文档库 最新最全的文档下载
当前位置:文档库 › 三角形垂心定理

三角形垂心定理

三角形垂心定理
三角形垂心定理

三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:

1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。(此直线称为三角形的欧拉线(Euler line))

3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明

已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB

证明:

连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC

∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE

又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB

三角形的外角(外角定义、定理)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:三角形的______________________组成的角,叫做三角形的外角. 问题2:三角形外角定理:三角形的一个外角等于__________________. 三角形的外角(外角定义、定理)(人教版) 一、单选题(共10道,每道10分) 1.下列各项中,∠1是△ABC的外角的是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:三角形的外角 2.如图,在△ABC中,点D,F在线段AB上,点E在线段AC上,H是BC延长线上一点,FE 的延长线交BH于点G,则下列说法错误的是( )

A.∠ACG是△ABC的外角 B.∠FGH是△ECG的外角 C.∠AFE是△BFG的外角 D.∠DEA是△ECG的外角 答案:D 解题思路: 试题难度:三颗星知识点:三角形的外角 3.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,连接DE,则下列说法正确的是( ) A.∠BFE是△CDF的外角 B.∠ADF是△CDF的外角 C.∠CFD是△BFE的外角 D.∠CFB是△DFE的外角 答案:B 解题思路:

试题难度:三颗星知识点:三角形的外角 4.如图,∠B=30°,∠A=40°,则∠BCD的度数为( ) A.80° B.70° C.60° D.50° 答案:B 解题思路: 试题难度:三颗星知识点:三角形的外角 5.如图,直线m,n分别过点A,B,若∠1=100°,∠2=70°,则m,n相交所成的锐角为( )

A.20° B.30° C.70° D.80° 答案:B 解题思路: 试题难度:三颗星知识点:三角形的外角 6.如图是某零件的平面示意图,点E在BD的延长线上,其中∠A=40°,∠ABC=35°,∠C=30°,则∠ADC的度数为( ) A.75° B.95° C.105° D.140°

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

三角形的证明-知识点汇总

三角形的证明知识点汇总 知识点1 全等三角形的判定及性质 判定定理简称 判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等 全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL (Rt △) 斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容 几何语言 条件与结论 等腰三角形的性质定理 等腰三角形的两底角相等。简述为:等边对等角 在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C 推论 等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC ,AB=AC ,AD ⊥BC , 则AD 是BC 边上的中线,且 AD 平分∠BAC 条件:等腰三角形中已知顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理 等边三角形的三个内角都相等,并且每个角都等于60度 解读 (1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容 几何语言 条件与结论 等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读 对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展 判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念 证明的一般步骤

(完整版)相似三角形中的射影定理

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= ·AC2= ·BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。 B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的 高,这时CAB DEF ??和是否相似? 【拓展练习】 1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF A B A B C N D C

三角形外角定理.doc

北师大版八上第七章第五节 《三角形内角和定理2》 教学设计 郑州市第七十五中学郑红莉

《三角形内角和定理2》教学设计 郑州市第七十五中学郑红莉 一课标要求 掌握三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,证明三角形任意两边之和大于第三边。 二基于对教材的理解 本节课是北师大版八年级上册第七章第五节《三角形内角和定理》第2 课时的内容,学生在前一节课中已经学习了三角形内角和定理的证明和应用,因此本节课是对三角形知识学习的延伸,主要涉及三角形的外角定义,三角形两个外角定理及应用,同时进一步熟悉和掌握证明的步骤、格式、方法、技巧。 三基于对考试要求的分析 能利用三角形内角和定理推论进行角度计算和角度数量关系证明。 四基于对学情的分析 1、学生已有知识基础。 学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。 2、已有的活动经验 具备一定的学习能力,包括自学和交流,具备有条理的思考分析和表达能力,思维正逐步由具体走向抽象,当然依然倾向于通过形象

的材料来理解相关知识和概念。 3、学习本节可能出现的难点 学生仅具备初步的利用定理推理证明的能力,但如何证明几何中的不等关系可能存在困难,另外证明的方法、技巧有待提高。 4、学生座次表 A C A C A B B D B D B D A C A C A C B D B D B D A C A C A C 前后四人为一组,A 为组长,每一组课堂表现有积分累计 B D B D B D AB 层通过预习能描述判断三角形外角,并能推理证明三角形外角有关定理及进行有关应用, CD层通过自学及与同桌交流能说出三角形 外角定义,并能结合图形会描述三角形外角的两个定理及简单的应用。五学习目标 1.通过视频引入活动一,会判断和作出三角形的外角; 2.通过猜想、同桌交流,能描述有关三角形外角的两个定理及推理验证过程; 3.通过小组合作,会运用三角形内角和定理的两个推论解决相关问题 【学习重点】三角形有关外角的两个定理的应用 【学习难点】会用三角形的内角和定理的两个推论解决几何证明和几

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

三角形的证明知识点汇总

百度文库- 让每个人平等地提升自我 1 三角形的证明知识点汇总 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等 全等三角形对 应边相等、对 应角相等SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL(Rt△)斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容几何语言条件与结论 等腰三角形的性质定理等腰三角形的两底角相等。 简述为:等边对等角 在△ABC中,若AB=AC,则 ∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC,AB=AC,AD⊥BC, 则AD是BC边上的中线,且 AD平分∠BAC 条件:等腰三角形中已知顶点的 平分线,底边上的中线、底边上 的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理等边三角形的三个内角都相等,并且每个角都等于60度 解读(1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容几何语言条件与结论 等腰三角形的判定定理有两个角相等的三角形是等腰 三角形,简述为:等校对等边 在△ABC中,若∠B=∠C则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念证明的一般步骤

(完整版)三角形的内角和与外角和关系(基础)知识讲解

三角形的内角和与外角和关系(基础)知识讲解 【学习目标】 1.理解三角形内角和定理的证明方法; 2.掌握三角形内角和定理及三角形的外角性质; 3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题. 【要点梳理】 要点一、三角形的内角和 1.三角形内角和定理:三角形的内角和为180°. 2.结论:直角三角形的两个锐角互余. 要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点二、三角形的外角 1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是 △ABC的一个外角. 要点诠释: (1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线. (2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角. 2.性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角. 要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据.另外,在证明角的不等关系时也常想到外角的性质. 3.三角形的外角和: 三角形的外角和等于360°. 要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°. 【典型例题】 类型一、三角形的内角和 1.证明:三角形的内角和为180°. 【答案与解析】 解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

初中三角形的定理

初中三角形的定理、公理和定义 一. 三角形中的有关公理、定理: (1)三角形外角的性质: ①三角形的一个外角等于与它不相邻的两个内角的和; ②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360°. (2)三角形内角和定理:三角形的内角和等于180°. (3)三角形三条边的关系:两边之和大于第三边,两边之差小于第三边。 (4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半. 二.多边形中的有关公理、定理: (1)多边形的内角和定理:n边形的内角和等于(n-2)×180°. (2)多边形的外角和定理:任意多边形的外角和都为360°. 三.(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。 四. 等腰三角形中的有关公理、定理: (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”) (3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”. (4)等边三角形的各个内角都相等,并且每一个内角都等于60°. (5)三个角都相等的三角形是等边三角形。 (6)有一个角是60°的等腰三角形是等边三角形。 五. 直角三角形的有关公理、定理: (1)直角三角形的两个锐角互余; (2)勾股定理:直角三角形两直角边的平方和等于斜边的平方; (3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (4)直角三角形斜边上的中线等于斜边的一半. (5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 六.相似三角形的判定: (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似. (4)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似。 七.全等多边形的对应边、对应角分别相等. 八. 全等三角形的判定: (1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.). (2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(S.A.S.) (3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.). (4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.) (5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.) 九.角的概念 初中角的概念是由具有公共端点的两条射线构成的图形叫做角;<360° 高中角的概念是一条射线绕着它的端点旋转到一个位置后形成的图形叫做角。

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DF FC BCFD 是平行四边形,BD,则四边形BC有AD FC,所以。因为1DE ,所以.BC 2,有F,则作FC 交DE的延长线于法2C 因为,DF BC。为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DE BC 2 ,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD ,所以FC 为平行四边形,为平行四边形,有1BC.DE ,所以BCDF 。因为2 法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都

CENAEM 1。DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC 2 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。 ⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A BEDC 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? A

ED BC 图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成. 生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。第二,要知道中位线定理的使用形式,如: A DE是△ABC的中位线∵ ED1BCDE ,BC∥∴ DE2CB. 第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理。 题1 如图4.11-7,Rt△ABC,∠BAC=90°,D、E分别为AB,BC的中点,点F 在CA延长线上,∠FDA=∠B. (1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.

(精心整理)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

与三角形有关的定理、

与三角形有关的定理: 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应 线段成比例 87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理平行于三角形一边的直线和其他两边(或两边的延长线)

15相似三角形判定定理的证明知识讲解基础

相似三角形判定定理的证明(基础) 【学习目标】 1.熟记三个判定定理的内容. 2.三个判定定理的证明过程. 3.学选会用适当的方法证明结论的成立性. 【要点梳理】 要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′. 证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则 ∠ADE=∠B,∠AED=∠C, ADAE?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABAC过点D作AC的平行线,交BC与点F,则 ADCF?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABCBAECF?∴ACCB∵DE∥BC,DF∥AC, ∴四边形DFCE是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ADAEDE??. ∴ABACBC而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE∽△ABC. ∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE∽△A′B′C′. ∴△ABC∽△A′B′C′. 要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时辅助线的做法.

【典型例题】类型一、两角分别相等的两个三角形相似,求证:△ADE∽△ABC.D, CE⊥AB,垂足为E1、在△ABC中,∠A=60°,BD⊥AC,垂足为 断可判∠AEC=∠ADB=90°,利用∠EAC=∠DAB路点拨】由BD⊥AC,CE⊥AB得到【思 ,加上∠EAD=∠CAB,根据三角形相似的==,利用比例性质得△AEC∽△ADB,则判定方法即可得到结论.【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,而∠EAC= ∠DAB,∴△AEC∽△ADB,∴,=∴,= ∵∠EAD=∠CAB,∴△ADE∽△ABC.有两组有两组角对应相等的两三角形相似;【总结升华】考查了相似三角形的判定与性质:对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三°,ADE=60,且∠在BC、AC上,点是等边三角形D,E分别ABC【变式】如图,△CE. CD=AC?证求:BD? 【答案】证明:∵△ABC是等边三角形, ∴∠B=∠C=60°,AB=AC, ∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°, ∴∠BAD=∠CDE, ,DCE△∽ABD△∴.ABBDCC BCD=AC BCD=AC 2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延

初中数学相似三角形的判定定理

相似三角形的判定 教学目标1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用“∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念:我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念:相似三角形对应边的比,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性.②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应 边成比例,那么这两个多边形叫做相似多边形.相似多边形的 对应边的比,叫做相似比. 如图,是相似三角形,则 相似可记作∽.由于,则与 的相似比,则与的相似比.

猜测两个三角形全等与相似的区别与联系:当两个相似三角形的相似比时,这两个相似三角形就成为全等三角形,因此全等三角形是相似三角形的特例. 想一想:如果∽,∽那么与相似吗? 利用相似三角形的定义说理.得到相似三角形具有传递性(性质)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么? (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么? 练习一:选择题 下列四组图形,必是相似形的是() A、有一个角为的两个等腰三角形;B、有一个角为的两个等腰梯形; C、邻边之比都为2:3的两个平行四边形;D、有一个角为的两个等腰三角形. 新授2:相似三角形的预备定理 课本通过探讨的方法,根据题设中有平行线的条件,结合定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是: (1)本定理的导出不仅复习了相似三角形的定义,而且为后面的证明打下了基础。 (2)由本定理的题设所构成的三角形有三种可能,基本图形在“平行线分线段成比例”出现过. (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,做题时务必要认真仔细,如本定理的比例式,防止出现错误 (4)根据两个三角形相似写对应边的比例式时,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

相关文档
相关文档 最新文档