筒,乳化筒的下端盖底面上径向对称布置了两个喷口相反的喷嘴,乳化筒的外壁上均匀布置多个极微小的通孔。一定比例的油水,通过输油泵以一定压力进入乳化器

柴油_甲醇乳化燃料乳化剂的最佳HLB值及水含量的影响

文章编号:1000-0925(2004)02-040-03 250031 柴油2甲醇乳化燃料乳化剂的最佳H LB 值及水含量的影响 吴 楚1,魏建勤1,史春涛2 (1.浙江大学动力机械及车辆工程研究所,杭州310027;2.天津大学天津内燃机研究所) The Optimum H L B Number of Emulsion of Diesel 2Methanol Emulsification Fuel and the I nfluence of W ater Content on It WU Chu 1,WEI Jian 2qin 1,SHI Chun 2tao 2 (1.The Institute of P ower Machine and Vehicle Engineering ,Zhejiang University ,Hangzhou 310027,China ; 2.T ianjin Internal C ombustion Engine Research Institute ) Abstract :F or using diesel 2methanol emulsification fuel ,one of the m ost difficulty things is how to obtain stable and cheap diesel 2methanol emulsification.The optimum H LB number of emulsion of diesel 2methanol emulsification fuel and the in fluence of water on it were studied.It is showed that the optimum H LB number of emulsion of diesel 2methanol emulsifica 2tion fuel is about 3.5,and the optimum H LB number of emulsion of diesel 2methanol 2water emulsification fuel become to the optimum H LB number of emulsion of diesel 2water emulsification fuel when there is water in diesel 2methanol emulsification fuel.The optimum H LB number of emulsion of diesel 2methanol 2water emulsification fuel dosn ’t change with increasing wa 2ter content.But delamination period change with increasing water content.The delamination period of emulsification fuel is the longest when the scale of water to methanol is about 40%in methanol 2water and methanol 2water is about 8:1in diesel 2methanol 2water emulsification fuel.It is fav orable to im prove the stability of diesel 2methanol emulsification fuel to adding water into diesel 2methanol emulsification fuels. 摘要:柴油机中掺烧醇的最大难点之一在于难以获得价廉、稳定的柴油2甲醇乳化燃料。 作者研究了柴油2甲醇乳化燃料乳化剂的最佳H LB 值以及不同含水量对最佳H LB 值的影响。研究结果表明:柴油2甲醇乳化燃料乳化剂的最佳H LB 值在3.5左右,当柴油甲醇乳化燃料中含水形成了甲醇2水2柴油三元乳化燃料时,其最佳H LB 值与柴油2水的最佳H LB 值相同,且三元乳化燃料乳化剂的最佳H LB 值不随含水量的增加而变化,但随着含水量增加,乳化燃料分层时间会产生变化;在柴油2甲醇2水乳化液中,当水在甲醇2水混合液中的比例为40%左右时,甲醇2水2柴油三元乳化燃料(柴油∶甲醇+水=8∶1)的分层时间最长,即在柴油2甲醇乳化燃料中加水有利于提高乳化燃料的稳定性。 关键词:内燃机;柴油;甲醇;乳化燃料;最佳H LB K ey Words :I.C.Engine ;Diesel Fuel ;Ethanol ;Emulsion ;Optimum H LB Number 中图分类号:TK 421.5 文献标识码:A 收稿日期:2003204225 作者简介:吴 楚(1975-),男,硕士,主要从事内燃机工作过程的研究,E 2m ail :w eijianqin @https://www.wendangku.net/doc/c37524848.html, 。 1 概述近年的研究发现,当燃料中含氧量达总质量的 30%时,可实现无烟燃烧。柴油机排放尾气中的烟 度主要受燃料中含氧量的影响,与具体的含氧燃 料的种类没有关系[1,2]。因此,从环保和经济因素考   第25卷(2004)第2期 内 燃 机 工 程  Neiranji G ongcheng V ol.25(2004)N o.2

乳化剂性质及应用

食品乳化剂的性质及应用 一、乳化剂的简介: 1. 乳化剂是一种双亲分子,是有一个亲油端及一个亲水端在体系中,分散 相称为不连续相,在食品中,亲油基常是食品级油或脂的长链脂肪酸,亲水 基可以是非离子型,如甘油,亲水基可以是阴离子型(带负电如乳酸盐),亲 水基可以是两性(如卵磷脂),亲水基可以是阳离子型,具有毒性,一般不 用。 2.乳化液: 常有O/W与W/O型分散液,总的说来,连续相是乳化剂的溶解度较大的一相。 3、HLB 亲水性与亲油性平衡值,理论上,HLB=(亲水性分子量/总分子量)×20=a/b ×20 由此可见,HLB在0~20 较小值代表乳化剂在油相中更易溶解,较大值则相反,常见乳化剂的HLB值:

两种乳化剂混合物的HLB=A×HLBa+B×HLBb 其中A、B表示质量百分数。 经研究: HLB在3~6范围内有利于形成W/O型乳化液 HLB在11~15范围内,有利于形成O/W型乳化液 HLB在6~11范围内,无良好乳化性,只有湿润性能 O/W型乳化液在HLB=12最稳定, W/O型乳化液在HLB=3.5最稳定。 二、乳化剂的作用: 1、乳化剂最重要的作用是使互不相溶的水、油两相得以乳化形成均匀、稳定的乳状液,保持油和水的两相稳定。 2、与淀粉作用: 淀粉在水中形成@螺旋结构,内部有疏水作用,乳化剂疏水基进入淀粉@螺旋结构,通过疏水键与之结合,形成复合物或络合物,降低淀粉分子的结晶程度,乳化剂进入淀粉颗粒内部会阻止支链淀粉的结晶程度,防止淀粉老化,使面包、糕点等淀粉类制品柔软,具有保鲜作用。 3、与蛋白络合,改善食品结构及流变特性增强面团强度。蛋白质因氨基酸极性不同具有亲水和疏水性,在面筋中,极性脂类分子以疏水键与麦谷蛋白结合,以氢键与

乳化柴油

乳化柴油 柴油乳化剂是基于多分子吸附膜理论,该理论是由乳化剂与分散相共同形成的强穿透性复合物构成,膜厚、强度大、难破乳、阻止聚结。乳化柴油特点如下: 1乳化柴油的主要结构 在乳化剂的作用下,使水在短时间内发生质的变化,经专业乳化机械的处理,水即形成微小颗粒,周边被油包围形成油包水的大分子结构,得到与柴油原色相近的新型燃料——乳化柴油。 二、乳化柴油的燃烧原理 乳化柴油是在乳化剂的作用下形成油包水的结构,而水是不可燃烧的,但水又是由H和O组成这两个成分中H可燃烧,O又是助燃的,怎样能使水中的这两个成分各发挥其性能呢?乳化柴油较好的解决了这个问题,这就是: 1、微爆作用 因为乳化柴油是以油包水的状态存在的,由于水和柴油的沸点不同(水100℃、油200-350℃),当乳化柴油燃烧时,每一个包裹水珠的油珠在高温的燃烧室中,水先于柴油汽化,这一过程使包含水珠外面的油膜炸裂成无数的小片,这样的每一下片由于自身的表面张力,将重新形成小细珠。这种微爆现象的存在,使每一个小油珠进行了两次雾化,柴油与助燃空气的接触面也自然成比例增长,分散更好,混合更加均匀,燃烧更加充分,从而减少或消除了原有的不完全燃烧问题从而达到提高

燃烧效率的功效。 2、加速燃烧反应 油的燃烧过程主要是其中的C—C键和C—H与O2的反应,碳氢元素是否完全燃烧取决于燃烧接触面和O2、OH等活性物质的含量。在乳化柴油的燃烧过程中,水参与了燃烧,会发生一系列的附加化学反应,水是非能源物质,最后还是以水(水蒸气)的形式排出,并没有热量的放出,但是在高温反应中,水产生了H、O 和OH等原子或自由基。这些活性物质极大地活化了整个油料的燃烧过程,使生成的一氧化碳尽可能完全燃烧。此外还可加入水裂解催化剂促使H、O和OH等原子或自由基的生成,水煤气反应还加速了燃油裂解所形成的焦炭的进一步燃烧,从而抑制了烟尘的生成。使燃烧更充分、更完全,从而达到提高燃烧效率和热效率的目的,降低了油耗率。 NO x的生成主要是汽缸吸入的空气中含有氮气和氧气,两者在汽缸内混合,反应生成一氧化氮,一氧化氮在高温下又被氧气氧化,从而生成各种氮氧化合物NO x。油掺水后燃烧改善了柴油与空气的混合比例,使氧气尽可能多的参与了与油的燃烧,达到充分燃烧的效果,减少了过剩空气系数。此外乳化柴油中水滴的汽化需吸收热量,防止燃烧火焰局部高温,从而达到了抑制了NO x 的生成,减少了环境污染,保护了大气环境。 三、乳化柴油的优点

17种常用表面活性剂汇总

17种常用表面活性剂 月桂基磺化琥珀酸单酯二钠(DLS) 一、英文名: Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃 须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳 定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、用途与用量: 1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤 日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造 纸、油墨、纺织等行业。

乳化柴油实验报告

1、实验目的 1.1 学会柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液进行燃烧性能测定。 1.2 通过氧弹卡计进行燃烧性能的测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。 1.3通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别。 1.4 了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。 2、实验原理 2.1实验背景知识 Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。1985 年,Shah 定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系[1]。由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注[2]。 燃料中掺水, 能提高油料的燃烧效率, 降低燃烧废气中有害气体的含量[3]。燃油掺水是一个既古老又新兴的课题。早在一百多年前就有人使用掺水燃油。由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应川受到了很大的限制[4]。 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,

不分层,且制备简单, 并能使燃烧更完全,燃烧效率高,节油率达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x和CO 排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 随着经济快速发展与人口的急剧增长, 80% ~90%的空气污染来自交通工具排放的尾气,柴油不完全燃烧造成的环境污染越来越受到人们的关注,根治大气污染已成为人类面临的重要课题。另一方面,由于中国未来石油供需缺口将越来越大,进口量呈逐步增大的趋势,而且天然石油的储备是有限的,人类面临日益严峻的能源危机。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。本着节能和环保两个根本宗旨,各国都在加紧对微乳燃油性能的研究。微乳柴油的性能决定着它的应用,研究微乳柴油的性能就显得十分重要[5]。 2.2微乳柴油与燃烧减排机理 乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W), 在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内 相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。一些燃烧机理介绍如下: 2.2.1物理作用—“微爆现象” 二十世纪六十年代初,前苏联科学家伊万诺夫等人发现了乳化燃料的“微爆”现象,从而为乳化燃料的节能、降污机理提供了理论基础。油包水型分子基

乳化剂介绍

饲料营养—饲用乳化剂在畜禽饲料中的使用 乳化剂能够将饲料中的油脂乳化,从而提高其消化吸收率。本文就市场上出现的乳化剂种类和其优缺点进行了比较,认为卵磷脂类和糖苷酯类乳化剂优于其它类型的乳化剂。 随着畜牧业的发展,在追求养殖高效应的过程中,为了加快畜禽的生长速度,降低料肉比,饲料中使用油脂的情况越来越普遍。畜禽饲料中添加油脂一般以豆油、玉米油、棉籽油和米糠油为主,也有使用动物油和餐桌剩余油脂的情况。通过合理的使用油脂,畜禽的生产性能大大提高,生长速度加快,料肉比降低。但是在使用油脂的过程中也有一些必需克服的缺点:在幼龄畜禽中使用油脂的效果不明显,许多研究表明仔猪日粮中添加油脂对于仔猪的生长性能影响不显著(Cera等,1988; Li等,1990)。其主要原因就是因为幼龄动物消化道发育不完全,胆汁酸盐和脂肪酶分泌不足以消化吸收饲料中的油脂,造成饲料中油脂的浪费,被幼龄畜禽排出体外。另一方面,仔猪断奶阶段对能量的要求要显著高于生长猪,所以仔猪日粮中的油脂如果能够被充分吸收,仔猪断奶期间的增重将大大提高。现阶段生产实践中,为了提高畜禽的生长速度和生产性能,常常大量添加油脂。肉鸡料后期的日粮中油脂的添加比例常常超过3%,哺乳母猪日粮中的油脂也能够达到3%以上,在这样的添加比例情况下,饲料中添加的油脂常常不能达到我们的期望值,这主要是因为日粮中高比例的油脂所需要的胆汁酸盐量大大超过了畜禽体内能够分泌的量,所以油脂的乳化不彻底,没有乳化的油脂常常导致畜禽的腹泻,从而造成畜禽生产的损失。 1、饲料中乳化剂的使用 解决油脂使用上的这些问题,增加油脂的消化吸收率,扩大油脂的使用范围和使用比例是提高畜禽生产的重要手段。提高油脂的消化率,添加乳化剂是一个重要的手段。乳化剂是一种能够溶解于水,又能够溶解于油的两性物质。乳化是把一种液体置于与它互不相混合的液体中,在外力作用下将此液体呈微粒分散的过程,新生成的均匀混合物称为乳浊液.使这两种液体分散,并使乳浊液保持稳定的物质称为乳化剂.乳化剂实质上是一种表面活性剂,在饲料中添加乳化剂后,饲料中的油脂能够溶解在水中,大大加强了油脂的消化吸收性能。 饲料中添加乳化剂对畜禽生长性能的影响,许多研究表明当在仔猪含牛油日粮中添加卵磷脂和脑磷脂(添加量为牛油量的10%)时,日粮中脂肪的消化率由80.9%分别提高到88.4%和83.9%。肉鸡饲料中添加卵磷脂作为乳化剂能够减低肉鸡腹脂厚度,提高胴体重。 2、乳化剂的种类 现有阶段使用的乳化剂有数十种,但是用于食品和饲料工业上的主要有:磷脂类、脂肪酸酯和糖苷酯类,饲料上也使用胆汁酸盐类乳化剂。通常商品化的乳化剂产品并不是由单一的乳化剂组成,为了更好的乳化性能,几种乳化剂按照合适的比率组成商品乳化剂。复合乳化剂是由两种以上表面活性剂组成的乳化剂。不同乳化剂之间互相配合,加强了乳化剂对油脂的溶水能力。 3、不同乳化剂的优缺点 磷酯产品主要用于医药、食品、化妆品工业及饲料中,有精制卵磷酯、改性磷酯、氢化磷酯、复配磷酯、脱色磷酯及粗制磷酯等,品种多达几十种。进一步

生物柴油工艺技术简介

年产2万吨生物柴油生产技术简介 一、总论 生物柴油概念:生物柴油是清洁的可再生能源,它以生物质资源作为原料为基础加工而成的一种柴油(液体燃料),主要化学成分是脂肪酸甲酯。具体而言,动植物油,如菜籽油、大豆油、花生油、玉米油、米糠油、棉籽油;以及动植物油下脚料酸化油,脂肪酸;动物油:猪油、鸡油、鸭油、动物骨头油等经一系列化学转化,精制而成的液体燃料,是优质的石油柴油代用品。生物柴油是典型的“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重大的战略意义。 二、生物柴油的主要特性 与常规柴油相比,生物柴油具有下述无法比拟的性能。 1、优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%;生物柴油中不含对环境会造成污染的芳香族烷烃,如苯等化合物,因而废气对人体损害低于石化柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患癌率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2、具有较好的低温发动机启动性能,无添加剂冷滤点达–20℃。 3、具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损

率低,使用寿命长。运动粘度稍高,在不影响燃油雾化的情况下,更容易生气缸内壁形成一层油膜,从而提高运动机件的润滑性,保护发动机,降低机件磨损。 4、具有较高的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的安全性更高。 5、具有良好的燃烧性能。十六烷值高,含氧量高,燃烧性优于石化柴油,燃烧残留物呈微酸性,发动机油的使用寿命加长。 6、具有可再生性能。作为可再生能源,与石油储量不同,其通过农业和生物科学家的努力,可供应量不会枯竭。 7、无需改动柴油机,可直接添加使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。 8、使用性广。可广泛用于各种载重汽车、火车、公交车、卡车、舰船、工程机械、地质矿业设备、农用机械、发电机组等柴油内燃机;更是非动力的工民用窑炉、锅炉及灶具上佳燃料。 三、生物柴油的发展前景及意义 (一)国家立法、政策支持 从2006年1月1日起正式生效的《中华人民共和国可再生能源法》明确规定“国家将再生能源的开发利用列为能源的优先领域,——依法保护可再生资源开发利用者的合法权益”。并指出“生物液体燃料,是指利用生物质资源生产的甲醇、乙醇和生物柴油”。 (二)资源十分广泛 一是可利用各种动、植物油脂的各种废料、副产物,例如加工植

乳化柴油的缺点和柴油的危险性

乳化柴油的缺点和柴油的危险性 乳化柴油的优点有很多,但是却没有得到广泛的推广,是因为乳化柴油还存在许多缺点,然而柴油又存在不可忽略的危险性,一般乳化燃料的油水分离时间为7-15天,由于保存时间短,因而作为商品周转使用时有一定困难; 3.生产设备造价昂贵。乳化燃料的设备多采用高速搅拌或超声波乳化装置,设备价格昂贵,投资大而且操作复杂,一旦损坏,很难维修; 4.节油不省钱。由于所用乳化剂的成本高,生产的乳化燃料成本较高,因此虽有一定的节油效果,但节油不省钱,直接经济效益不大。 二、柴油燃烧、爆炸的危险性 1.柴油的易燃性。物质的燃烧性是由其闪点、燃点、自燃点来衡量的,闪点是衡量火灾危险性的重要依据。液体燃料的危险等级

是根据闪电来划分的。油品的闪点愈高,火灾危险性愈小;油品的闪点愈低,火灾危险性愈大。汽油、煤油、柴油的闪点都在120℃以下,润滑油类的闪点一般在210℃因此,汽油的火灾危险性最大。依照我国石油产品技术标准,炼油厂生产的柴油的闪点应不低于45°c,通常在60°c--120°c之间。-35号柴油的闪点为50℃左右,正常情况下环境温度可能达到或接近此温度,所以,火灾危险性较大,油库设计规范在油品火灾危险性分类时,把-35号柴油划为乙级。其它轻柴油和重柴油闪点在60~120℃之间,环境温度通常不可能达到,不易着火,火灾危险性分类把它们划分为丙级a类。但是,必须注意,如果这类柴油因为某种原因被加热、或其附近有高热辐射的火源时,则可能存在被点燃引起火灾的危险性。 2.柴油的易爆性。爆炸性,是物质发生非常迅速的物理或化学变化的一种形式。油品爆炸的危险性通常用爆炸极限表示。油气与空气混合,其浓度达到一定的混合比范围,遇一定能量的点火源时,即可发生爆炸。发生爆炸的最低油气混合比称为爆炸下限;发生爆炸的最高油气混合比称为爆炸上限。如柴油的爆炸下限是混合气体中油气体积含量为0.6%,爆炸上限为6.5%。柴油蒸气在空气中的含量在上述范围内,遇到大于或等于0.2mj的点火能量时,则发生爆炸。如果混合气体浓度超出上述范围时,遇点火源则不爆炸。但在通常的储运条件下,油气很难达到与空气均匀混合,在爆炸极限外,可能存在

微乳化柴油技术简介

Biodisel and the microemulsion additives 生物柴油及微乳化剂简介 生物柴油(biodisel)是指以一部分可再生生物质资源代替不可再生柴油,通过特殊的工艺和技术生产的一种燃烧高效的环保柴油。本公司推出的生物柴油是利用微乳化剂,将9%-12%的水和80%-84%的柴油这两种完全不相溶的液体在特定的条件下经过物理化学反应,生成一种透明、稳定的微乳化生物柴油。本产品不同于现有市场上通过乳化剂和乳化设备加工而成的白色乳浊状柴油,而是通过巧妙的物理化学工艺生成的燃烧值更高,物化性质更为稳定的微乳化生物柴油(以下简称微乳化柴油)。 微乳化柴油的特点: 1、透明、清澈,经过充分乳化后,外观与常规柴油外观相同,完全不同于目前市场上 的白色乳浊状乳化柴油。 2、状态稳定。在-20℃到80℃的恶劣工况下无油水分离现象。 3、燃烧值高。微乳化柴油的燃烧值>9800Cal/kg,完全达到或超过国家0#柴油的标准。 4、环保清洁。有害气体量下降30%以上,PM达到欧Ⅱ标准,能清洁常用设备的油路。 5、使用范围广。该乳化柴油适用于不同型号的柴油发动机和其他内、外燃机使用。 6、微乳化范围广。可以针对市场上常用的柴油和重油进行微乳化调配。 微乳化柴油的工作原理: 柴油分子链较长,在正常使用的情况下20%-30%的柴油都是在没有经过充分燃烧的情况就排放掉,这样理论净燃烧值就大打折扣。微乳化柴油则是通过掺入一定比例的水,通过微乳化剂的作用,在柴油体系中形成稳定的纳米粒径(<50nm)的油包水(w/o)稳定结构。这样,柴油在燃烧的过程燃烧不充分形成的C和CO经过水分子的参与下以微爆的形式得以充分燃烧,最终以CO2的形式排出,从而提高柴油的燃烧效率。其作用化学反应原理如下所示: CO + H2O ==CO2 + H2+E(能量) 2H2 + O2 ==H2O + E(能量) 微乳化柴油的工作示意图: 柴油液滴 微乳化柴油液滴水珠

乳化剂对柴油微乳液粘度的影响

第30卷第5期 唐山师范学院学报 2008年9月 Vol.30 No.5 Journal of Tangshan Teachers College Sep. 2008 ────────── 收稿日期:2007-02-28 作者简介:刘征原(1975-),女,河北承德人,唐山师范学院化学系实验师。 - 36 - 乳化剂对柴油微乳液粘度的影响 刘征原,黄艳娥 (唐山师范学院 化学系,河北 唐山 063000) 摘 要:实验比较了不同乳化剂复配体系加溶水量大小,并研究了在相同乳化剂复配时不同加入量对柴油微乳液粘度的影响。结果表明,离子表面活性剂在总表面活性剂中含量较高时加溶水量较高,三组分乳化剂复配较两组分复配加溶水量高;无论是用何类型的乳化剂组合的两组分或三组分复配乳化剂,随着乳化剂含量的增加,微乳液粘度均增加,但三组分乳化剂复配制备出的柴油微乳液粘度增加趋势较两组分平缓。 关键词:乳化剂;柴油;微乳液;粘度;加溶量 中图分类号: T Q028 文献标识码:A 文章编号:1009-9115(2008)05-0036-03 Influences of the Emulsifiers on Viscosity of Diesel Oil Micro-emulsion LIU Zheng-yuan, HUANG Yan-e (Chemistry Department of Tangshan Teachers College, Hebei Tangshan 063000, China) Abstract: The water solubilization in the different emulsifiers compounded system is compared, and the effect of the amount of the same compounded emulsifier on the viscosity of micro-emulsion is researched. The experiment results show that water amount of solubilization is high in the micro-emulsified diesel oil when the percentage content of ionic surfactant is high in the total surfactant amount. Compared with the utilization of two emulsifiers, the water amount of solubilization is higher when three emulsifiers are mixed into the micro-emulsified diesel oil. The viscosities of micro-emulsified diesel oils all increase with the increasing of the percentage content of emulsifiers, whatever kind of emulsifiers are compounded. The increasing trend of viscosity is much flatter when three emulsifiers are compounded. Key words: emulsifier; diesel oil; micro-emulsion; viscosity; solubilization of water 目前,柴油掺水乳化和微乳化燃料作为一项重要的节能和环保技术得到了世界各国的广泛关注 [1-7] ,我国在该领域 也进行了大量的研究,但对微乳化柴油的实际应用还有一系列的问题需要解决,如对微乳化柴油的经济性能、稳定性能、流动性能、燃烧性能、腐蚀性能等问题需认真研究解决措施;对燃烧过程的节油机理需做更深入的研究和讨论;对柴油发动机的动力性和排放状况须进一步考察以确定最佳节油和排放效果的掺水量和工作条件等。 上述问题中,微乳柴油的流动性对其在雾化室内的雾化状况有很大影响。粘度小的微乳柴油流动性好,在雾化时需克服内摩擦而消耗的力小,所以雾化颗粒小,蒸发表面增大,同时蒸发速率增大,在使用过程中,喷射出的微乳柴油量较 多,达不到节油的效果,经济性差。反之,粘度大的微乳柴油雾化困难,造成喷射出的微乳柴油量少,发动机达不到所需的功率。因此,配制出与纯柴油粘度相近的微乳柴油在原柴油机上才能达到良好的实际应用效果。盛宏至[8] 曾采用Span80和Tween60作乳化剂,研究了水/甲醇/柴油体系乳化液的流变特性和粘度,发现随乳化剂用量增加,乳化液粘度上升,特别是当水含量高于40%时,乳化液粘度急剧增加。但对柴油微乳液体系,乳化剂的种类及其加入量对柴油微乳液粘度的影响至今还没有系统的研究。本文将对该问题进行探讨,找出不同乳化剂及其加入量对柴油微乳液体系粘度影响的关系。 1 实验部分

相关文档
相关文档 最新文档