文档库 最新最全的文档下载
当前位置:文档库 › AVO技术在裂缝性储层中的应用

AVO技术在裂缝性储层中的应用

第16卷第5期断块油气田

FAU【J—BLOCK0IL&GASFIELD2009年9月

文章编号:1005—8907(2009)05—43—03

AVO技术在裂缝性储层申的应用

戴立波1潘仁芳2夏丹1莫莉2

(1.吐哈油田公司勘探开发研究院,新疆哈密839000;2.长江大学油气资源与勘探技术教育部重点实验室,湖北荆州434023)

摘要在油气勘探开发过程中,裂缝性油气藏所占的比例越来越大。裂缝性地层表现出很强的各向异性,勘探难度很大。而AVO技术从早先所认识到的一种现象已发展成一种完善的地球物理勘探技术,被广泛应用到油气勘探领域。当地层出现一定方位的裂缝时,地层的弹性参数会表现出方向性差异,这种差异能被AVO方法有效地检测。理论上讲,裂缝对地震属性参数的影响在垂直裂缝走向的方向上表现为最强,在水平裂缝走向的方向上表现为最弱,对AVO属性参数的影响也是如此。

关键词裂缝;方位角;AVO技术;Zoeppntz方程

中图分类号:P631文献标识码:A

ApplicationofAVOtechnologyinfracturedreservoirs

DaiLib01PanRenfan92XiaDanlMoLi2

(1.ExplorationandDevelopmentInstitute,TubaOilfieldCompany,CNPCHami839000,China;

2.MOEKeyLaboratoryofOil&GasResourcesandExplorationTechnology,YangtzeUniversity,Jingzhou434023,China)

Theproportionoffracturedreservoirisgettinggreaterandgreaterduringpetroleumexplorationanddevelopment.Fracturedformationsshowaverystronganisotropy,causinggreatdifficultyinexploration.Amplitudeversusoffset(AVO)technique,whichhasbeendevelopedintoaperfectgeophysicalexplorationtechniquefromanearly—recognizedphenomenon,iswidelyusedforoilandgasexploration.Whenthefractureswithacertainazimuthalangleoccurin

formation,theelasticparametersofstratashowadirectionaldifference,whichcanbeeffectivelydetectedthroughtheAVOanalysis.Theoretically,theinfluenceoffractureonseismicattributeparameteristhestrongestinthedirectionofveaicalfracturesandtheinfluenceistheweakestinthedirectionofhorizontalfractures.TheimpactoffractureonAVOattributeparameterisalsosame.

Keywords:fracture,azimuthangle,AVOtechnology,Zoeppritzequation.

AVO分析方法是通过建立储层含流体性质与AVO的关系,应用AVO的属性参数来对储层的含流体性质进行检测的方法。在实际应用中,就是利用地震道集资料,分析储层界面上的反射波振幅随炮检距的变化规律,或通过反射振幅随其入射角0的变化,估算界面上的AVO属性参数、泊松比、流体因子等,进一步推断储层岩性和含油气性旧]。

1AVO分析基础

AVO技术是基于Zoeppfitz方程及其简化式,当入射角较小(臼<30。)时,Shuey近似式为

R(O)=P+Gsin20(1)式中:R为反射系数;0为入射角,。;P为AVO截距;G为AVO斜率吲。

这表明,在入射角小于中等角度时,纵波反射系数近似与入射角正弦值的平方成线性关系。在AVO反演中,可以利用Shuey简化方程,作出P、G交会图及AVO的属性参数P,G的和、差、积等。这对于分析AVO的异常有重要意义例。

2AVO裂缝分析基础

地震波在裂缝介质中的传播速度可表示为

Yp----VD0[1—6占(1-cos2仅?COS20)]‘(2)式中:秽。为地震波在裂缝介质中的传播速度,m?s~,v∞为地震波在无缝介质中的传播速度,m?s。1;oo为裂缝密度,条?m~;b为常数,0~1;ol为地震波传播方向与裂缝的方位角,。。

根据对式(2)的理解,在裂缝地层中,当观测方向垂直裂缝走向时,裂缝对AVO属性参数的影响达到最

收稿日期:2008—04—05;改回13期:2009—07—02。

作者简介:戴立波,男,1982年生,主要从事地震储层预测和AV0技术的应用。E—mail:dailib00804@sina.corn。

43

万方数据

储层地质学裂缝

第五章储层裂缝 裂缝是油气储层特别是裂缝性储层的重要储集空间,更是良好的渗流通道。世界上许多大型、特大型油气田的储集层即为裂缝性储层。作为一种特殊的孔隙类型,裂缝的分布及其孔渗特征具有其独有的复杂性,它不象正常孔隙那样通过沉积相、成岩作用及岩心分析能够较为容易地预测和评价。由于裂缝的存在对油气储层的勘探和开发会导致很大的影响,因而对油气储层中裂缝的研究就显得十分重要。本章主要介绍裂缝系统的成因、裂缝的基本参数、孔渗性以及裂缝的探测和预测方法。 第一节裂缝的成因类型及分布规律 所谓裂缝,是指岩石发生破裂作用而形成的不连续面。显然,裂缝是岩石受力而发生破裂作用的结果。本节分别从力学和地质方面简要介绍裂缝的成因分类及分布规律。 一、裂缝的力学成因类型 在地质条件下,岩石处于上覆地层压力、构造应力、围岩压力及流体(孔隙)压力等作用力构成的复杂应力状态中。在三维空间中,应力状态可用三个相互正交的法向变量(即主应力)来表示,以分量σ1、σ2、和σ3别代表最大主应力、中间主应力和最小主应力(图5-1)。在实验室破裂试验中,可以观察到与三个主应力方向密切相关的三种裂缝类型,即剪裂缝、张裂缝(包括扩张裂缝和拉张裂缝)及张剪缝。岩石中所有裂缝必然与这些基本类型中的一类相符合。 图5-1 实验室破裂实验中三个主应力方向 及潜在破裂面的示意图 图中A示扩张裂缝,B、C表示剪裂缝

1.剪裂缝 剪裂缝是由剪切应力作用形成的。剪裂缝方向与最大主应力(σ1)方向以某一锐角相交(一般为30°),而与最小主应力方向(σ3)以某一钝角相交。在任何的实验室破裂实验中,都可以发育两个方向的剪切应力(两者一般相交60°),它们分别位于最大主应力两侧并以锐角相交(图5-1)。当剪切应力超过某一临界值时,便产生了剪切破裂,形成剪裂缝。根据库伦破裂准则,临 界剪应力与材料本身的粘结强度(τo)及作用于该剪切平面的正应力(σn )和 材料的内摩擦系数(μ)有关,即, τ临界=τo+μσn 剪裂缝的破裂面与σ1-σ2面呈锐角相交,裂缝两侧岩层的位移方向与破裂面平行,而且裂缝面上具有“擦痕”等特征。在理想情况下,可以形成两个方向的共轭裂缝(即图5-1中的B、C)。共轭裂缝中两组剪裂缝之间的夹角称为共轭角。但实际岩层中的剪裂缝并不都是以共轭型式出现的,有的只是一组发育而另一组不发育。剪裂缝的发育型式与岩层均质程度、围岩压力等因素有关。当岩层较均匀、围岩压力较大时,可形成共轭的剪裂缝;而当岩层均质程度较差、围岩压力较小时,趋向于形成不规则的剪裂缝。 2.张裂缝 张裂缝是由张应力形成的。当张应力超过岩石的扩张强度时,便形成的张裂缝。张应力方向(岩层裂开方向)与最大主应力(σ1)垂直,而与最小主应力(σ3)平行,破裂面与σ1-σ2平行,裂缝两侧岩层位移方向(裂开方向)与破裂面垂直。张裂缝一般具有一定的开度,有的被后期矿物充填或半充填。 根据张应力的类型,可将张裂缝分为二种,即扩张裂缝和拉张裂缝。 (1)扩张裂缝 扩张裂缝是在三个主应力均为压应力的状态下诱导的扩张应力所形成图5-2 扩张裂缝的形成和应力单元

裂缝型火山岩储层类型划分方法研究_李彬

·综述· 裂缝型火山岩储层类型划分方法研究 李彬1张伟杰2刘宏明2陈辉强2 1.中国石油集团长城钻探工程有限公司测井公司 2.中国石油测井有限公司长庆事业部摘要:准确地对火山岩储层进行综合评价分类是产能建设的必要条件。火山岩储层产能受孔隙、裂缝类型等诸多因素影响,利用常用的按储集空间和物性分类标准难以反映其真正的储层类型。鉴于此,本文在对工区内火山岩储层按空隙空间、物性等进行了分类之后,根据孔隙、裂缝类型等与经济极限产能的关系,确定了划分火山岩储层分类的综合评价系数,并通过此综合评价系数与产量的关系确定了储层综合评价分类标准,进而实现了对工区内储层类型的划分。关键词:裂缝型;火山岩;储层类型;划分 作者简介:李彬(1978-),男,2001年毕业于西南石油大学,工程师,从事测井新技术研究工作。 0引言 火山岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层,例如在准噶尔盆地西北缘的石炭系中发现了一批火山岩油藏,而且探明的地质储量相当可观。目前对这类特殊的储层进行综合评价分类研究时,常采用的方法是根据其物性进行分类[2~4]。由于火山岩油藏受孔隙、裂缝等诸多因素的影响,使得采用简单的储层分类方法不能满足产能建设的需要。本文针对此,根据孔隙度、裂缝强度指数等参数建立了综合评价系数,进而对储层类型进行综合评价分类。 1火山岩储层分类 1.1储集空间 火山岩的储集空间分孔隙和裂缝两种类型。孔隙包括气孔、杏仁体内孔、斑晶晶间孔、收缩孔、微晶间孔、晶内孔、溶蚀孔、胀裂孔、塑流孔等。这些孔隙空间大多呈封闭状态,有裂缝使其连通,将明显改善储集性能。裂缝包括构造裂隙、隐爆裂隙、成岩裂隙、风化裂隙、竖直节理、柱状节理等。各种储集空间多呈某种组合形式出现,如原生孔隙中的气孔往往和溶缝、洞相连,而次生的构造缝常形成溶蚀—构 造复合缝。 1.2储集空间的演化 储集空间的演化可分为下述几个阶段:(1)岩浆作用阶段:形成各种原生孔隙和裂缝。(2)岩浆期后热液阶段:对原生孔进行填充。(3)次生裂缝与蚀变交代阶段:由于构造作用影响,岩石破碎或产生裂隙,次生裂隙本身就是储集空间,并把不连通的孔(如气孔)缝(如原生裂隙)给以一定程度的连通和改造,同时热液沿裂缝通道改造两侧的外貌,对岩石进行交代,并形成熔孔。交代溶蚀与充填同时发生,形成各种熔孔、充填残留孔、缝等。 (4)风化淋滤作用阶段:地质体裸露地表,经机械风化作用产生大量裂隙,加上化学风化作用的淋滤作用,一般有利于储存空间的形成与改善,但极细的风化物也能起到充填作用。 (5)深埋改造作用阶段:地壳下降,接受沉积,火山岩受上覆地层的覆盖和地下水的改造作用,携带油气的有机酸对孔、缝也有强烈的改造作用,改造后的空间被油气或水充填。1.3熔岩储集体物性分类 克拉玛依油田石炭系火山岩是一典型的溢流相玄武岩油气藏,断层活动引起的破裂作用是改善火山岩储层物性的主要因素,断层角砾岩物性最好。前人对克拉玛依油田石炭系火山岩油藏研究,制定了火山岩储层评价标准(见表1),对研究区引用了该 国外测井技术 WORLD WELL LOGGING TECHNOLOGY 2012年第4期总第190期 Aug.2012Total 190 17

油气储层裂缝形成、分布及有效性分析

油气储层裂缝形成、分布及有效性分析 近年来,随着我国油田勘探技术的不断创新与发展,对于油气储层的研究也日益加深,并从多个角度对油气储层的特征加以阐释,针对以往存在的一系列问题通过合理化的理论分析,对油气储层未来发展有一定的指导意义。文章主要针对现阶段我国油气储层中形成裂缝的成因及分布情况进行了浅显的分析,希望通过介绍可以为相关研究人员提供一些参考建议,以便更好地推动我国石油工业的发展建设。 标签:油气储层裂缝;形成;分布;有效性 引言 随着各种新技术的层出不穷,对于石油探勘技术也提出了更高的要求,就目前发展阶段而言,全世界范围内仅有百分之二十是可采石油储量,受各种条件因素的限制,处于垂直及平面上的各种非均匀隔挡条件下的地下石油储量很难被开采出来。于我国而言,此等情况更是如此,约百分之七十左右的石油储量与世界油田相同,均已进入了高含水阶段的开采时期,地下油气水分布较为复杂,这就在更大程度上对石油勘探技术提出了新的挑战,因此必须加强对油气储层的认识,通过建模预测改变原有的开采技术。 从某种角度来讲,原有的开采技术方式已经很难适应时代社会发展的需要,导致油气储层裂缝现象所占比重越来越大,油气储层不仅能够作为油气存储空间而独立存在,更能充当油气管道运输油气资源,对于油气而言有着极其重要的意义。但现实情况中却存在很大问题,使其不能够发挥应有的效用促进我国石油工业的发展,其中主要的问题则是油气储层的裂缝问题。 针对油气储层裂缝等问题,相关学者在AAPG年会上针对此问题进行了详细地讨论,结合近年来的发展对油气储层有了新的认识与理解,并提出了新的解决措施,从而减少出现油气储层裂缝的现象,关于油气储层裂缝的研究已从宏观向微观发展,由理论沉积学向应用沉积学发展,并逐渐完善。预计今后相当长的一段时间内,都将对油气储层裂缝形成、分布状况等有着更深地研究。下面文章就针对现阶段油气储层裂缝的形成原因及分析进行详细的阐释,供相关人员参考。 1 油气储层裂缝形成的原因 关于油气储层裂缝的形成并不是一种作用力影响下就能够发生的,要考虑到多方面的影响因素,尤其是针对小范围的微裂缝更好给予足够地重视,绝对不能忽视。此外,应力的增强也是导致裂缝形成的主要因素之一。但两种裂缝的形成在本质上存在着较大的差异,第一种微裂缝的形成主要是指在构造力的作用下,单层结构并没有受到内部应力的影响,此等裂缝只是单纯的存在于表面,并不会构成极大的威胁,且范围较小,故而被称作微裂缝;第二种裂缝的形成主要是由

储层裂缝常规测井响应

双侧向—微球形聚焦测井系列 对高角度裂缝,深、浅側向曲线平缓,深側向电阻率> 浅側向电阻率,呈“正差异”。 在水平裂缝发育段,深、浅側向曲线尖锐,深側向电阻率< 浅側向电阻率,呈较小的“负差异”。 对于倾斜缝或网状裂缝,深、浅側向曲线起伏较大,为中等值,深、浅电阻率几乎“无差异”。 声波测井识别裂缝: 一般认为声波测井计算的孔隙度为岩石基质孔隙度,其理由是声波测井的首波沿着基质部分传播并绕过那些不均匀分布的孔洞、孔隙。但当地层中存在低角度裂缝(如水平裂缝)、网状裂缝时,声波的首波必须通过裂缝来传播。裂缝较发育时,声波穿过裂缝使其幅度受到很大的衰减,造成首波不被记录,而其后到达的波反而被记录下来,表现为声波时差增大,即周波跳跃。因此,可利用声波时差的增大来定性识别低角度缝或网状缝发育井段。 利用感应差别识别裂缝:钻井液侵入裂缝,使感应测井曲线有明显的降低。 密度测井识别裂缝 密度测井测量的是岩石的体积密度,主要反映地层的总孔隙度。由于密度测井为极板推靠式仪器,当极板接触到天然裂缝时,由于泥浆的侵入会对密度测井产生一定的影响,引起密度测井值减小。 井径测井的裂缝识别对于基质孔隙较小的致密砂岩,钻井使得裂缝带容易破碎,裂缝相交处的岩块塌落,可造成钻井井眼的不规则及井径的增大。另一方面,由于裂缝具有渗透性,如果井眼规则,泥浆的侵入可在井壁形成泥饼,井径缩小。因此,可以根据井眼的突然变化来预测裂缝的存在。 井径测井对于低角度缝与泥质条带以及薄层的响应很难区分;另外,其它原因(如岩石破碎、井壁垮塌)造成的井眼不规则,会影响到该方法识别裂缝的准确性。 自然伽玛能谱测井识别裂缝 测量地层中天然放射性铀(U238)、钍(Th282)、钾(K40)含量。 原理:正常沉积环境U元素含量低于或接近泥质体(钍+钾)的值,当有裂缝存在时,铀含量比泥质体大。 应用能谱的高铀值识别裂缝和地下流体的运移及活跃程度有关。当裂缝(孔洞)发育段的地下水活跃时,地下水中溶解的U元素才能被吸附及沉淀在裂缝(或孔洞)周围,造成U元素富集,使得自然伽玛能谱测井在裂缝带处显示出U含量增加,在地下水不活动地区,裂缝性储层的自然伽玛显示为低值。 (1)侧向、感应及微电阻率测井 裂缝在电阻率测井曲线上的响应取决于裂缝的产状(倾角与方位)、 裂缝的宽度与长度(纵向或径向)、裂缝中的充填物(胶结物、泥浆 滤液、地层流体等)以及泥浆侵入深度等因素。 1.电阻率测井响应特征 (2)侧向测井——高角度裂缝影响 电极型仪器将强烈地受垂直裂缝的影响,这是因为这样的裂缝实际上提供了低阻通道(并联)。所以在垂直裂缝的情况下,侧向测井的电阻率比感应测井的电阻率低。又因为垂直裂缝的有效导电截面在径向上不变,而孔隙的导电截面在径向上是逐渐增大的,所以在浅侧向探测范围内裂缝与孔隙的有效导电截面之比远比深侧向要小。 在Rmf≈Rw时,常观察到RLLD与RLLS的比值为1.5到2; 在Rmf Rw时,RLLS与RLLD的幅度差很小,有时甚至出现RLLS>RLLD。 (2)侧向测井——水平裂缝影响

储层裂缝表征及预测研究进展

0引言 裂缝性油气藏是近年油气勘探开发的重点,如何对裂缝 进行准确表征,对不同类型裂缝的识别、分布规律的预测以及如何建立更加贴近实际的裂缝性油气藏地质模型,一直以来都是研究的重点和难点[1,2]。为此,国内外学者做了很多努力,最早的研究方法是通过对露头、岩心、薄片等地质分析来对裂缝特征进行描述,如Van Golf-Racht [3]在薄片观察的基础 上,提出了裂缝孔隙度、渗透率以及体密度的计算方法,Ruh - land 提出裂缝强度等概念[4]。随测井技术的发展,利用常规测 井数据分析,总结出了一系列数学统计方法:神经网络法、多元统计、灰色关联等,罗贞耀、戴俊生等[5,6]提出了裂缝物性参数计算方法。在裂缝预测方面,主要有数值模拟、非线性理论预测等方法,包括构造曲率法、构造应力场数值模拟、二维、三维有限元数值模拟、物探方法等[2,7]。本文通过系统总结分析 储层裂缝表征及预测研究进展 唐诚 中石化西南石油工程有限公司地质录井分公司,四川绵阳621000 摘要 全面、准确对致密储层的裂缝网络进行定量表征及预测影响着裂缝性油气田的高效开发。在系统调研国内外裂缝研究成果 且详细对比分析的基础上,从地质分析、测井识别、构造曲率法及应力场模拟、地震裂缝检测、非线性理论方法等着手,总结出了储层裂缝表征及预测研究的进展。研究表明,根据成因将储层裂缝划分为构造裂缝和非构造裂缝两大类,构造缝包括区域性裂缝、局部构造缝和复合型构造缝,局部构造缝指与断层和褶皱相关的裂缝;非构造缝主要分为收缩缝和与表面有关的裂缝两大类及9个亚类,裂缝类型不同,其特征及成因机理也不同。采用地质分析与测井解释相结合,建立露头、岩心与测井的识别模式对裂缝进行准确识别。利用地质、测井和构造应力等资料,建立数学模型,对裂缝参数进行定量计算。详细阐述并分析了多种裂缝预测方法的优缺点,最终指明了储层裂缝研究的不足与发展方向。 关键词裂缝性储层;裂缝表征;裂缝识别;裂缝预测 中图分类号P618.13文献标志码A doi 10.3981/j.issn.1000-7857.2013.21.013 Progress in Fracture Characterization and Prediction TANG Cheng Geologic Logging Company of Southwest Petroleum Bureau,Sinopec,Mianyang 621000,Sichuan Prvovince,China Abstract It is very important for exploration and development of oil and gas to comprehensively and accurately and quantitatively describe and predict fracture.Base on the basis of the literature investigation of fractures research findings around the world,from geological analysis,log fracture identification,curvature method,tectonic stress simulation,seismic fracture prediction and so on,the progress of fracture characterization and prediction are summarized.It is shown that the reservoir fractures can be classified into two types,including structural and non-structural fracture according to their origin.The structural fracture includes regional fracture,local fracture and complex structural fracture,in which the local structural fracture is related to fracture of fault and fold.The non-structural fracture can be classified into contraction fracture and related fracture of surface,which have 12sub-types.Every type of fractures has different characteristics and origin.The main identification of fracture is combination of geological analysis and log interpretation,and then pattern recognition of outcrop,core and well logging will be established.Also quantitative calculation method for fracture is proposed using geological,logging and tectonic stress data.With the aid of those bases,the advantage and disadvantage of methods for detection and prediction of the fracture distribution are discussed.Finally the shortcoming and development of fracture research are pointed out. Keywords fractured reservoir;fracture characterization;fracture identification;fracture prediction 收稿日期:2013-01-28;修回日期:2013-03-18 作者简介:唐诚,工程师,研究方向为石油地质录井与信息技术研究,电子信箱:110880280@https://www.wendangku.net/doc/c18912368.html,

相关文档