文档库 最新最全的文档下载
当前位置:文档库 › 机械能守恒定律

机械能守恒定律

机械能守恒定律
机械能守恒定律

第五章机械能守恒定律

考纲要览

考向预测

纵观近几年高考,对本章考查的热点包括功和功率、动能定理、机械能守恒定律、能的转化和守恒定律.考查的特点是灵活性强、综合面大、能力要求高.涉及本章知识的命题不仅年年有、题型全、份量重,而且多年的高考压轴题均与本章的功和能知识有关.解题时需对物体或系统的运动过程进行详细分析、挖掘隐含条件,寻找临界点,综合使用动量守恒、机械能守恒或能的转化与守恒定律求解.

第1课时追寻守恒量功

基础知识回顾

1.追寻守恒量

(1) 能量:简称"能".物质运动的一般量度.任何物质都离不开运动,如引力运动、机械运动、分子热运动、电磁运动、化学运动、原子核与基本粒子运动......等.对运动所能作的最一般的量度就是能量,用数学的语言说,能量是物质运动状态的一个单值函数.相应于不同形式的运动,能量分为机械能、内能、电能、磁能、化学能、原子能等.当物质的运动形式发生转变时,能量形式同时发生转变.能量可以在物质之间发生传递,这种传递过程就是作功或传递热量.例如,河水冲击水力发电机作功的过程就是河水的机械能传递给发电机,并转变为电能.自然界一切过程都服从能量转化和守恒定律,物体要对外界作功,就必须消耗本身的能量或从别处得到能量的补充.因此.一个物体的能量愈大,它对外界就有可能做更多的功.

(2) 机械能:物质机械运动的量度.包括动能、重力势能和弹性势能.

(3) 动能:物体由于运动而具有的能量.

(4) 势能:相互作用的物体凭借其位置而具有的能量.

2.功的概念

(1)定义:一个物体受到力的作用,如果在力的方向上发生一段位移,就说这个力做了功.

(2)做功的两个必要条件:a、力;b、物体在力的方向上发生位移.

(3)功的单位:在国际单位制中,功的单位是焦耳,符号J,其物理意义是:1J等于1N的力使物体在力的方向上发生1m的位移时所做的功.

(4)功是标量,只有大小,没有方向.

(5)功是过程量,即做功必定对应一个过程(位移)应明确是哪个力在哪个过程中对哪个物体做功.

3、功的计算

(1)功的一般计算公式:W=Flcosθ

(2)条件:适用于恆力所做的功

(3)字母意义:F——力

l——物体对地位移

θ——F、l正方向之间的夹角4、正负功的意义

(1)根据功的计算公式W=Flcosθ可得到以下几种情况:

①当θ=90o时,cosθ=0,则W=0即力对物体不做功;

②当00≤θ<90o时,cosθ>0,则W>0,即力对物体做正功;

③当90o<θ≤180o时,则cosθ<0,即力对物体做负功,也常说成物体克服这个力做功;

(2)功的正负既不表示方向,也不表示大小,它表示:正功是动力对物体做功,负功是阻力对物体

α为钝角则做负功.

拓展

10s ,

】:A 引力作为卫星做圆周运动的向心力,向杠铃在此时间内位移为零.D 木块的支持力与.故A 、C 、D . 】ACD

:

1.化变力为恒力:

(1) 分段计算功,然后用求和的方法求变力.

(2)用转换研究对象的方法求变力所做的功. 2. 若F 是位移l 的线性函数时,先求平均值

122

F F +,由αcos l F W =求其功.

例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?

解:()22

kd kd k d d d d '

++'?=

∴1)d d '=

3. 作出变力变化的F -l 图象,图象与位移轴

“面积”即为变力做的功.

在F-l 图象中,图线与坐标轴所围成的“面积”.对于方向不变,大小随位移变化的力,作出图象,求出图线与坐标轴所围成的“面积”,就求,上

.因为木板对钉度成正比,即,其图象为图

所示.

铁锤两次对钉子做功相同,则三角形OAB 的ABCD 的面积相等,

图5-1-2 Kd+d

即[]')(21)(21d d d k kd kd d ?'++=? 解得

1)d d '=

【例2】以一定的速度竖直向上抛出一小球,小球

上升的最大高度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )

A .0

B .-Fh

C .-2Fh

D .-4Fh

【解析】从全过程看,空气的阻力为变力,但将整个过程分为两个阶段:上升阶段和下落阶段,小球在每个阶段上受到的阻力都是恒力,且总是跟小球运动的方向相反,空气阻力对小球总是做负功,全过程空气阻力对小球做的功等于两个阶段所做功的代数和,

即()()Fh Fh Fh W W W 2-=-+-=+=下上 【答案】C

【点拨】空气阻力、摩擦阻力是一种特殊的力,在计算这种力做功时,不可简单地套用功的计算公式

αcos Fl W =得出W =0的错误结论.从上面的正确

结果可以看出:空气阻力做的功在数值上等于阻力与全过程小球路程的乘积.

拓展

如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运

动到B 点,不计滑轮

的大小,不计绳与滑

轮的质量及绳、滑轮

间的摩擦,H=2.4

m,α=37°,β=53°,

求绳的拉力对物体所做的功. 【解析】绳的拉力对物体来说是个变力(大小不变,方向改变),但分析发现,人拉绳却是恒力,于是转换研究对象,用人对绳子做的功来求绳对物体所做的功W =F ·l =F (β

αsin sin H H -)=100 J

【答案】W =F ·l =F (β

αsin sin H H -)=100J

三、分析摩擦力做功:

不论是静摩擦力,还是滑动摩擦力既可以对物体做正功,也可以对物体做负功,还可能不对物体做功.力做功是要看哪个力对哪个物体在哪个过程中做的功,而不是由力的性质来决定的.力做正功还

是做负功要看这个力是动力还是阻力.摩擦力可以是动力也可以是阻力,也可能与位移方向垂直.

☆ 易错门诊

【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传

送带随之运动,如图5-1-4所示,再把物块放到P 点自由滑下则( ) A.物块将仍落在Q 点

B.物块将会落在Q 点的左边

C.物块将会落在Q 点的右边

D.物块有可能落不到地面上

【错解】因为皮带轮转动起来以后,物块在皮带轮上的时间长,相对皮带位移量大,摩擦力做功将比皮带轮不转动时多,物块在皮带右端的速度将小于皮带轮不动时,所以落在Q 点左边,应选B 选项.【错因】学生的错误主要是对物体的运动过程中的受力分析不准确.实质上当皮带轮逆时针转动时,无论物块以多大的速度滑下来,传送带给物块施的摩擦力都是相同的,且与传送带静止时一样,由运动学公式知位移相同.从传送带上做平抛运动的初速度相同,水平位移相同,落点相同.

【正解】物块从斜面滑下来,当传送带静止时,在水平方向受到与运动方向相反的摩擦力,物块将做匀减速运动.离开传送带时做平抛运动.当传送带逆时针转动时物体相对传送带都是向前运动,受到滑动摩擦力方向与运动方向相反. 物体做匀减速运动,离开传送带时,也做平抛运动,且与传送带不动时的抛出速度相同,故落在Q 点,所以A 选项正确.

【点悟】若此题中传送带顺时针转动,物块相对传送带的运动情况就应讨论了.

(1)当v 0=v B 物块滑到底的速度等于传送带速度,没有摩擦力作用,物块做匀速运动,离开传送带做平抛的初速度比传送带不动时的大,水平位移也大,所以落在Q 点的右边.

图5-1-3

图5-1-4

(2)当v 0>v B 物块滑到底速度小于传送带的速度,有两种情况,一是物块始终做匀加速运动,二是物块先做加速运动,当物块速度等于传送带的速度时,物体做匀速运动。这两种情况落点都在Q 点右边.

(3)v 0<v B 当物块滑上传送带的速度大于传送带的速度,有两种情况,一是物块一直减速,二是先减速后匀速。第一种落在Q 点,第二种落在Q 点的右边.

课堂自主训练

1.如图5-1-5所示,木块A 放在木块B 的左上

端,用恒力F 将A 拉至B 的右端.第一次将B 固定在地面上,F 做的功为 W 1;第

二次让B 可以在光滑的地面上自

由滑动,F 做的功为W 2.比较两次做功,应有( ) A .

21W W < B .21W W = C .21

W

W > D .无法比较. 【解析】根据功的定义,力F 做的功只与力的大小及力的方向上发生的位移大小的乘积有关,位移的大小与参考系的选择有关,在没有指定参考系时,一般是以地球为参考系,A 物相对于B 的位移在两种情况下是一样的,但在第一种情况中,B 相对于地面是静止的,故第二次A 对地的位移大于第一次A 对地的位移,即第二次做功多一些.正确选项为A .

【答案】A

【点悟】功的计算公式αcos Fl W =中的位移l 一般均是以地球为参考系

2.如图5-1-6所示,一个质量为m 的木块,放在倾角为α的斜面体上,当斜面与木块保持相对静止沿水平方向向右匀速移动距离s 的过程中,作用在木块上的各个力分别做功多少?合力的功是多少?

【解析】木块发生水平位移的过程中,作用在木块上共有三个力,重力mg ,支持力F 1,静摩擦力F 2,根据木块的平衡条件,由这三个力的大小,物体的位移及力与位移的夹角.即可由功的计算公式算出它们的功.

沿斜面建立直角坐标将重力正交分解,由于物

体相对斜面静止而在水平面上做匀速运动,根据力的平衡条件可得:

斜面对木块的支持力 F 1=mg cos а;斜面对木块的静摩擦力 F 2=mg sin а

支持力F 1与位移S 间的夹角为900+а,则支持力做的功为 W 1= F 1S cos(900+а)=-mgS cos аsin а

摩擦力2F 与位移s 的夹角为α,则摩擦力2F 做功为αααcos sin cos 22

mg s F W ==

重力与位移的夹角为90°,则重力做的功为

090cos =?=mgs W G

合力做的功等于各个力做功的代数和,即

0cos sin sin cos 21=++-=++=ααααmgs mgs W W W W G

课后创新演练

1.关于功是否为矢量,下列说法正确的是( B ) A .因为功有正功和负功,所以功是矢量 B ..因为功没有方向性,所以功是标量

C .力和位移都是矢量,功也一定是矢量

D .力是矢量,功也是矢量

2.物体在两个相互垂直的力作用下运动,力F 1对物体做功6J ,物体克服力F 2做功8J ,则F 1、F 2的合力对物体做功为( D )

A .14J

B .10J

C .2J

D .-2J 3.一个水平方向的恒力F 先后作用于甲、乙两个物体,先使甲物体沿着粗糙的水平面运动距离s ,做功的数值为W 1;再使乙物体沿光滑的斜面向上滑过距离s ,做功的数值为W 2,则( A )

A .W 1=W 2

B .W 1>W 2

C .W 1

D .条件不足,无法比较W 1,W 2 4.质量为m 的物体,在水平力F 作用下,在粗糙的水平面上运动,下列哪些说法正确(ACD ) A .如果物体做加速直线运动,F 一定对物体做正功 B .如果物体做减速直线运动,F 一定对物体做负功 C .如果物体做减速直线运动,F 也可能对物体做正功

D .如果物体做匀速直线运动,F 一定对物体做正功

5.关于力对物体做功,如下说法正确的是( B ) A .滑动摩擦力对物体一定做负功 B .静摩擦力对物体可能做正功

C .作用力的功与反作用力的功其代数和一定为零

图5-1-5

图5-1-6

D .合外力对物体不做功,物体一定处于平衡状态 6.水平力F 作用在质量为m 的物体上沿光滑水 平面移动s ,F 做功W 1;若F 作用在质量为2m 的物体上,同样沿光滑水平面移动s ,F 做功W 2;若F 作用在质量为2m 的物体上,沿粗糙水平面移动s ,做功为W 3.那么W 1、W 2、W 3三者的大小关系是 A. W 1=W 2=W 3 B. W 1W 2>W 3 D. W 1=W 2

的总功为

A. 0

B. π20J

C. 10J

D. π10J

【解析】 本题中F 的大小不变,但方向时刻发生变化,属于变力做功的问题.可以考虑把圆周分割为很多的小段采研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致. 所求的总功为:

J

R F s s s F s F s F s F W ππ202......)(......321321=?=?+?+?=??+??+??=【答案】B 8.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2)

【解析】利用w =Fs cos a 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得

ma mg F =-'

所以=+='ma mg F 10×10+10×2=120N

则力2

F F '

=

=60N 物体从静止开始运动,3s 内的位移为221at s =

=2

1

×2×32=9m 解法一: 力F 作用的质点为绳的端点,而在

物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为

=='=s F s F W 260×18=1080J

解法二 :本题还可用等效法求力F 的功.

由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等. 即='=='s F W W F F 120×9=1080J

图5-1-8

图5-1-7

第2课时 功率

基础知识回顾

1.功率的概念

(1)功W 跟完成这些功所用的时间t 的比值叫

做功率.

(2)物理意义:描述做功的快慢. (3)单位:在国际单位制中,功率的单位是瓦特,符号W.

2.功率的计算

(1)功率的计算公式t

P

W =

(2)平均功率与瞬时功率

Fv

P Fv t

s F t W P Fs W =====∴=00cos cos cos αα

αα

式中当v 是平均速度时,功率P 是平均功率;

当v 是瞬时速度时,功率P 是瞬时功率; 其区别在于:平均功率粗略描述做功的快慢;瞬时功率精确描述做功快慢.

3.机械的额定功率与实际功率

任何机械都有一个标牌,标牌上所注功率为这部机械的额定功率.它是提供人们对机械进行选择、配置的一个重要参数,它反映了机械的做功能力或机械所能承担的“任务”.机械运行过程中的功率是实际功率.机械的实际功率可以小于其额定功率(称机械没吃饱),可以等于其额定功率(称满负荷运行),还可以在短时间内略大于其额定功率(称超负荷运行).机械不能长时间处于超负荷运行,这样会损坏机械设备,缩短其使用寿命.

重点难点例析

一、 功率的计算

1.平均功率即某一过程的功率,其计算既可用

t

W

P =

,也可用P = F ·v 2.瞬时功率即某一时刻的功率,其计算只能用P =

F ·v

【例1】一个质量为m 的物体,从高度为h ,长度为L 的

光滑斜面顶端由静止开始下滑,求物体到达斜面底端时重力做功的功率?

【解析】本题所求重力做功的

功率,应为瞬时功率 P =mgv cosα,而速度v 是沿着斜面向下

的.如图5-2-1,设斜面的倾角为θ,根据θsin 22gL al v == 而α=(90°

-θ),所以 L

gh mgh gL mg mgv P /2sin sin 2cos ===θθα

【点拨】本题主要考查对瞬时功率的计算,要求同学们对三角关系理解通彻,并且灵活运用公式.

拓展

从空中以40m/s 的初速度沿着水平方向抛出一个重为10N 的物体,不计空气阻力,取g=10m/s 2,求(1)在抛出后3s 内重力的功率.(2)在抛出后3s 时重力的功率(设3s 时未落地).

【解析】 (1)3s 内的功率是指平均功率,3s 内重力做功2

2

1gt mg mgh W c ?

==, W gt mg t W P C 1503102

1

1021=???=?==

(2) 3s 时的功率是指瞬时功率,应用αcos Fv P =求解,结合平抛知识得

===y mgv Fv P αcos

mg·gt =10×10×3=300W

二、机车的启动问题

发动机的额定功率是指牵引力的功率,而不是合外力的功率.P =Fv 中,F 指的是牵引力.在P 一定时,F 与v 成反比;在F 一定时,P 与v 成正比. 1.在额定功率下启动

对车在水平方向上受力分析如图5-2-2,由公式P =Fv 和F-f=ma 知,由于P 恒定,随着v 的增大,F 必将减小,a 也必将减小,汽车做加速度不断减小的加速运动,直到F =f ,a =0,这时v 达到最大值

f

P F P v m m m ==.

可见,恒定功率的加速一定不是匀加速.这种

θ 图5-2-1

加速过程发动机做的功只能用W =Pt 计算,不能用W =Fs 计算(因为F 为变力).其速度图象如图5-2-3所示.

2.以恒定加速度a 启动:

由公式P =Fv 和F -f =ma 知,由于a 恒定,所以F 恒定,汽车做匀加速运动,而随着v 的增大,P 也将不断增大,直到P 达到额定功率P m ,功率不能再增大了.这时匀加速运动结束,此时速度为

m m m v f P

F P v =<=',此后汽车要想继续加速就

只能做恒定功率的变加速运动了,由于机车的功率不变,速度增大,牵引力减小,从而加速度也减小,直到F =f 时,a =0,这时速度达到最大值f

P v m m ==

. 可见,恒定牵引力的加

速,即匀加速运动时,功率一定不恒定.这种加速过程发动机做的功只能用W=F ?s 计算,

不能用W=P ?t 计算(因为P 为变功率).其速度图象如图

5-2-4所示.

要注意两种加速运动过程的最大速度的区别. 【例2】质量是2000kg 、额定功率为80kW 的汽车,在平直公路上行驶中的最大速度为20m/s.若汽车从静止开始做匀加速直线运动,加速度大小为2m/s 2,运动中的阻力不变.求:①汽车所受阻力的大小.②3s 末汽车的瞬时功率.③汽车做匀加速运动的时间。④汽车在匀加速运动中牵引力所做的功. 【解析】

① 所求的是运动中的阻力,若不注意“运动中的阻力不变”,则阻力不易求出.以最大速度行驶时,根据P =Fv ,可求得F =4000N.而此时牵引力和阻力大小相等.

② 由于3s 时的速度v =at =6m/s ,而牵引力由F —F f =ma 得F =8000N ,故此时的功率为P = Fv =4.8×104W.

③ 设匀加速运动的时间为t ,则t 时刻的速度为v =a t =2t ,这时汽车的功率为额定功率.由P =Fv ,将F =8000N 和v =2 t 代入得t =5s.

④ 匀加速运动阶段牵引力为恒力,牵引力所 做的功

J

102522

1

80002

1522?=???===J at F

Fs W

【点拨】③中的时间,有的学生用v =at ,得t =v m /a =10s ,这是错误的.要注意,汽车不是一直匀加速到最大速度的.

拓展

汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:

(1)汽车在此路面上行驶所能达到的最大速度是多少?

(2)若汽车从静止开始,保持以0.5m/s 2的加速度作匀加速直线运动,这一过程能维持多长时间?

【解析】(1) 当汽车达到最大速度时,加速度a=0,此时

mg

f F μ== ①

m Fv P = ②

由①、②解得s m mg

P

v m

/12==

μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N

设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s

设汽车作匀加速运动的时间为t ,则v =at 得t =16s

三、利用Pt W =求变力做功问题

如果汽车是以恒定功率起动,则牵引力是变力,发动机做功为变力做功,但抓住汽车的功率不变,由Pt W =可求汽车牵引力做的功.

☆ 易错门诊

【例3】卡车在平直公路上从静止开始加速行驶,经时间t 前进距离s ,速度达到最大值v m 。设此过程中发动机功率恒为P ,卡车所受阻力为f ,则这段时间内,发动机所做的功为( )

A .Pt

B .fs

C .Pt -fs

D .fv m t 【错解】功W=FS ,卡车达到最大速度时,牵引力等于阻力,故选B.

【错因】学生错误的主要原因是不清楚发动机的牵引力是变力,不能直接用功的计算公式.

【正解】发动机所做的功是指牵引力的功.由于卡车

v

图5-2-4 v 图5-2-3

v a

图5-2-2

以恒定功率运动,所以发动机所做的功应等于发动机的功率乘以卡车行驶的时间,∴A 对.B 项给出的是卡车克服阻力做的功,在这段时间内,牵引力的功不等于克服阻力做功,∴B 错.C 项给出的是卡车所受外力的总功.D 项中,卡车以恒定功率前进,将做加速度逐渐减小的加速运动,达到最大速度时牵引力等于阻力,阻力f 乘以最大速度v m 是发动机的功率,再乘以t 恰是发动机在t 时间内做的功.故A D 是正确的.

课堂自主训练

1.下列有关功率的说法,正确的是:

A 做功越多,功率越大

B 由P = W/t 知P 与t 成反比

C 功率越大,做功越快

D 完成相同的功,所花时间越短,则功率越大

【解析】功率是描述做功快慢的物理量,物体做功越快功率越大.功率的定义是功与完成这些功所用时间之比值,比值大,功率就大,所以本题正确答案为C D. 【答案】CD

2.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:

①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2)

【解析】物体受力情况

如图5-2-5所示,其中F 为拉力,

mg 为重力由牛顿第二定律有

F -mg=ma

解得 =a 2m/s 2 5s 内物体的位移

2

2

1at s =

=2.5m 所以5s 内拉力对物体做的功 W =FS =24×25=600J

5s 内拉力的平均功率为

5

600==

t W P =120W 5s 末拉力的瞬时功率 P =Fv =Fat =24×2×5=240W

课后创新演练

1.汽车以恒定功率P 由静止出发,沿平直路面行驶,最大速度为v ,则下列判断正确的是(C ) A .汽车先做匀加速运动,最后做匀速运动

B .汽车先做加速度越来越大的加速运动,最后做匀速运动

C .汽车先做加速度越来越小的加速运动,最后做匀速运动

D .汽车先做加速运动,再做减速运动,最后做匀速运动 2.物体所受到的合外力为一恒力,由静止开始运动,该力的作用时间越长,则(ACD ) A .物体的瞬时速度越大 B .物体的瞬时加速度越大

C .在单位时间内对物体所做的功越多

D .该力的瞬时功率越大 3.质量为5kg 的小车在光滑的水平面上做匀加速直线运动.若它在2s 内从静止开始速度增加到4m /s ,则在这一段时间里外力对小车做功的平均功率是( B ) A .40W B .20W C .10W D .5W

4.质量为5t 的汽车,在水平路面上以加速度a = 2m/s

2

起动,所受阻力为1.0×103

N ,汽车起动后第1秒末的即时功率是( B )

A .2kW

B .22kW

C .1.1kW

D .20kW 5.从距地面相同高度处,水平抛出两个质量相同的球A 和B ,抛出A 球的初速为v 0,抛出B 球的初速为2v 0,则两球运动到落地的过程中( A )

A .重力的平均功率相同,落地时重力的即时功率相同

B .重力的平均功率相同,落地时重力的即时功率不同

C .重力的平均功率不同,落地时重力的即时功率相同

D .重力的平均功率不同,落地时重力的即时功率不同 6.一列火车在功率恒定的牵引力牵引下由静止从车站出发,沿直线轨道运动,行驶5min 后速度达到20m/s , 设列车所受阻力恒定,则可以判定列车在这段时间内行驶的距离( A )

A .一定大于3km

B .可能等于3km

C .一定小于3km

D .条件不足, 无法确定

7.质量m 为5.0×106

kg 的列车以恒定不变的功率由静止沿平直轨道加速行驶,当速度增大到v 1=2m/s 时,加

速度a 1=0.9m/s 2

,当速度增大到v 2=10m/s 时,加速度

a 2=0.1m/s 2

.如果列车所受阻力大小不变,求: (1)列车所受阻力是多少?

(2)在该功率下列车的最大速度是多少?

【解析】(1)设列车恒定不变的功率为P ,阻力为f

图5-2-5

图5-3-1 v 1时牵引力为F 1,v 2时牵引力为F 2,则F 1=P /v 1,F 2=P /v 2,由牛顿第二定律有: F 1-f =ma 1 F 2-f =ma 2 代入数据得:P =1.0×107W ,f =5.0×105N

(2)设最大速度为v m ,由P=fv m 可得: v m =20m/s 8.一辆质量为 2.0×103kg 的汽车以额定功率为6.0×104W 在水平公路上行驶,汽车受到的阻力为一定值,在某时刻汽车的速度为20m/s ,加速度为0.50m/s 2,求(g 取10m /s 2):

(1)汽车所能达到的最大速度是多大?

(2)当汽车的速度为10m/s 时的加速度是多大? (3)若汽车从静止开始做匀加速直线运动(不是

额定功率行驶),加速度的大小为a =1.0m/s 2,则这一过程能保持多长时间?

【解析】(1)由P=Fv 可得:v =20m/s 则F =3.0×103N.再由F-f=ma 得f =2.0×103N.再由P=fv m 得:

v m =30m/s

(2) 由P=Fv 可得:F =6.0×103N, 再由

F-f=ma 得a =2m /s 2

(3)由F-f=ma 得:F =4.0×103N,再由P=Fv 可得:v =15m/s ,再由v=at 得:t =15s.

第3课时 动能及动能定理

基础知识回顾

1、动能的概念

(1)物体由于运动而具有的能叫动能,动能的大小

E k =

2

1mv 2

,动能是标量,与速度的方向无关. (2)动能是状态量,也是相对量,应为公式中的v 为瞬时速度,且与参照系的选择有关.

2、动能定理

(1)动能定理的内容及表达式

合外力对物体所做的功等于物体动能的变化. 即12K K K E E E W

-=?=

(2)物理意义

动能定理给出了力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的多少由做功的多来量度.

3、求功的三种方法

(1)根据功的公式W = Fscosα(只能求恒力的功). (2)根据功率求功W =Pt (P 应是恒定功率或平均功率).

(3)根据动能定理求功:21222

121mv mv W -= (W 为合外力总功).

重点难点例析

一、动能定理的理解

1.动能定理的公式是标量式,v 为物体相对于同

一参照系的瞬时速度.

2.动能定理的研究对象是单一物体,或可看成单

一物体的物体系.

3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.

4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.

【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面

与水平面对物体的

动摩擦因数相同.求动摩擦因数μ.

【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsin

αμcos 1mgl W f -=

物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22

mgS W f μ-=

对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.

式中S 1为斜面底端与物体初位臵间的水平距离.故

S

h

S S h =+=

21μ

【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.

拓展

从离地面H 高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k (k <1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求: (1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?

(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?

【解析】(1) 设小球第一次与地面碰撞后,能够反弹起的最大高度是h ,则由动能定理得:mg (H -h )-kmg (H +h )=0 解得 H k

k h +-=11

(2)、设球从释放开始,直至停止弹跳为止,所通过的总路程是S ,对全过程由动能定理得 mgH -kmgS =0 解得 k H S =

【点拨】 物体在某个运动过程中包含有几个运动性

质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化.

二、动能定理的应用技巧

1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.

2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无

需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.

3.动能定理解题的基本思路

(1)选择研究对象,明确它的运动过程.

(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功.

(3)选择初、末状态及参照系.

(4)求出初、末状态的动能E k1、E k2.

(5)由动能定理列方程及其它必要的方程,进行求解.

【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段

所受的阻力对物体做的功.

【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,

W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J 【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.

拓展

电动机通过一条绳子吊起质量为8kg 的物体.绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2) 【解析】 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊. 在匀加速运动过程中,加速度为

图5-3-2

8

10

8120?-=

-=

m m g F a m m/s 2=5 m/s 2, 末速度 1202001==m m t

F P v m/s=10m/s ,

上升时间 5

101

==a

v t t s=2s , 上升高度 5

2102221?=

=a v h t m=10m. 在功率恒定的过程中,最后匀速运动的速度为 1082001?=

=mg P v m m m/s=15m/s , 由动能定理有

22

122

121)(t m m mv mv h h mg t P -=--,

解得上升时间 t 2=5.75s.

所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为 t=t 1+t 2=2s+5.75s=7.75s.

三、多物体多过程动能定理的应用技巧

如果一个系统有两个或两个以上的物体,我们称为多物体系统.一个物体同时参与两个或两个以上的运动过程,我们称为多过程问题.对于多物体多过程问题,我们可以有动能定理解决.解题时要注意:多过程能整体考虑最好对全过程列动能定理方程,不能整体考虑,则要分开对每个过程列方程.多个物体能看作一个整体最好对整体列动能定理方程,不能看作整体,则要分开对每个物体列动能定理方程.

☆ 易错门诊

【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/

s 的速度水平射向

木块,并以

v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ.

【错解】木块离开台面后的平抛阶段,

由g

h

v s 22

= 解得:v 2=8m/s 对子弹和木块组成的整体在整个过程中用动能定理

有: 2022221

2

121mv mv Mv MgL -+=-μ

代入数据可得: μ=69.6

【错因】本题的物体有两个:子弹和木块, 物理过程可以分为三个阶段:子弹射木块;木块在台面上滑行;木块飞出台面平抛. 在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.故不能对子弹和木块组成的整体在整个过程中用动能定理.

【正解】本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:

子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①

木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,

有:2

221212

1Mv Mv MgL -=

μ……②

木块离开台面后的平抛阶段,

g

h

v s 22

=……③ 由①、②、③可得μ=0.50

【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.

从本题还应引起注意的是:不要对系统用动能定理.在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功.如果对系统在全过程用动能定理,就会把这个负功漏掉.

拓展

总质量为M 的列车,沿平直轨道匀速前进.末节车厢质量为m ,在行驶中途脱钩,司机发现后关闭发动机时,机车已经驶了L ,设运动阻力与质量成正比,机车发动机关闭前牵引力是恒定的,则两部分停止运动时,它们之间的距离是多少?

【解析】本题有两个研究对象,可分别对它们应用动能定理.

对列车部分有:

21)(2

10)(v m M gs m M K FL --=-- .① 对脱钩车厢有:

222

10mv Kmgs -

=- ② 列车匀速行驶有:KMg F = ③

由①②③可解得:

图5-3-3

L m

M M

s s s -=

-=?21 另解:从整体角度出发,把两部分作为一个系统来分析:若脱钩时立即关闭发动机,则车头部分和脱钩车厢应前进同样距离,现在之所以在停止时拉开一定距离,是因为牵引力F 在L 的路程上做了功,机车的动能多了一些,能够克服阻力多走一段距离,可见F 在L 路程上做的功应等于阻力在ΔS 距离上做的功.即

s g m M K FL ?-=)(

又 KMg F = 解之得L m

M M

s -=

? 【点拨】所得的结果与前面一样,可见,一道习题可以有不同的解法,有的简单,有的复杂,差别是很大的.希望同学们在平时的练习中要多想一想,该题除了自己做的方法之外,是否还会有其它的,并从中找出比较简洁的方法来,这样既开拓了思路,锻炼了求异思维,又能够使学到的知识融会贯通.

课堂自主训练

1.下列说法正确的是( )

A 做直线运动的物体动能不变,做曲线运动的物体动能变化

B 物体的速度变化越大,物体的动能变化也越大

C 物体的速度变化越快,物体的动能变化也越快

D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D

2.物体由高出地面H 高处由静止自由落下,不考虑空气阻

力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有

重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有

02

12-=

mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,

阻做负功,根据动能定理有

22

10mv Fh mgh -

=- ② 由①②两式解得

h

h H mg F +=

另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h

h H mg F +=

3.如图5-3-5所示,物体沿一曲面从A 点无初速度

滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 所做的功为W ,对物体由A 运动到B 用动能定理得

22

1mv W mgh =

- J

m v m gh W 32612

151012122=??-??=-= 即物体克服阻力所做的功为32J.

课后创新演练

1.一质量为1.0kg 的滑块,以4m/s 的初速度在光

滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )

A .0

B .8J

C .16J

D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )

A .1:3

B .3:1

C .1:9

D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )

A .4

L B .L )12(-

C .2L

D .2L

4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v

运动.已知

图5-3-5

图5-3-4

图5-3-6

图5-3-7

当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2

B .f s =2

1mv 2

C .f s =21mv 02

-2

1(M +m )v 2

D .f (L +s )=21mv 02-2

1mv 2

5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D )

A .mv 02/2

B .mv 02

C .2mv 02/3

D .3mv 02/8

6.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2'

B.v 2

C.v 2=v 2’

D .沿水平面到B 点时间与沿斜面到达B 点时间相等.

7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与

斜面间的动摩

擦因数为μ,滑

块所受摩擦力

小于滑块沿斜面方向的重力

分力,若滑块

每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?

【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.

在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:

2002

10cos sin mv L ng mgS -

=-αμα 得α

μαcos 21sin mgS 200mg mv L +

=

8.如图5-3-10所示,绷紧的传送带在电动机带动下,

始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处.已知工件与传送带间

的动摩擦因数2

3=μ,g 取10m/s 2.

(1) 试通过计算分析工件在传送带上做怎样的运动?

(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?

【解析】 (1) 工件刚放上皮带时受滑动摩擦力

θμcos mg F =,

工件开始做匀加速直线运动,由牛顿运动定律

ma mg F =-θsin 得:

)

30sin 30cos 23

(10)

sin cos (sin 00-?=-=-=

θθμθg g m

F

a =2.5m/s 2

设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得

5

.2222220?=

=a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运

动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。

(2) 在工件从传送带底端运动至h =2m 高处的过程中,设摩擦力对工件做功W f ,由动能定理

202

1mv mgh W f =

-

图5-3-8

图5-3-10

P 图5-3-9

可得:20

2

1mv mgh W f +==220J

【点拨】本题第(2)问也可直接用功的计算式来求:

设工件在前0.8m 内滑动摩擦力做功为W f 1,此后静摩 擦力做功为W f 2,则有 W f 1=μmgco s θ ·x=8.030cos 10102

3

0????J =60J , W f 2=mg sin θ (s -x )=)8.04(30

sin 10100

-???J

=160J.

所以,摩擦力对工件做的功一共是 W f = W f 1+ W f 2=60J+160J=220J.

当然,采用动能定理求解要更为简捷些.

第4课时 势能 机械能守恒定律

基础知识回顾

1、重力势能

(1)定义: 由物体与地球之间的相对位置所决定的能叫重力势能.

(2)公式:E P =mgh (3)说明: ①重力势能是标量. ②重力势能是相对的,是相对零势面而言的,只有选定零势面以后,才能具体确定重力势能的量值,故E P =mgh 中的h 是物体相对零势面的距离.一般我们取地面为零势面. ③重力势能可正,可负,可为零.若物体在零势面上方,重力势能为正;物体在零势面下方,重力势能为负;物体处在零势面上,重力势能为零.

④重力势能属于物体和地球共有.通常所说“物体的重力势能”实际上是一种不严谨的习惯说法.

⑤重力势能是相对的,但重力势能的变化却是绝对的,即与零势能面的选择无关.

2、重力做功

(1)公式:W G =mgh h 为初、末位置间的高度差. (2)特点:重力做功与路径无关,只与初、末位置有关(即由初末位置间的高度差决定).

3、重力做功与重力势能变化间的关系

重力做正功,重力势能减少;重力做负功,重力势能增加。重力所做的功等于重力势能变化量的负值,即:

W G =-△E P =-(E P2-E P1)=-(mgh 2-mgh 1)=E P1-E P2

4、弹性势能

(1)定义:发生弹性形变的物体,由其各部分间的

相对位置所决定的能,称为弹性势能. (2)说明: ①弹性势能是标量. ②劲度系数越大,形变越大,弹性势能越大(可多记公式:E P =Kx 2/2).

③弹力所做的功与弹性势能的改变的关系跟重力做功与重力势能的改变的关系相同,即弹力所做的功也等于弹性势能改变量的负值.

5.机械能

(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.

(2)说明 ①机械能是标量,单位为焦耳(J ).

②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.

6.机械能守恒定律

(1)内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变.

(2)表达式

E 1=E 2或E k1+E P1=E K2+E P2

重点难点例析

一、重力做功的特点

1.重力做功与路径无关,只与物体的始末位置的高度差和重力大小有关.

2.重力做功的大小W G =mgh ,h 为始末位置的高度差.

3.重力做正功,物体重力势能减少;重力做负功,物体重力势能增加.

【例1】沿着高度相同,坡度不同,粗糙程度也不同的斜面向上拉同一物体到顶端,以下说法中正确的是( )

A .沿坡度小,长度大的斜面上升克服重力做的功多

B .沿长度大、粗糙程度大的斜面上升克服重力做的功多

C .沿坡度大、粗糙程度大的斜面上升克服重力做的功少

D .上述几种情况重力做功同样多

【解析】重力做功的特点是,重力做功与物体运动的具体路径无关,只与初末位臵物体的高度差有关,不

论是光滑路径或粗糙路径,也不论是直线运动还是曲线运动,只要初末位臵的高度差相同,重力做功就相同.因此,不论坡度大小、长度大小及粗糙程度如何,只要高度差相同,克服重力做的功就一样多,故选D. 【答案】D

拓展

一质量为5kg 的小球从5m 高处下落, 碰撞地面后弹起, 每次弹起的高度比下落高度低1m ,求:小球从下落到停在地面的过程中重力一共做了多少功? (g=9.8m/s 2)

【解析】小球下落高度为5m

J J mgh W G 24558.95=??==,重力做功与路径无关.

二、 机械能守恒定律的条件和机械能守恒定律 的常用数学表达式:

1. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.

2.常用数学表达式:

第一种:E k1+E P1=E K2+E P2从守恒的角度表明物体运动过程中,初状态和末状态机械能相等

第二种:△E k =-△E P 从转化的角度表明动能的增加量等于势能减小量

第三种:△E 1=-△E 2 从转移的角度表明物体1的机械能增加量等于物体2的机械能的减少量 【例2】如图5-4-1所示,一轻质弹簧固定于O 点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中( ) A .重物重力势能减小 B .重物重力势能与动能之和增大 C .重物的机械能不变 D. 重物的机械能减少 【解析】物体从水平位臵释放后,在

向最低点运动时,物体的重力势能不断减小,动能不断增大.弹簧不断被拉长,弹性势能变大.所以物体减少的重力势能一部分转化为自身的动能,另一部分转化为弹簧的弹性势能.对整个系统机械能守恒,而对重物来说,机械能减少.答案:AD 【答案】AD

【点拨】重力势能属于物体和地球共有,通常所说“物体的重力势能”,只能省略“地球”,其他物体不能

省略.此处D 答案说成“重物和弹簧的机械能守恒”就是正确的.

拓展

关于物体的机械能是否守恒的叙述,下列说法中正确的是( )

A .做匀速直线运动的物体,机械能一定守恒;

B .做匀变速直线运动的物体,机械能一定守恒;

C .外力对物体所做的功等于零时,机械能一定守恒;

D .物体若只有重力做功,机械能一定守恒.

【解析】做匀速直线运动的物体是动能不变;势能仍可能变化,选项A 错;做匀变速直线运动的物体,动能不断增加,势能仍可能不变,选项B 错;外力对物体所做的功等于0时,动能不变;势能仍可能变化,选项C 错;机械能守恒条件是物体只有重力做功或只有弹力做功,D 对. 【答案】D

三、应用机械能守恒定律解题的基本步骤

1.根据题意,选取研究对象(物体或相互作用的物体系).

2.分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件.

3.若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值.

4.根据机械能守恒定律列方程,并代人数值求解.

☆ 易错门诊

【例3】如图5-4-2使

一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才

能使它达到轨道的最高点A ?

【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位臵),所以为

22

12B mv R mg =

? 从而得

gR v B 2=

【错因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要

图5-4-1 图

5-4-2

图5-4-4

使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足

R

v m N mg A

A 2=+

式中,N A 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当N A =0时,

v A 最小,v A =

gR .这就是说,要使小球到大A 点,则应使

小球在A 点具有速度v A gR

【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力.

小球在圆形轨道最高点A 时满足方程

R

v m N mg A

A 2=+ (1)

根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程

222

1221B A mv R mg mv =+ (2) 解(1),(2)方程组得

A B N m

R

gR v +

=5 当N A =0时,v B 为最小,v B =gR 5.

所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.

课堂自主训练

1.如图5-4-3所示,质量为m 的

物体静止在地面上,物体上面连

着一个轻弹簧,用手拉住弹簧上 端将物体缓慢提高h ,不计弹簧

的质量,则人对弹簧做的功应( )

A.等于mgh

B.大于mgh

C.小于mgh

D.无法确定

【解析】人对弹簧做的功应等于物体重力势能的增加和弹簧弹性势能的增加之和,物体的重力势能增加了mgh ,所以人做的功应大于mgh . 【答案】B

2. 如图5-4-4所 示,两个底面积 都是S 的圆桶, 用一根带阀门的 很细的管子相连

接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?

【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:

2

)(2)

(22111h sh h sh E P ρρ+= )(2

1

2221h h gs +=

ρ 阀门打开,两边液面相平时,两桶内液体的重力势能总和为

2

21)(21

212h h g h h s E P +??+=ρ

由于重力做功等于重力势能的减少,所以在此

过程中重力对液体做功

22121)(4

1

h h gs E E W P P G -=

-=ρ 3.某人站在离地10m 高处,将0.1Kg 的小球以20m/s 的速度抛出,则人对小球做了多少功?小球落地时的速度多大?(不计空气阻力);若小球落地时速度实际为24m/s ,则小球克服阻力做了多少功?(g 取10m/s 2)

【解析】人将小球抛出时,由动能定理有:

=??=-=

221201.021

021mv W 20J 当不计空气阻力时,由机械能守恒有 22212

121mv mv mgh =+

=+=gh v v 221224.5m/s

由于242=实v v m/s ,所以空气阻力对小球做了负功.由K E W ?=实,对小球有

212

32

121mv mv W mgh -=

- )(2

12321v v m mgh W -+

==1.2J 课后创新演练

1.关于重力势能的理解,下列说法正确的是( BD ) A .重力势能是一个定值 .

B .当重力对物体做正功时,物体的重力势能减少.

C .放在地面上的物体,它的重力势能一定等于0 .

D .重力势能是物体和地球共有的,而不是物体单独具有的

.

图5-4-3

2.质量相同的实心木球和铜球,放在同一水平桌面上,则它们的重力势能是( A )

A .木球大

B .铜球大

C .一样大

D .不能比较 3.如图5-4-5从离地高为h 的阳台上以速度v 竖直向上抛出质量为m 的物体,它上升 H 后又返回下落,最后落在地面上,则下列说法中正确的是(不计空气阻力,以地面为参考面)

( ACD )

A .物体在最高点时机械能为

mg (H +h );

B .物体落地时的机械能为mg (H +h )+ mv 2/2

C .物体落地时的机械能为mgh +mv 2/2

D .物体在落回过程中,经过阳台时的机械能为mgh +mv 2./2

4.在离地高为H 处以初速度v 0竖直向下抛一个小球,若与地球碰撞的过程中无机械能损失,那么此球回跳的高度为( A )

A .H +g v 22

0 B .H -g v 22

C .g

v 22

0 D .g v 2

0 5.如图5-4-6所示,质量为m 和3m 的小球A 和B ,系在

长为L 的细线两端,桌面水平光滑,高h (h

B .gh 2

C .3/gh

D .6/gh

6.如图5-4-7所示,一斜面放在光滑的水平面上,一个小物体从斜面顶端无摩擦的自由滑下,则在

下滑的过程中下列结论正确的是( D )

A .斜面对小物体的弹力做的功为零.

B .小物体的重力势能完全转化为小物体的动能.

C .小物体的机械能守恒.

D .小物体,斜面和地球组成的系统机械能守恒. 7.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径

R =0.4m ,一小球停

放在光滑水平轨道

上,现给小球一个v 0=5m/s 的初速度,

求:小球从C 点抛出时的速度(g 取10m/s 2). 【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.

即 2202

122

1C

mv R mgh mv += 解得 =C v 3m/s

即小球以3m/s 的速度从C 点水平抛出.

8.如图5-4-9所示,粗细

均匀的U 形管内装有总 长为4L 的水.开始时阀 门K 闭合,左右支管内 水面高度差为L .打开阀门 K 后,左右水面刚好相 平时左管液面的速度是多 大?(管的内部横截面很

小,摩擦阻力忽略不计)

【解析】由于不考虑摩擦阻力,故整个水柱的机械能守恒.从初始状态到左右支管水面相平为止,相当于有长L /2的水柱由左管移到右管如图5-4-10所示. 动能增加.该过程中, 整个水柱势能的减少 量等效于高L /2的水 柱降低L /2重力势能 的减少.设L/2水柱

的质量为m ,则整个

水柱的质量为8mg ,由机械能守恒定律有

2821

2v m L mg ??=?,得8gL v =.

【点拨】本题在应用机械能守恒定律时仍然是用ΔE 增 =ΔE 减

建立方程,在计算系统重力势能变化时用了等效方法.需要注意的是:研究对象仍然是整个水柱,到两个支管水面相平时,整个水柱中的每一小部分的速率都是相同的.

图5-4-5 5-4-6

图5-4-7

图5-4-8

第5课时机械能守恒定律的应用

基础知识回顾

1.应用机械能守恒定律解决力学问题

先分析研究对象在运动过程中的受力情况,并确定各力的做功情况,在动能和重力势能的相互转化中,如果只有重力(或弹力)做功,就可以用机械能守恒定律求解.

2.应用机械能守恒定律解题

可以只考虑物体运动的初状态和末状态,不必考虑运动过程.

3.应用机械能守恒定律解题的思路与方法

(1)选择研究对象——物体或物体系

(2)对研究对象所经历的过程,进行受力分析,做功情况分析,判断机械能是否守恒

(3)选择初、末状态及参考平面,确定研究对象在初、末状态的机械能

(4)根据机械能守恒定律列方程或方程组

(5)求解、检查、作答

4.机械能守恒定律与动能定理的比较

机械能守恒定律和动能定理是本章的两个重点内容,也是力学中的两个基本规律,在物理学中占有重要的地位,两者既有区别也有相同之处.

(1)相同点:都是从功和能量的角度来研究物体动力学问题.

(2)不同点:

①解题范围不同,动能定理的范围相对来说要大些.

②研究对象及角度不同,动能定理一般来说是研究单个物体在研究过程中合外力做功与动能的变化,而机械能守恒定律只要满足其成立条件,则只需找出系统初、末状态的机械能即可.

5.几种常见的功和能量转化的关系

(1)合外力对物体所做的功等于物体动能的变化:W合=E K2-E K1此即动能定理.

(2)只有重力(或弹力)做功时,物体的机械能守恒:E1=E2

(3)重力做功(或弹力做功)与重力势能的变化(或弹性势能的变化)的关系:

W G=-△E P=E P1-E P2

(4)重力和弹簧弹力之外的其它外力对物体所做的功W F,等于物体机械能的变化,即

W F=△E=E2-E1

W F>0,机械能增加. W F<0,机械能减少.

重点难点例析

一、应用机械能守恒定律解题的步骤:

1.根据题意选取研究对象(物体或系统);

2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;

3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;

4.根据机械能守恒定律列出方程进行求解

注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.

【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释

放点离圆形

轨道最低点

多高?通过

轨道点最低

点时球对轨

道压力多

大?

【解析】小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C,说明此时,轨道对小球作用力为零,只有重力提供向心力,根

据牛顿第二定律可列

R

v

m

m g c

2

=得

gR

m

R

v

m c

2

2

12

=

在圆轨道最高点小球机械能:

mgR

mgR

E

C

2

2

1

+

=

在释放点,小球机械能为: mgh

E

A

=

根据机械能守恒定律

A

C

E

E=列等式:

R

mg

mgR

mgh2

2

1

+

=解得R

h

2

5

=

图5-5-1

同理,小球在最低点机械能 221B

B mv E = gR v E E B

C B 5==

小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列 mg F R v m mg F B 62

==-

据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下. ● 拓展 如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2. 【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=?mgl mgh E p ,此过程中动能的

变化量221mv E k

=?.机械能守恒定律还可以表达为

0=?+?k p E E 即 0)60cos 1(210

2=--mgl mv 整理得)60cos 1(202

-=mg l

v m 又在最低点时,有l

v m mg T 2

=-

在最低点时绳对小球的拉力大小

N

N mg mg mg l

v m mg T 2101.022)60cos 1(202

=??==-+=+= 通过

以上各例题,总结应用机械能守恒定律解决问题的基本方法.

二、机械能守恒定律在多个物体组成系统中的应用

对单个物体能用机械能守恒定律解的题一般都能用动能定理解决.而且省去了确定是否守恒和选定零势能面的麻烦,反过来,能用动能定理来解决的题却不一定都能用机械能守恒定律来解决,在这个意义上

讲,动能定理比机械能守恒定律应用更广泛更普遍。

故机械能守恒定律主要应用在多个物体组成的系统

中.

【例2】如图5-5-3所示,质量分别为2 m 和3m 的

两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为

2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自由转动,

求:?当A 到达最低点时,A 小球的速度大小v ;? B 球能上升的最大高

度h ;?开始转动后B 球可能达到的最大速度v m . 【解析】以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒. (1)过程中A 的重力势能减少,A 、B 的动能和B

的重力势

能增加,

A 的即时速度总是

B 的2倍,

如图

5-5-4所

示. 由系统

机械能守恒有:

2

2

2321221322?

?? ???+??+?=?v m v m L mg L mg ,解得11

8gL v =

?B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位臵比OA 竖直位臵向左偏了α角.如图5-5-5所示,

由系统机械能守恒有:

2mg ?2L cos α=3mg ?L (1+sin α),此式可化简为 4cos α-3sin α=3,利用三角公式可解得

图5-5-2

图5-5-3

v

图5-5-4

sin(53°-α)=sin37°,α=16° ?B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G .设OA 从开始转过θ角时B 球速度最大,如图5-5-6所示.

()22

32

12221v m v m ??+?? =2mg ?2L sin θ-3mg ?L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ?L , 解得11

4gL v m

=

拓展

如图5-5-7所示,在质量不计长为L 的不能弯曲的轻直杆的一端和中点分别固定两个质量均为m 的小球A 、B ,杆的另一端固定在水平轴O 处,杆可以在竖直面内无摩擦地

转动,让杆处于水平

状态,从静止开始释

放,当杆转到竖直位置时,两球速度v A 、v B 分别为多少?

【解析】AB 两球和地球组成的系统由于只有重力势能跟动能的相互转化,所以机械能守恒.初、末态分别选在水平位臵、竖直位臵,零势面选在竖直位臵时,A 球所在的水平面,由机械能守恒定律得: 222

12122B A mv mv L mg

mgL ++=…………① 由于两球转动时的角速度相同

L v A ω=∴

2

L v B

ω=……………②

由可解得:gL v

A

155

2=

gL v B

155

1= 三、机械能守恒定律在多个过程系统中的应用

多物体多过程系统的机械能守恒问题要特别注意机械能守恒定律成立的条件,守恒条件的表达很简单,但在一些具体问题中来判断还是有一定难度的,例如:一般情况下碰撞过程中的系统的机械能是不守恒的(弹性碰撞例外).此处常常容易出错.

☆ 易错门诊

【例3】质量为m 的钢板与直

立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块

与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离.

【错解】物块m 从A 处自由落下,则机械能守恒 设钢板初位臵重力势能为0,则

2002

13.mv x mg =

(1) 之后物块与钢板一起以v 0向下运动,然后返

回O 点,此时速度为0,运动过程中因为只有重力和弹簧弹力做功,故机械能守恒.

0202)2(2

1mgx v m E p =+

(2) 2m 的物块仍从A 处落下到钢板初位臵应有相同的速度v 0,与钢板一起向下运动又返回机械能也守恒.返回到O 点速度不为零,设为v 则:

202

0')3(2

13)3(21v m mgx v m E p +=+

(3) 因为m 物块与2m 物块在与钢板接触时,弹性

势能之比E P :E /

P =1:1

2m 物块与钢板一起过O 点时,弹簧弹力为0,两者有相同的加速度g.之后,钢板由于被弹簧牵制,则加速度大于g ,两者分离,2m 物块从此位臵以v 为初速竖直上抛上升距离

g

v h 22=

(5)

由(1)~(4)式解得v 代入(5)解得0

3

2x h =

5-5-7

图5-5-6 图5-5-8

验证机械能守恒定律实验(吐血整理经典题)

实验:验证机械能守恒定律 1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是 ( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 2.用如图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是( ) A .重力势能的减少量明显大于动能的增加量 B .重力势能的减少量明显小于动能的增加量 C .重力势能的减少量等于动能的增加量 D .以上几种情况都有可能 3.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2) ( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm

4.如图是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n 点来验证机械能守恒定律.下面举一些计算n 点速度的方法,其中正确的是( ) A .n 点是第n 个点,则v n =gnT B .n 点是第n 个点,则v n =g (n -1)T C .v n =s n +s n +1 2T D .v n =h n +1-h n -1 2T 5.某研究性学习小组在做“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 Hz ,查得当地的重力加速度g =9.80 m/s 2。测得所用重物的质量为1.00 kg 。 (1)下面叙述中正确的是________。 A .应该用天平称出重物的质量 B .可选用点迹清晰,第一、二两点间的距离接近2 mm 的纸带来处理数据 C .操作时应先松开纸带再通电 D .打点计时器应接在电压为4~6 V 的交流电源上 (2)实验中甲、乙、丙三学生分别用同一装置得到三条点迹清晰的纸带,量出各纸带上第一、二两点间的距离分别为0.18 cm 、0.19 cm 、0.25 cm ,则可肯定________同学在操作上有错误,错误是________。若按实验要求正确地选出纸带进行测量,量得连续三点A 、B 、C 到第一个点O 间的距离分别为15.55 cm 、19.20 cm 和23.23 cm 。则当打点计时器打点B 时重物的瞬时速度v =________ m/s ;重物由O 到B 过程中,重力势能减少了________J ,动能增加了________J(保留3位有效数字), 6.在“验证机械能守恒定律”的实验中,图(甲)是打点计时器打出的一条纸带,选取

从不同角度理解机械能守恒定律解析

从不同角度理解机械能守恒定律 何卫国 前言:在只有重力或弹力做功的情形下,物体的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律。它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况。解决某些力学问题时,从能量的观点来分析,应用机械能守恒定律求解,往往比较简便,应用机械能守恒定律解题,首先要对它的本质有深入、全面的理解,下面将从三个不同的角度理解机械能守恒定律。 一、从守恒的角度理解 在所研究的过程中,任选两个不同的状态,研究对象的机械能必定相等,即E E 21=。通常我们关心的是一个过程的首、末两状态,此式也可理解成首、末两状态机械能相等,但应注意的是,首、末两状态机械能相等,不能保证研究对象在所研究过程中机械能一定守恒,只有在过程中任选一个状态,其机械能都保持恒定值时,研究对象的机械能才是守恒的。 例1. 质量为m 的物体沿光滑的轨道滑下,轨道的形状如图1所示,与斜轨道相接的半圆轨道半径为R ,要使物体沿半圆光滑轨道恰能通过最高点,物体应从离轨道最低处多高的地方由静止开始滑下? 图1 解析:物体在沿光滑的轨道滑动的整个过程中,只有重力做功,故物体机械能守恒,设物体应从离轨道最低点h 高的地方开始由静止滑下,取轨道的最低点处水平面为零势能面,物体在运动到半圆形轨道的最高点时速度为v ,根据机械能守恒定律得 mgh mv mgR = +1 2 22 要使物体恰好能通过半圆轨道的最高点,条件是 mg m v R =2 由以上两式得h R v g R =+=225 2 2 二、从转化的角度理解 在所研究的过程中,研究对象(或系统)动能的增加量等于势能(包括重力势能和弹性势能)的减少量;反之,研究对象(或系统)动能的减少量等于势能的增加量,即??E E k p =-。 例2. 如图2所示,跨过定滑轮的轻绳两端各系一个物体,B 物体的质量是A 物体质量的一半,在不计摩擦阻力的情况下,A 物体自H 高度处由静止开始下落,且B 物体始终在

高一物理机械能守恒定律教案

高一物理机械能守恒定 律教案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

机械能守恒定律 ★新课标要求 (一)知识与技能 1、知道什么是机械能,知道物体的动能和势能可以相互转化; 2、会正确推导物体在光滑曲面上运动过程中的机械能守恒,理解机械能守恒定律的内容,知道它的含义和适用条件; 3、在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。 (二)过程与方法 1、学会在具体的问题中判定物体的机械能是否守恒; 2、初步学会从能量转化和守恒的观点来解释物理现象,分析问题。 (三)情感、态度与价值观 通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题。 ★教学重点 1、掌握机械能守恒定律的推导、建立过程,理解机械能守恒定律的内容; 2、在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式。 ★教学难点 1、从能的转化和功能关系出发理解机械能守恒的条件; 2、能正确判断研究对象在所经历的过程中机械能是否守恒,能正确分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能。 ★教学方法 演绎推导法、分析归纳法、交流讨论法。 ★教学工具 投影仪、细线、小球、带标尺的铁架台、弹簧振子。 ★教学过程 (一)引入新课 教师活动:我们已学习了重力势能、弹性势能、动能。这些不同形式的能 是可以相互转化的,那么在相互转化的过程中,他们的总量是 否发生变化这节课我们就来探究这方面的问题。 (二)进行新课 1、动能与势能的相互转化 教师活动:演示实验1:如右图,用 细线、小球、带有标尺的 铁架台等做实验。 把一个小球用细线悬挂起来,把小球拉到一定高度 的A 点,然后放开,小球在摆动过程中,重力势能和动能相互 转化。我们看到,小球可以摆到跟A 点等高的C 点,如图甲。 如果用尺子在某一点挡住细线,小球虽然不能摆到C 点,但摆 到另一侧时,也能达到跟A 点相同的高度,如图乙。 A 甲 乙

高一物理机械能守恒定律练习试题及答案解析

机械能守恒定律计算题(基础练习) 班别:姓名: 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 图5-2-5

图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平 地面上,两桶内装有密度为ρ的同种液体, 阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

机械能守恒定律教案

机械能守恒定律教案 ●教学目标 一、知识目标 1.知道什么是机械能,知道物体的动能和势能可以相互转化. 2.理解机械能守恒定律的内容. 3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式. 二、能力目标 1.学会在具体的问题中判定物体的机械能是否守恒. 2.初步学会从能量转化和守恒的观点来解释物理现象,分析问题. 三、德育目标 通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题. ●教学重点 1.理解机械能守恒定律的内容. 2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式. ●教学难点 1.从能的转化和功能关系出发理解机械能守恒的条件. 2.能正确判断研究对象在所经历的过程中机械能是否守恒. ●教学方法 1.关于机械能守恒定律的得出,采用师生共同演绎推导的方法,明确该定律数学表达公式的来龙去脉. 2.关于机械能守恒的条件,在教学时采用列举实例,具体情况具体分析的方法. ●教学用具 自制投影片、CAI课件. ●课时安排 1课时 ●教学过程 一、导入新课 1.[投影]复习思考题: ①什么是动能?动能与什么因素有关? ②什么是势能?什么是重力势能和弹性势能? ③重力势能、弹性势能分别与什么因素有关? 2.[学生解答思考题] ①物体由于运动而具有的能量叫动能.动能的大小与物体的质量及速度有关系,且质量越大,速度越大,动能也越大. ②由相互作用的物体的相对位置决定的能量叫势能,也叫位能. 物体由于被举高而具有的能量叫重力势能. 发生形变的物体在恢复原状时能够对外界做功,因而具有能量,这种能量叫弹性势能. ③重力势能与物体的质量及被举高的高度有关;弹性势能跟形变的大小及劲度系数有关. 3.[学生活动] 举例说明物体的动能和势能之间可以相互转化. [例1]物体自由下落时,高度越来越小,速度越来越大.高度减小表示重力势能减小;速度增大表示动能增大.在这个过程中,重力势能转化为动能. [例2]竖直向上抛出的物体,在上升过程中,速度越来越小,高度越来越大.速度减小表示动能减小;高度增大表示重力势能增大这个过程中动能转化为重力势能. [例3]用一小球推弹簧被压缩,放开后弹簧可以把跟它接触的小球弹出去,弹簧的弹性势能转化为小球的动能.

机械能守恒定律计算题及答案(家教版)经典

图5-3-1 图5-4-4 机械能守恒定律计算题(期末复习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2 的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2 ) 2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2 的加速度作匀加速直线运动,这一过程能维持多长时间? 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2 ) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 图5-2-5 图5-3-2 图5-1-8

高一物理下册 机械能守恒定律(篇)(Word版 含解析)

一、第八章 机械能守恒定律易错题培优(难) 1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针 转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为 210m/s 。下列说法正确的是( ) A .物块在传送带上运动的时间为2s B .物块在传送带上运动的时间为4s C .整个运动过程中由于摩擦产生的热量为16J D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】 AB .滑块先向右匀减速,根据牛顿第二定律有 mg ma μ= 解得 22m/s a g μ== 根据运动学公式有 010v at =- 解得 13s t = 匀减速运动的位移 0106 3m 9m 8m 22 v x t L += =?==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移 2212m 1m 222 v x a ===? 用时 22 s 1s 2 v t a = == 向左运动时最后3m 做匀速直线运动,有

233 = s 1s 3 x t v == 即滑块在传送带上运动的总时间为 1234s t t t t =++= 物块滑离传送带时的速率为2m/s 。 选项A 错误,B 正确; C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为 110.211041J 6J f W f x x mg x x μ=--=--=-???-=-()()() 选项C 错误; D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为 114m l vt == 物体向左加速过程,传送带运动距离为 222m l vt == 即 121[]Q fS mg l x l x μ==++-()() 代入数据解得 28J Q = 选项D 正确。 故选BD 。 2.如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是 A .a 球和b 球所组成的系统机械能守恒 B .b 球的速度为零时,a 球的加速度大小一定等于g C .b 22gL +() D .a 2gL

机械能守恒的条件(答案)

机械能守恒的条件(参考答案) 一、知识清单 1.【答案】 2.【答案】 二、选择题 3.【答案】ACD 【解析】物体在斜面上运动的时候与斜面间有摩擦,摩擦就会发热,同学们往往认为能量就会损失,实际上热能也是能量的一种形式,摩擦会导致热能增加,同时机械能在减少,但总的能量一定是不变的.物体在斜面上运动时,机械能不断减少,那么物体所能达到的高度就要不断降低,由于圆弧面没有摩擦,所以物体最终将在圆弧面上做往复运动. 4.【答案】C 【解析】依据机械能守恒条件,只有重力做功的情况下,物体的机械能才能守恒,由此可见,A、B均有外力参与做功,D中有摩擦力做功,故只有选项C的情况符合机械能守恒的条件. 5.【答案】BC 【解析】在平衡力作用下物体的运动是匀速直线运动,动能保持不变,但如果物体的高度发生变化,则机械能也发生变化,例如降落伞匀速下降时,机械能减少;在光滑水平面上沿圆轨道做匀速率运动的小球,其动能不变,势能也不变,小球的机械能守恒;在粗糙斜面上下滑的物体,在下滑过程中,除重力做功外,滑动摩擦力和沿斜面向下的拉力的合力为零,这两个力所做的功之和为零,物体所受斜面的弹力不做功,所以整个过程中相当于只有重力做功,物体的机械能守恒;如题图所示,在压缩弹簧的过程中,弹簧的弹性势能在增加,所以小球的机械能在减少(但球和弹簧组成的系统机械能守恒)。故选B、C。 6.【答案】D 【解析】根据机械能守恒定律可知:在只有重力做功的条件下,质点和地球构成的系统机械能守恒.雨滴匀速下落时,必受竖直向上的阻力,且阻力做功;在水中下沉的铁块,水的浮力做功;“神舟十号”飞船穿过大气层时,由于速度很大,空气阻力不可忽略,且克服阻力做功,所以A、B、C错误.用细线拴一个小球,使小球在竖直面内做圆周运动,虽然绳对小球有作用力,但作用力方向始终和小球速度垂直,故小球只有重力对它做功,所以D正确. 7.【答案】AC 【解析】物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒,所以A、C项正确;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不 守恒;物体以4 5g的加速度向上做匀减速运动时,由牛顿第二定律mg-F=m×4 5g,有F= 1 5mg,则物体受到竖 直向上的大小为1 5mg的外力作用,该力对物体做了正功,机械能不守恒. 8.【答案】A 【解析】起重机吊起物体匀速上升,物体的动能不变而势能增加,故机械能不守恒,A正确;物体做平抛运动,只有重力做功,机械能守恒,B错误;圆锥摆球在水平面内做匀速圆周运动,没有力做功,机械能守恒,C错误;一个轻质弹簧上端固定,下端系一个重物,重物在竖直方向上下振动,只有重力和弹力做功,机械能守恒,D错误.

机械能守恒定律练习题含答案

机械能守恒定律练习题 一、选择题(每题6分,共36分) 1、下列说法正确的是:(选CD ) A 、物体机械能守恒时,一定只受重力和弹力的作用。(是只有重力和弹力做功) B 、物体处于平衡状态时机械能一定守恒。(吊车匀速提高物体) C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。(受到一对平衡力) D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C) A.所具有的重力势能相等(质量不等) B.所具有的动能相等 C.所具有的机械能相等(初始时刻机械能相等) D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A ) A 、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0) B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加(动能不变,势能减小) 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为(选B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块, 并留在其中,下列说法正确的是(选BD ) A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能) B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力) C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能) 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为 在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机

机械能守恒条件的判定方法及注意事项(物理天地)

机械能守恒条件的判定方法及注意事项 王 佃 彬 (河北省唐山市丰南区第一中学 063300) 机械能守恒定律是高中物理中的一个重要守恒定律,是高考的重点内容,考查的特点是应用范围广,能力要求高,而灵活应用机械能守恒定律解题的前提是如何判断物体或系统是否满足守恒定律。 一.判定方法: 1.用做功判定: ⑴对物体:机械能守恒的条件是只有重力对 物体做功。 ⑵对系统:机械能守恒的条件是只有重力或弹簧弹力对物体做功。 例1.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图1所示,在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回。下列说法中正确的是: A .物体与弹簧作用过程中,物体的机械能守恒; B .物体与弹簧作用过程中,物体与弹簧组成的系统机械能守恒; C .物体从A 下降到B 的过程中,物体的动能和重力势能之和不断减小; . D 物体从A 下降到B 的过程中,物体的动能不断减小。 解析:物体与弹簧作用过程中,由于弹簧弹力对物体做功,所以物体的机械能不守恒,A 错。在该过程中,对物体和弹簧组成的系统,只有重力和弹簧弹力对系统做功,所以系统机械能守恒,B 正确。物体从A 下降到B 的过程中,物体的机械能(动能和重力势能之和)减小量转化为弹簧的弹性势能,C 正确。当物体受力平衡(弹簧弹力和物体重力大小相等)时,动能最大,所以从从A 下降到B 的过程中,物体的动能先增大后减小,D 错。答案:B 、C 。 2.用能量转化判定: 若组成系统的物体间只有动能和重力势能(或弹性势能)相互转化,系统跟外界没有发生机械能转变成其他形式的能,系统的机械能守恒。 例2.如图2所示,一辆小车静止在光滑的水平面上,小车立柱上固定一条长为L 栓有小球的细绳,小球由和悬点在同一水平面处释放(绳刚拉直),小球在下摆过程中,不计一切阻力,下列说法正确的是: A .小球机械能守恒; B .小球机械能减小; C .小球和小车的总机械能守恒; . D 小球和小车的总机械能减小。 解析:小球在下摆过程中,小车会运动,小车的动能来自小球机械能的减小量, 所以A 错,B 正确。而对小球和小车组成的系统,其机械能没有和其他形式能转化, 所以系统机械能守恒,C 正确,D 错。答案:B 、C 。 二.注意事项: 1.判定物体机械能是否守恒,不能根据物体做什么运动判定: 例3.下列关于机械能守恒说法正确的是: A .做匀速直线运动的物体,其机械能一定守恒; B .做匀加速直线运动的物体,其机械能一定不守恒; C .做匀速圆周运动的物体,其机械能一定守恒; .D 以上说法都不正确。 解析:物体做匀速运动时,可能有除重力外的其他力对物体做功,例如:物体沿固定的粗糙斜面匀速下滑,有摩擦力对物体做功,物体机械能不守恒,A 错。匀加速运动的物体,所受力是恒力,若该恒力是重力,机械能守恒,例如做平抛运动的物体机械能守恒,B 错。做匀速圆周运动的物体动能不变,但势能可能变化,故其机械能也可能不守恒,C 错。答案:D 。 2.系统合外力为零不是机械能守恒的条件: 例4.如图3所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 与M 及M 与地面间接触光滑。开始时,m 与M 均静止,现同时对m 、M 施加等大反向的水平恒力1F 和2F ,在两物体开始运动以后的整个过程中,对m 、M 和弹簧组成的系统(整个过程弹簧形变不超过其弹性程度),正确的说法是: 图1 B A 图2

实验验证机械能守恒定律

实验验证机械能守恒定律 ★新课标要求 (一)知识与技能 1、会用打点计时器打下的纸带运算物体运动的速度。 2、把握验证机械能守恒定律的实验原理。 (二)过程与方法 通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。 (三)情感、态度与价值观 通过实验验证,体会学习的欢乐,激发学习的爱好;通过亲身实践,树立“实践是检验真理的唯独标准”的科学观。培养学生的观看和实践能力,培养学生实事求是的科学态度。 ★教学重点 把握验证机械能守恒定律的实验原理。 ★教学难点 验证机械能守恒定律的误差分析及如何减小实验误差的方法。 ★教学方法 教师启发、引导,学生自主设计实验方案,亲自动手实验,并讨论、交流学习成果。 ★教学工具 重物、电磁打点计时器以及纸带,复写纸片,低压电源及两根导线,铁架台和铁夹,刻度尺,小夹子。 ★教学过程 (一)课前预备 教师活动:课前布置学生预习本节实验。下发预习提纲,重点复习下面的三个咨询题: 1、推导出机械能守恒定律在本实验中的具体表达式。 在图1中,质量为m 的物体从O 点自由下落,以地作零重力势能面,下落 过程中任意两点A 和B 的机械能分不为: E A =A A mgh mv +221, E B =B B mgh mv +22 1 假如忽略空气阻力,物体下落过程中的机械能守 恒,因此有 E A =E B ,即 A A mgh mv +221= B B mgh mv +22 1 上式亦可写成B A A B mgh mgh mv mv -=-222121 该式左边表示物体由A 到B 过程中动能的增加,右 边表示物体由A 到B 过程中重力势能的减少。等式

机械能守恒定律计算题与答案

机械能守恒定律计算题(期末复习) 1 ?如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力 F 开始提升原来 静止的质量为vm= 10kg 的物体,以大小为a = 2m )/s2的加速度匀加速上升, 求 头3s 力F 做的功.(取g = 10m /s2) 2. 汽车质量5t ,额定功率为60kW 当汽车在水平路面上行驶时,受到的阻力是车重的 0.1 倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?( 2)若汽车从静止开始, 保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间? 3. 质量是2kg 的物体,受到 24N 竖直向上的拉力,由静止开始运动,经 过5s ;求: ① 5s 拉力的平均功率 ② 5s 末拉力的瞬时功率(g 取10m/s2) mg 图 5-2-5 L F * 1 t

4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行 段距离后停止,测得停止处对开始运动处的水平距离为S,如图5-3-1, 不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦 因数相同?求动摩擦因数卩. 图5-3- 1 5.如图5-3-2所示,AB为1/4圆弧轨道,半径为R=0.8m, BC是水平轨道,长S=3m BC处的摩擦系数为卩=1/15,今有质 量m=1kg的物体,自A点从静止起下滑到C点刚好停止.求物体 在轨道AB段所受的阻力对物体做的功? 图5-3-2

4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行 6.如图5-4-4所示,两个底面积都是S的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上, 两桶装有密度为P的同种液体,阀门关闭时两桶液面的高度分别为 h1和h2,现将连接两桶的阀门打开,在两桶液面变为 相同高度的过程中重力做了多少功? 图5-4-4

实验:验证机械能守恒定律的例题解析

1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 解析:验证机械能守恒,即验证减少的重力势能是否等于增加的动能即mgh =12 m v 2,其中质量可以约去,没必要测量重物质量,A 不正确。当重物质量大一些时,空气阻力可以忽略,B 正确,C 错误。纸带先下落而后打点,此时,纸带上最初两点的点迹间隔较正常时略大,用此纸带进行数据处理,其结果是重物在打第一个点时就有了初动能,因此重物动能的增加量比重物重力势能的减少量大,D 错误。 答案:B 2.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2)( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm 解析:验证机械能守恒定律采用重锤的自由落体运动实现,所以相邻的0.02 s 内的位移增加量为Δs =gT 2=9.791×0.022 mm ≈3.9 mm ,只有C 符合要求。故选C 。 答案:C 3.某同学利用竖直上抛小球的频闪照片验证机械能守恒定律。频闪仪每隔 0.05 s 闪光一次,图实-7-11中所标数据为实际距离,该同学通过计算得到 不同时刻的速度如下表(当地重力加速度取10 m/s 2,小球质量m =0.2 kg ,结果 保留三位有效数字): (1)55。 (2)从t 2到t 5时间内,重力势能增加量ΔE p =________J ,动能减小量ΔE k =________J 。 图实-7-11 (3)在误差允许的范围内,若ΔE p 与ΔE k 近似相等,从而验证了机械能守恒定律。由上

实验“用DIS研究机械能守恒定律“例题及分析

实验用DIS研究机械能守恒定律 一、实验报告 (一)实验目的:研究动能和重力势能转化中所遵循的规律。 (二) 实验原理: 将实验装置中的光电门传感器接入数据采集器,测定摆锤在某一位置的瞬时速度,从而求得摆锤在该位置的动能,同时输入摆锤的高度,求得摆锤在该位置的重力势能,进而研究势能和动能转化时的规律。 (三) 实验器材:机械能守恒实验器、DIS(光电门传感器、数据采集器、计算机等) (四) 实验步骤: 1、实验1 (1)卸下定位挡片,将摆锤置于A点释放后,观察它摆到左边最高点的位置,并记下该位置,观察是否A点与等高。 (2)装上定位挡片于P点,再将摆锤置于A点释放后,观察它摆到左边最高点的位置,并记下该位置。 (3)将定位挡片依次放在Q、R点,重复实验步骤(2)观察、记录。 (4)写出实验结论: 2、实验2 (1)连接DIS实验系统。 (2)测量摆锤的直径及其质量并且输入软件界面内。 (3)将光电门分别放在B、C、D点,每次摆锤在A点释放,点击“数据计算”,系统会自动显示B、C、D各点的重力势能、动能和机械能。 (4)比较A、B、C、D各点的机械能数值,得出结论。 (五) 实验记录: 次数 D C B A 高度h/m0.000 0.050 0.100 0.150 速度v/ms-1 势能Ep/J 动能Ek/J 机械能E/J (六) 实验结论: 写出机械能守恒定律: (七) 实验误差分析: 二、实验注意事项 1.实验中A、B、C、D四点高度为0.150m、0.100m、0.050m、0.000m,已由计算机默认,不必输入 2.摆锤每次均从A点无初速释放,A点位置不能移动。 3.光电门传感器定位的顺序是D、C、B,不能颠倒,且光电门传感器定位要正确。 4.摆线不易伸长的线,如单根尼龙丝、胡琴丝或蜡线。且摆锤在A点静止时摆线不能松驰

机械能守恒定律计算题(基础)

机械能守恒定律计算题(基础练习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. F mg 图5-2-5

h 1 h 2 图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀 门关闭时两桶液面的高度分别为h 1和h 2,现将 连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

机械能守恒定律 典型例题的解题技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法: (1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类: (1)阻力不计的抛体类。(2)固定的光滑斜面类。 (3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时 的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等

θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力 始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低 点至少具有多大的速度才能作一个完整的圆周运动? 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度 为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的 夹角为,然后从静止释放,求小球运动到最低点小球对悬线的拉力 分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等

人教版高一下册物理 机械能守恒定律(篇)(Word版 含解析)

一、第八章机械能守恒定律易错题培优(难) 1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为 0.2 μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到 v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。下列说法正确的是() A.小物块0 到4s内做匀加速直线运动,后做匀减速直线运动直至静止 B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止 C.物块在传送带上留下划痕长度为12m D.整个过程中小物块和传送带间因摩擦产生的热量为80J 【答案】ACD 【解析】 【分析】 【详解】 物块和传送带的运动过程如图所示。 AB.由于物块的加速度 a1=μg=2m/s2 小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1 2 v t a ==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s 物块的位移 x1= 1 2 a1t12=9m 传送带的位移 x2= 1 2 a2t12=18m 两者相对位移为 121 x x x ?=-=9m 此后传送带减速,但物块仍加速,B错误; 当物块与传送带共速时,由匀变速直线运动规律得 12- a2t2=6+ a1t2

解得t 2=1s 因此物块匀加速所用的时间为 t 1+ t 2=4s 两者相对位移为2x ?= 3m ,所以A 正确。 C .物块开始减速的速度为 v 3=6+ a 1t 2=8 m/s 物块减速至静止所用时间为 3 31 v t a = =4s 传送带减速至静止所用时间为 3 42 v t a = =2s 该过程物块的位移为 x 3= 1 2 a 1t 32=16m 传送带的位移为 x 2= 1 2 a 2t 42=8m 两者相对位移为 3x ?=8m 回滑不会增加划痕长度,所以划痕长为 12x x x ?=?+?=9m+3m=12m C 正确; D .全程相对路程为 L =123x x x ?+?+?=9m+3m+8m=20m Q =μmgL =80J D 正确; 故选ACD 。 2.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。轻杆OB 一端固定在墙上,一端为定滑轮。若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。已知C 、E 两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为 2 mg ,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。下列说法正确的是( )

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动恒定加速度启动

相关文档
相关文档 最新文档