文档库 最新最全的文档下载
当前位置:文档库 › 物理:抓装四巧”,解决多体问题

物理:抓装四巧”,解决多体问题

物理:抓装四巧”,解决多体问题
物理:抓装四巧”,解决多体问题

抓住“四巧”,解决多体问题

高考物理中多体问题是学生最感头痛的问题,特别是数学基本功不扎实的学生简直就感觉到无从下手。其实只要抓住“四巧”,就可以很轻松的解决此类问题。

一. 巧选对象

对多物体系统,由于参与作用的物体较多,作用的情况比较复杂,因此,要从巧选研究对象和巧选研究过程上找到解题的突破口。既要注意系统总动量守恒,还要注意系统内某几个物体发生作用时动量也守恒。

例1. 质量相等的五个物体在光滑水平面上间隔一定距离排成一直线,如图1所示,具有初速度的物体1向其他4个静止物体运动,依次发生碰撞,每次碰撞后不再分开,最后五个物体粘成一整体,则这个整体的速度等于多少?

图1

分析:这是一个涉及五个物体的多物体系统。当物体1与物体2发生碰撞过程中,取物体1和物体2为研究对象,它们的总动量守恒。接着,物体1和物体2组成一个物体,再与物体3发生碰撞,取物体1、

物体2和物体3为研究对象,它们的总动量也守恒,依次类推,本题一共将发生四次碰撞,每次碰撞都满足动量守恒条件,分别应用动量守恒定律求出每次碰撞后的速度,从而可求出最终的结果。但如果取由五个物体组成的整体为研究对象,它们的总动量守恒,这样,求解过程就显得非常简便。根据动量守恒定律得。

二. 巧建模型

在多物体系统内发生相互作用的过程中,不仅要认清作用的过程和参与的物体,而且要根据作用的特点和规律,构建物理模型,为顺利运用动量守恒定律铺平道路。尤其是对碰撞类问题,由于碰撞时间短、作用力大等特点,参与作用的往往就是发生碰撞的两个物体,而与其它物体无关。

例2. 如图2所示,甲、乙两完全一样的小车,质量都为M。乙车内用绳吊一质量为M的小球,当乙车静止时,甲车以速度v与乙车相碰,碰后连为一体,求:

(1)两车刚碰后的共同速度为多大?

(2)小球摆到最高点时的速度为多大?

图2

分析:甲车与乙车发生碰撞到连为一体的过程中,由于碰撞时间短,乙车在碰撞的时间内发生的位移可略去不计,小球还未摆动,小球和小车间在水平方向无作用。因此,在碰撞过程中参与作用的仅仅是甲、乙两车。对甲、乙两车应用动量守恒定律得

解得。

接着,两车以共同的速度向右运动,在绳子的作用下,小球使小车做减速运动,小球做加速运动。在这个过程中参与作用的是三个物体。当两车和小球具有共同速度时,小球摆到最高点。对两车和小球组成的系统应用动量守恒定律得

解得

三. 巧用定律

动量守恒定律的数学表示形式有多种,其中最常见的二种形式为:其一,用数学表达式表示,它表示系统某

二个状态的总动量相等;其二,用数学表达式表示,它表示系统内某些物体的动量减小量等于另一些物体的动量增加量。对多物体问题用第二种表达式求解将更加简捷明快。

例3. 如图3所示,一块足够长的木板,放在光滑的水平面上,在木板上自左向右放有序号是1,2,3……n的木块,所有木块的质量均为m,与木板间的动摩擦因数都相同。开始时,木板静止不动,第1,2,3……n号木块的初速度分别是,……,方向都向右。木板的质量与所有木块的总质量相等。最终所有木块与木板以共同速度做匀速运动。设木块之间均无相互碰撞,木板足够长。求第k号()木块的最小速度。

图3

分析:只要第k号木块的速度大于木板的速度,第k号木块必将做匀减速运动,直至与木板的速度相同为止,此时,第k号木块的速度为最小,且第1号至第k号木块的速度均为。虽说这些木块中有的动量增加,有的动量减小,但很容易求出这些木块和木板总动量的增加量。

第号至第n号木块由于摩擦力的作用,它们的动量都减小,每个木块动量减小量相等,而且每个木块动量减小量与第k号木块动量减小量相等,即为。则可求出第k+1号至第n号木块总动量的减小量为:

根据动量守恒定律得

解得

四. 巧寻规律

对多个物体参与作用,作用过程又比较复杂的多物体问题,有时让人觉得眼花乱,无从下手。解决这类问题,要善于弄清每一个子过程和在各个子过程中参与作用的物体。对各个子过程的作用特点及物体的运动特征进行深入地分析、归纳和总结,从中探究相应的规律,找到解题的突破口。

例4. 如图4所示,一排人站在沿x轴的水平轨道旁,原点两侧的人的序号都记为。每个人只有一个沙袋,一侧的每个沙袋质量一侧的每个沙袋质量一质量为

的小车以某一初速度从原点出发向正x方向滑行。不计轨道

摩擦力,当车每经过一人身旁时,此要就把沙袋以水平速度v朝与车速相反的方向沿车面扔到车上,v的大小等于扔此沙袋之前的瞬间车速大小的2n倍(n是此人的序号数)。问:

(1)空车出发后,车上堆积了几个沙袋时车就反向滑行?

(2)车上最终有大小沙袋共多少个?

图4

分析:在小车运动过程中,由于不断有沙袋扔到车上,小车的速度逐渐变小。显然,这是一个多物体参与作用、过程较复杂的物理问题。我们先以各个子过程为切入点,分别运用动量守恒定律进行分析和探究。

(1)在的一侧,

第1个人扔沙袋到车上:

第2个人扔沙袋到车上:

第3个人扔沙袋到车上:

由以上分析和计算可得出一定的规律,则第n个人扔沙袋到车上时有

要使小车反向滑行,则要满足,所以解得,所以当小车上堆积个沙袋时小车开始反向滑行。

(2)只要小车的速度不等于零,就将有人扔沙袋到小车上。

在的一侧,(令)

负侧第1人扔沙袋到车上:

负侧第2人扔沙袋到车上:

容易看出当小车经过负侧第n人(看小车的速度能否为零)有

解得n=8。则车上最终有大小沙袋共11个。

练习题:

1. 如图5所示,在光滑水平面上放置木块A和B,质量分别为

和,它们的上表面是粗糙的。今有一质量

的小铁块C,以初速度沿两木块的上表面滑过。由于摩擦力的作用,小铁块最后停在木块B上,此时B、C以共同速度v=1.5m/s 运动。求:

图5

(1)木块A最后运动的速度为多大?

(2)C刚离开A时的速度为多大?

2. 两只小船逆向航行,航线邻近。在两船首尾相齐时,由每只船上各自向对方放置一质量为m=50kg的麻袋,结果载重较小的船停了下来。另一艘则以的速度沿原方向航行。设两只船包括所载物重量分别为,。则交换麻袋前两只船的速率各为多大?(水的阻力不计)

答案:

1. (1)(2)

2.

等离子体特性实验

实验简介 等离子体是由大量的带电粒子组成的非束缚态体系,是继固体、液体、气体之后物质的第四种聚集状态。等离子体有别于其他物态的主要特点是其中长程的电磁相互作用起支配作用,等离子体中粒子与电磁场耦合会产生丰富的集体现象。气体放电是产生等离子体的一种常见形式,在低温等离子体材料表面改性、刻蚀、化学气相沉积、等离子体发光等方面有广泛的应用,同时也是实验室等离子体物态特性研究的重要对象。气体放电实现的方式可以千差万别,但产生放电的基本过程是利用外(电)场加速电子使之碰撞中性原子(分子)来电离气体。 本实验的目的是领会气体放电的基本原理和过程;掌握常规的静电探针诊断方法;了解等离子体中离子声波的激发、传播、阻尼等基本特性。 实验原理 ?气体放电原理与实验装置 ●利用电子对中性气体的轰击使气体电离是产生等离子体的一种 常见的方法。在直流放电情况下,当灯丝(钨、鉭)达到足够高 的温度时,许多电子会克服表面脱出功而被发射出来。这些初始 电子在外加的直流电场中加速,获得足够的能量与中性气体碰撞 并使之电离。室温下大多数常用气体的第一电离能在20eV左右, 故而施加于阴极(灯丝)与阳极(本实验中为真空室壁)之间的 电位差必须高于20V。遭轰击而被剥离的电子称为次级电子,与 初始电子相比,次级电子的能量较低。等离子体中大多数电子是 次级电子。电子碰撞电离截面在能量为几十电子伏左右达到最大, 通常在阴极与阳极之间施加30~100V电压就可以形成稳定的直流 放电。 ●有几种因素限制了电极间产生的放电电流的大小。首先是阴极的 电子发射能力的限制,阴极表面的发射电流密度由理查森 (Richardson)定律给出:

高中物理平抛运动试题整理

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动V x= X= t= 竖直方向运动V y= y= t= V合= S合= 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V0水平抛出,经时间t,其竖直方向速度大小与V0大小相等,那么t 为() A V0/g B 2V0/g C V0/2g D 2V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V0水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是( ) A 1∶1 B 2 ∶1 C 3∶1D4∶1 5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动 D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

高考物理连接体模型问答归纳

绳牵连物”连接体模型问题归纳 广西合浦廉州中学秦付平 两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。 一、判断物体运动情况 例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是() A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.拉力先大于A的重力,后小于重力

解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。A的速度等 于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。 点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。 二、求解连接体速度 例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。求当M滑至容器底部时两球的速度。两球在运动过程中细线始终处于绷紧状态。 解析:设M滑至容器底部时速度为,m的速度为。根据运动效果,将沿绳的方向和垂直于 绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能

高中物理常见连接体问题总结知识分享

常见连接体问题 (一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg 的物体.g取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=0.2的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.(三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确的是(). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小?

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

高一物理 连接体受力分析

掌握母题100例,触类旁通赢高考 高考题千变万化,但万变不离其宗。千变万化的新颖高考题都可以看作是由母题衍生而来。研究母题,掌握母题解法,使学生触类旁通,举一反三,可使学生从题海中跳出来,轻松备考,事半功倍。 母题十五、连接体受力分析 【解法归纳】对于平衡状态的连接体,一般采用隔离两个物体分别进行受力分析,利用平衡条件列出相关方程联立解答。 典例15.(2011海南物理)如图,墙上有两个钉子a 和b ,它们的连线与水平方向的夹角为45°,两者的高度差为l 。一条不可伸长的轻质细绳一端固定于a 点,另一端跨 过光滑钉子b 悬挂一质量为m1的重物。在绳子距a 端2 l 的c 点有一固定绳圈。若绳圈上悬挂质量为m2的钩码,平衡后绳的ac 段正好水平,则重物和钩码的质量比12 m m 为 C. 【解析】:根据题述画出平衡后绳的ac 段正好水平的示意图,对绳圈c 分析受力,画出受力图。由平行四边形定则和图中几何关系可得 12m m C 正确。 【答案】:C 【点评】此题考查受力方向、物体平衡等相关知识点。 衍生题1(2010山东理综)如图2所示,质量分别为 m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下 一起沿水平方向做匀速直线运动(m 1在地面,m 2在空 中),力F 与水平方向成θ角,则m 1所受支持力N 和摩

擦力f正确的是 A.N= m1g+ m2g- F sinθ B.N= m1g+ m2g- F cosθ C.f=F cosθ D.f=F sinθ 【解析】把两个物体看作一个整体,由两个物体一起沿水平方向做匀速直线运动可知水平方向f=F cosθ,选项C正确D错误;设轻弹簧中弹力为F1,弹簧方向与水平方向的夹角为α,隔离m2,分析受力,由平衡条件,在竖直方向有,F sinθ=m2g+ F1sinα, 隔离m1,分析受力,由平衡条件,在竖直方向有,m1g=N+ F1sinα, 联立解得,N= m1g+ m2g- F sinθ,选项A正确B错误。 【答案】AC 【点评】本题考查整体法和隔离法受力分析、物体平衡条件的应用等知识点,意在考查考生对新情景的分析能力和综合运用知识的能力。 衍生题2(2005天津理综卷)如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P、Q用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦),P悬于空中,Q放在斜面上,均处于静止状态。当用水平向左的恒力推Q时,P、Q仍静止不动,则 A.Q受到的摩擦力一定变小 B.Q受到的摩擦力一定变大 C.轻绳上拉力一定变小 D.轻绳上拉力一定不变 解析:由于两物块P、Q用轻绳连接并跨过滑轮,当用水平向左的恒力推Q时,P、Q仍静止不动,则轻绳上拉力等于物块P的重力,轻绳上拉力一定不变,选项C错误D正确。由于题述没有给出两物块P、Q质量的具体关系,斜面粗糙程度未知,用水平向左的恒力推Q前,Q受到的摩擦力方向未知。当用水平向左的恒力推Q时,Q受到的摩擦力变化情况不能断定,所以选项AB错误。 【答案】D 衍生题3(2003天津理综卷,19 )如图所示,一个半球形的碗放在桌面上,碗

等离子体实验讲义

气体放电中等离子体的研究 一、 实验目的 1.了解气体放电中等离子体的特性。 2.利用等离子体诊断技术测定等离子体的一些基本参量。 二.实验原理 1.等离子体及其物理特性 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度λD 。当系统尺度L >λD 时,系统呈现电中性,当L <λD 时,系统可能出现非电中性。 2.等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度e T 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为e n ,正离子密度为 i n ,在等离子体中 e i n n 。 (3)轴向电场强度 L E 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能e E 。 (5)空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率Fp 称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 3.稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102P a时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图2.3-1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)辉区(即正辉柱),(7)阳极暗区,(8)阳极辉

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

高三物理 连接体专题复习

连接体专题复习 1. 连接体:多个相互关联的物体连接(叠放、并排或由弹簧、绳子、细杆联系)在一起构成的物体系统称为连接体。连接体一般具有相同的运动情况(速度、加速度)。 2. 解决连接体问题的两种方法 3. 整体法、隔离法应注意的问题 (1)不涉及系统内力时,优先考虑应用整体法,即“能整体、不隔离”。 (2)同样应用“隔离法”,也要先隔离“简单”的物体,如待求量少、或受力少、或处于边缘处的物体。 (3)将“整体法”与“隔离法”有机结合、灵活应用。 (4)各“隔离体”间的关联力,表现为作用力与反作用力,对整体系统则是内力 特别提醒 当系统内各物体的加速度不同时,一般不直接用整体法,要采用隔离法解题。 例1 如图所示,在建筑工地,民工兄弟用两手对称水平施力将两长方体水泥制品夹紧并以加速度a 竖直向上匀加速搬起,其中A 的质量为m ,B 的质量为2m ,水平作用力为F ,A 、B 之间的动摩擦因数为μ,在此过程中,A 、B 间的摩擦力为( ) A.μF B.1 2m (g +a ) C.m (g +a ) D.3 2m (g +a ) 例2 质量为2 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示。A 和B 经过1 s 达到同一速度,之后共同减速直至静止,A 和B 的v -t 图象如图乙所示, 重力加速度g =10 m/s 2,求: (1)A 与B 上表面之间的动摩擦因数μ1; (2)B 与水平面间的动摩擦因数μ2; (3)A 的质量。

例3 如图所示,质量为m 1和m 2的两物块放在光滑的水平地面上。用轻质弹簧将两物块连接在一起。当用水平力F 作用在m 1上时,两物块均以加速度a 做匀加速运动,此时,弹簧伸长量为x ;若用水平力F ′作用在m 1上时,两物块均以加速度a ′=2a 做匀加速运动,此时弹簧伸长量为x ′。则下列关系正确的是( ) A.F ′=2F B.x ′>2x C.F ′>2F D.x ′<2x 例4如图所示,质量分别为m 、M 的两物体P 、Q 保持相对静止,一起沿倾角为θ的固定光滑斜面下滑,Q 的上表面水平,P 、Q 之间的动摩擦因数为μ,则下列说法正确的是( ) A. P 处于超重状态 B. P 受到的摩擦力大小为μmg ,方向水平向右 C. P 受到的摩擦力大小为mg sin θcos θ,方向水平向左 D. P 受到的支持力大小为mg sin 2θ 例5(多选)如图所示,质量分别为m A 、m B 的A 、B 两物块用轻质弹簧连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F 拉B 物块,使它们沿斜面匀加速上升,A 、B 与斜面间的动摩擦因数均为μ,为了减小弹簧的形变量,可行的办法是( ) A.减小A 物块的质量 B.增大B 物块的质量 C.增大倾角θ D.增大动摩擦因数μ 针对训练 1.如图所示,在倾角为30°的光滑斜面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是f m 。现用平行于斜面的拉力F 拉其中一个质量为 2m 的木块,使四个木块沿斜面以同一加速度向下运动,则拉力F 的最大值是( ) A . B . C . D . 2.在两个足够长的固定的相同斜面体上(其斜面光滑),分别有如图甲、乙所示的两套装置,斜面体B 的上表面水平且光滑,长方体D 的上表面与斜面平行且光滑,p 是固定在B 、D 上的小柱,完全相同的两只弹簧一端固定在p 上,另一端分别连在A 和C 上,在A 与B 、C 与D 分别保持相对静止状态沿斜面自由下滑的过程中,下列说法正确的是( ) A .两弹簧都处于拉伸状态 B .两弹簧都处于压缩状态

高中物理复习-有关连接体问题专项训练

有关连接体问题专项训练 【例题精选】: 例1:在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大? 分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。因此,这一道连接体的问题可以有解。 解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。对两个物体分别列牛顿第二定律的方程: 对m A满足F-T= m A a ⑴ 对m B满足T = m B a ⑵ ⑴+⑵得 F =(m A+m B)a ⑶ 经解得: a = F/(m A+m B)⑷ 将⑷式代入⑵式可得T= Fm B/(m A+m B) 小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的内力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。 ②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,同学们必须掌握。 例2:如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木 块之间的弹力。 分析:仔细分析会发现这一道题与例1几乎是一样的。把第1、第2木块看作A物体,把第3、4、5木块看作B物体,就和例1完全一样了。因5个木块一起向右运动时运动状态完全相同,可以用整体法求出系统的加速度(也是各个木块共同加速度)。再用隔离法

尘埃粒子及物理特性

尘埃粒子及物理特性
尘埃粒子及物理特性 (一) 、尘埃等离子体简介 等离子体和尘埃是已知宇宙空间中最为常见的两种成分,而二者的共存以及相可 作用则开辟了一个近年来非常新兴的研究领域一一尘埃等离子体。它不仅出现在等离 子体物理领域,而且也常出现在空间物理、电波传播,半导体科学、材料科学等领加 工、磁约束核聚变、空间探测等领域的应用有着重要的参考价值,同时它能够揭示等 离子体物理学以及其它相关领域中新的物理现象。b5E2RGbCAP 1.什么是尘埃等离子体 尘埃等离子体是指在等离子体巾包含了大量带电的固态弥散微粒子。尘埃粒子厂 泛存在于自然界,尤其是在宇宙空间中,例如星际空间、太阳系、地球电离层以及暂 星尾和行星环中都存在着各种尺度和密度的尘埃粒子。另外,尘埃粒子也存在于
p1EanqFDPw
实验室等离子体和工业加工等离子体中。 2.尘埃粒子的来源 在太阳系中,人们已探测到各种形态和来源的尘埃粒子,如空间物质的碎片、陨 石微粒、月球的抛射物、人类对空间的”污染”物等。在星际云中,尘埃粒子可以是 电介质,如冰、硅粒等,也可能是类金属的物质,如石墨、磁铁矿等物质。尘埃颗粒 也普遍存在与实验室装置中,在电子学实验室中,尘埃粒子来源于电极、电介质的器 壁,或来源于充入的气体等。一般尘埃粒了的可能质量范围大约为 10-2~10-15g ,
1/5

尺寸可能范围从几十纳米到几十微米不等。在等离子体中,这些尘埃粒子凶与电子、 离子碰撞而携带电荷,携带 等离子体问题的研究比较复杂。DXDiTa9E3d 3.尘埃等离子体的特性 (1) .尘埃粒子具有大的荷电特性 由于球形尘埃粒子的半径 a 远小于等离子体的德拜长度 b ,因此尘埃小球具有的 电势将使其上的电子的温度与等离子体中的电子温度同量级,即 e ~kTe ,(k 为玻 尔兹曼常数) 。对应于这个电势,尘埃粒子上的电荷通常有很大的数值,一般尘埃粒 子带有 102—106 电子电荷。“浸”在等离子体中的尘埃粒子会受到屏蔽作用,即由等 离子体中的带电粒子形成尘埃粒子的屏蔽云.RTCrpUDGiT (2).尘埃离子荷电量的可变性 当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度时,可不考虑尘埃粒子间 的相互作用,即孤立地研究单个尘埃粒子。尘埃颗粒所带的电荷是可变的,它由 尘埃粒子本身的特性(前一时刻的带电情况) 和它周围等离子体的性质(如电子离子充 电电流、二次电子发射、光电发射、尘埃粒子的速度等) 有关,同时等离子体中电荷 密度扰动、温度扰动,以及一些外界环境条件的改变都可以改变尘埃粒子的带电情 况。例如有以下几种方式:a 、等离子体中电子、离子的熟运动将形成对尘埃粒子的 充电电流。一个带负电的尘埃粒子,它将排斥电子,吸引离子,引起电子电流减小, 使离子电流增大。b 、当碰撞尘埃粒子的初次电子具有足够大的能量时,可能引起尘 埃粒子的二次电子发射,从而导致尘埃粒子电势升高。C 、在尘埃粒子处于强的紫外 辐射的环境时(如太阳系中的一些情况) ,尘埃粒子可辐射光电子,相当于存在一个正 的充电电流。d 、尘埃粒子表面的化学反应,激光或射频电磁场的作用等都可能影响 尘埃粒子的荷电状况。当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度这个条
2/5

5讲 连接体问题与典型例题

5讲 牛顿运动定律与连接体问题 一、连接体概述 相互连接并且有共同的加速度的两个或多个物体组成的系统可以看作连接体。 如下图所示: 还有各种不同形式的连接体的模型图,不一一描述。只以常见的模型为例。 二、问题分类 1.已知外力求内力(先整体后隔离) 如果已知连接体在合外力的作用下一起运动,可以先把连接体系统作为一个整体,根据牛顿第二定律求出他们共同的加速度;再隔离其中的一个物体,求相互作用力。 2.已知内力求外力(先隔离后整体) 如果已知连接体物体间的相互作用力,可以先隔离其中一个物体,根据牛顿第二定律求出他们共同的加速度;再把连接体系统看成一个整体,求解外力的大小。 三、典型例题(以图1模型为例) 【例题1】 如上图所示,质量分别为m 1、m 2 的两个物块放在光滑的水平面上,中间用细绳相连,在F 拉力的作用下一起向右做匀加速运动,求中间细绳的拉力为多大? 解析:两个物块组成连接体系统,具有共同的加速度,把他们看作整体,根据牛顿第二定律可得: 12()F m m a =+ 解得:加速度12 F a m m = + 再隔离后面的物块m 1,它受重力G 、支持力N 和拉力T 三个力作用,根据牛顿第二 定律可得: 1T m a = 带入可得:112 m T F m m = + 图1 图2 图3 图4

【例题2】 如图所示,质量分别为m 1、m 2的两个物块,中间用细绳相连,在F 拉力的作用下一起向上做匀加速运动,求中间细绳的拉力为多大? 解析:两个物块具有共同的加速度,把他们看作整体,根据牛顿第二定律可得: 1212 ()()F m m g m m a -+=+ 解得:加速度1212 ()F m m g a m m -+= + 再隔离后面的物块m 1,它受重力G 、和拉力T 两个力作用,根据牛顿第二定律可得: 12111 12()F m m g T m g m a m m m -+-==+ 带入可得:112 m T F m m = + 由以上两个例题可得:对于在已知外力求内力的连接体问题中,系统中各物体的内力是按照质量关系分配牵引力的。只与连接体系统的质量和牵引力有关,与系统的加速度a 、摩擦因数μ、斜面倾角θ无关。 即: 112 m T F m m = + 【例3】如图所示,固定在水平面上的斜面其倾角θ=37o,长方体木块A 的MN 面上钉着一颗小钉子,质量m =1.5kg 的小球B 通过一细线与小钉子相连接,细线与斜面垂直.木块与斜面间的动摩擦因数μ=0.50.现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN 面的压力大小.(取g =10m/s 2,sin37o=0.6,cos37o=0.8) 解析:以木块和小球整体为研究对象,设木块的质量为M ,下滑的加速度为a ,沿斜面方向,根据牛顿第二定律有: (M +m )g sin37o-μ(M +m )g cos37o=(M +m )a 解得:a =g (sin37o-μcos37o)=2m/s 2 以小球B 为研究对象,受重力mg ,细线拉力T 和MN 面对小球沿斜面向上的弹力F N ,沿斜面方向,根据牛顿第二定律有: mg sin37o-F N =ma 解得:F N =mg sin37o-ma =6N . 由牛顿第三定律得,小球对木块MN 面的压力大小为6N . [例4]如图2-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的 2 1,

高一物理平抛运动测试题-(有答案)

3.3 平抛运动 【学业达标训练】 1.从水平匀速飞行的直升飞机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 【解析】选C.从飞机上看,物体做自由落体运动,从地面上看,因物体释放时已具有与飞机相同的水平速度,所以做平抛运动,即C正确. 2.平抛物体的运动规律可概括为两条:第一条,水平方向做匀速直线运动;第二条,竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图3-3-8所示,用小锤打击弹性金属片,A球水平飞出,同时B球被松开.两球同时落到地面,则这个实验() A.只能说明上述规律中的第一条 B.只能说明上述规律中的第二条 C.不能说明上述规律中的任何一条 D.能同时说明上述两条规律 【解析】选B.实验中A球做平抛运动,B球做自由落体运动,两球同时落地说明A球平抛运动的竖直分运动和B球相同,而不能说明A球的水平分运动是匀速直线运动,所以B项正确,A、C、D三项都不对. 3.甲、乙两物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面的高度之比为() A.1∶2 B.1∶ C.1∶4 D.4∶1

4.抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L,网高h,如图3-3-9乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g),将球水平发出,则可以求出() A.发球时的水平初速度 B.发球时的竖直高度 C.球落到球台上时的速度 D.从球被发出到被接住所用的时间 5.如图3-3-10所示,AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B 点,求:AB间的距离及物体在空中飞行的时间.

高中物理平抛运动试题

高中物理平抛运动试题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动 V x = X= t= 竖直方向运动 V y = y= t= V 合= S 合 = 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V 0水平抛出,经时间t,其竖直方向速度大小与V 大小相等,那么t 为() A V 0/g B 2V /g C V /2g D 2 V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V 水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是 ( ) A 1∶1 B 2 ∶1 C 3∶1 D4∶1

5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s 又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

高中物理连接体动力学完美训练版(四大连接体)

高中物理连接体动力学完美训练版 查看答案方法:在word 中按Ctrl + Shift + 8 四大连接体、内力口诀 接触体 1. (2015·课标卷Ⅱ,20)【多选】在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉 力大小为F ;当机车在西边拉着车厢以大小为23 a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为() A .8 B .10 C.15 D .18 2. 如图所示,质量为M 的圆槽内有质量为m 的光滑小球,在水平恒力F 作用下两者保持相对静止,地面光滑.则() A .小球对圆槽的压力为MF M +m B .小球对圆槽的压力为mF M +m C .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置升高 D .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置降低 3. 如图所示,两相互接触的物块放在光滑的水平面上,质量分别为m 1和m 2,且m 1

高中物理平抛运动经典大题

1如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 2 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 3 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q点物体速度。 4 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 5 某一平抛的部分轨迹如图4所示,已知,,,求。

6从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。(提示:从平抛运动的轨迹入手求解问题) 图5 7 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?(提示:灵活分解求解平抛运动的最值问题) 图6 8 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?(提示:利用平抛运动的推论求解分速度和合速度构成一个直角矢量三角形) 图7 9宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。(提示:利用推论,分位移和合位移构成直角矢量三角形)10如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。(提示:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。)

高中物理常见连接体问题总结

(一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg的物体.g取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.(三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,

高中物理平抛运动实验.docx

平抛运动实验【实验目的】 (1)用实验的方法描出平抛运动的轨迹. (2)根据平抛运动的轨迹求初速度. 【实验原理】 (1)用描迹法画出小球平抛运动的轨迹. (2)建立坐标系,测出轨迹上某点的坐标x、 y,根据 = 0= 1 2得初速度 v 0= x g x v t、 y2gt2y . 【实验器材】 斜槽、小球、方木板、铁架台、白纸、图钉、铅垂线、三角板、铅笔及刻度尺 【实验步骤】 (1)安装器材与调平:将斜槽放在水平桌面上,其末端伸出桌面外,调节末端使其切线水平后固定. 检查斜槽末端是否水平的方法:将小球放在斜槽末端水平轨道的任意位置,小球都不滚动,则可认为 斜槽末端水平.精细的检查方法是用水平仪调整. (2)用图钉把坐标纸钉在木板上,让木板竖直固定,其左上方靠近槽口,用铅垂线检查坐标纸上的竖线是否 竖直,整个实验装置如图所示.用铅垂线把木板校准到竖直方向,使小球平抛的轨道平面与板面平行,保证在重复实验的过程中,木板与斜槽的相对位置保持不变. (3)建立直角坐标系xOy:以小球做平抛运动的起点O 为坐标原点,从坐标原点 O 画出竖直向下的y 轴 和水平向右的x 轴.确定坐标原点O 的方法是:把小球放在槽口末端处,用铅笔记下这时小球的球心在坐标纸上的水平投影点O,即为坐标原点 (不是槽口端点 ). (4)确定小球位置:让小球由斜槽的某一固定位置自由滚下,从O 点开始做平抛运动.先用眼睛粗略估计 小球在某一 x 值处 (如 x= 1 cm 或 2 cm 等 )的 y 值,然后用铅笔尖指着这个位置,让小球从原释放处开始滚下,看是否与铅笔尖相碰,如此重复数次,较准确地确定小球通过的这个位置,并在坐标纸上 记下这一点. (5)依次改变 x 值,用与 (4)同样的方法确定小球通过其他各点的位置. (6)描点画轨迹:取下坐标纸,将(4)(5) 中所描出的各点用平滑曲线连接起来,这就画出了小球做平抛运动 的轨迹曲线 (所画曲线可不通过个别偏差较大的点,但必须保持曲线平滑,不允许出现凹陷处).【注意事项】 (1)固定斜槽时,必须注意使通过斜槽末端点的切线保持水平,以使小球离开斜槽后做平抛运动. (2)木板必须处在竖直平面内,与小球运动轨迹所在的竖直平面平行,使小球的运动靠近图纸但不接触. (3) 在斜槽上设定位卡板,使小球每次都从定位卡板所确定的同一位置由静止开始滚下,以保证重复实验时,

相关文档